1
|
Yıldırım M, Yarenci GB, Genç MB, Uçar Çİ, Bayav S, Tekin MN, Bektaş Ö, Teber S. VAMP1-Related Congenital Myasthenic Syndrome: A Case Report and Literature Review. Neuropediatrics 2024; 55:200-204. [PMID: 38531369 DOI: 10.1055/s-0044-1782675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Congenital myasthenic syndrome-25 (CMS-25) is an autosomal recessive neuromuscular disorder caused by a homozygous mutation in VAMP1 gene. To date, only eight types of allelic variants in VAMP1 gene have been reported in 12 cases of CMS-25. Here, we report on an 8-year-old boy with motor developmental delay, axial hypotonia, myopathic face, muscle weakness, strabismus, ptosis, pectus carinatum, kyphoscoliosis, joint contractures, joint laxity, seizures, and recurrent nephrolithiasis. He also had feeding difficulties and recurrent aspiration pneumonia. Brain magnetic resonance imaging at 20 months of age showed left focal cerebellar hypoplasia. Genetic analysis revealed a homozygous missense variant of c.202C > T (p.Arg68Ter) in the VAMP1 gene. Treatment with oral pyridostigmine was started, which resulted in mild improvement in muscle strength. Salbutamol syrup was added a few months later, but no significant improvement was observed. This case report presents novel findings such as focal cerebellar hypoplasia and nephrolithiasis in VAMP1-related CMS-25. Consequently, this case report extends the clinical spectrum. Further studies are needed to expand the genotype-phenotype correlations in VAMP1-related CMS-25.
Collapse
Affiliation(s)
- Miraç Yıldırım
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | | | - Çiğdem İlter Uçar
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Secahattin Bayav
- Department of Pediatric Pulmonology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Merve Nur Tekin
- Department of Pediatric Pulmonology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ömer Bektaş
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serap Teber
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Cotrina-Vinagre FJ, Rodríguez-García ME, Del Pozo-Filíu L, Hernández-Laín A, Arteche-López A, Morte B, Sevilla M, Pérez-Jurado LA, Quijada-Fraile P, Camacho A, Martínez-Azorín F. Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals. J Hum Genet 2024; 69:187-196. [PMID: 38355957 DOI: 10.1038/s10038-024-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
We report the cases of two Spanish pediatric patients with hypotonia, muscle weakness and feeding difficulties at birth. Whole-exome sequencing (WES) uncovered two new homozygous VAMP1 (Vesicle Associated Membrane Protein 1) splicing variants, NM_014231.5:c.129+5 G > A in the boy patient (P1) and c.341-24_341-16delinsAGAAAA in the girl patient (P2). This gene encodes the vesicle-associated membrane protein 1 (VAMP1) that is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. VAMP1 has a highly variable C-terminus generated by alternative splicing that gives rise to three main isoforms (A, B and D), being VAMP1A the only isoform expressed in the nervous system. In order to assess the pathogenicity of these variants, expression experiments of RNA for VAMP1 were carried out. The c.129+5 G > A and c.341-24_341-16delinsAGAAAA variants induced aberrant splicing events resulting in the deletion of exon 2 (r.5_131del; p.Ser2TrpfsTer7) in the three isoforms in the first case, and the retention of the last 14 nucleotides of the 3' of intron 4 (r.340_341ins341-14_341-1; p.Ile114AsnfsTer77) in the VAMP1A isoform in the second case. Pathogenic VAMP1 variants have been associated with autosomal dominant spastic ataxia 1 (SPAX1) and with autosomal recessive presynaptic congenital myasthenic syndrome (CMS). Our patients share the clinical manifestations of CMS patients with two important differences: they do not show the typical electrophysiological pattern that suggests pathology of pre-synaptic neuromuscular junction, and their muscular biopsies present hypertrophic fibers type 1. In conclusion, our data expand both genetic and phenotypic spectrum associated with VAMP1 variants.
Collapse
Affiliation(s)
- Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Aurelio Hernández-Laín
- Servicio de Anatomía Patológica (Neuropatología), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Arteche-López
- Servicio de Genética, Hospital Universitario 12 de Octubre, E-28041, Madrid, Spain
| | - Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Marta Sevilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Pilar Quijada-Fraile
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Ana Camacho
- Sección de Neurología Infantil, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Madrid, Spain.
| |
Collapse
|
3
|
Liu Y, Lin W. Morphological and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy. Hum Mol Genet 2024; 33:233-244. [PMID: 37883471 PMCID: PMC10800017 DOI: 10.1093/hmg/ddad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| |
Collapse
|
4
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
6
|
Han B, Zhao Y, Yao J, Li N, Fang T, Wang Y, Meng Z, Liu W. Proteomics on the role of muscone in the "consciousness-restoring resuscitation" effect of musk on ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115475. [PMID: 35718056 DOI: 10.1016/j.jep.2022.115475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk is a representative drug of aroma-relieving traditional Chinese medicine, and it is a commonly used traditional Chinese medicine for the treatment of ischemic stroke. Muscone is the core medicinal component of musk. AIM OF THE STUDY We sought to identify the target of muscone in the treatment of ischemic stroke using network pharmacology, an animal model of ischemic stroke, and differential proteomics. MATERIALS AND METHODS The drug targets of muscone in the treatment of ischemic stroke were predicted and analyzed using information derived from sources such as the Traditional Chinese Medicine Systems Pharmacology database and Swiss Target Prediction tool. The animal model of focal cerebral ischemia was established by suture-based occlusion of the middle cerebral artery of rats. The rats were divided into six groups: sham-operated control, model, musk, muscone1, muscone2, and muscone3. Neurological deficit scores were calculated after intragastric administration of musk or muscone. The microcirculation blood flow of the pia mater was detected using a laser speckle blood flow meter. The cerebral infarction rate was detected by 2,3,5-triphenyltetrazolium chloride staining. The necrosis rate of the cerebral cortex and the hippocampal neurons was detected by hematoxylin and eosin staining. Blood-brain barrier damage was detected by the Evans blue method. Quantitative proteomics analysis in the sham-operated control, model, and muscone groups was performed using tandem-mass-tags. Considering fold changes exceeding 1.2 as differential protein expression, the quantitative values were compared among groups by analysis of variance. Furthermore, a protein-protein interaction network was constructed, and differentially expressed proteins were analyzed by gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS Network pharmacology identified 339 targets for the intersection of 17 components of musk and cerebral ischemia-reperfusion injury. The GO and KEGG enrichment items mainly identified regulation of neuronal synaptic structure and transfer function, synaptic neurotransmitters, and receptor activity. Zoopery showed that the model group had a higher behavioral score, cerebral infarction rate, cortical and hippocampal neuron death rate, Evans blue exudation in the brain, and bilateral pia mater microcirculation blood flow differences than the sham-operated control group (P <0.01). Compared with the model group, the behavioral score, infarction rate, hippocampal neuronal mortality, and Evans blue content decreased significantly in the musk, muscone2, and muscone3 groups (P <0.05). Proteomic analysis showed that 160 genes were differentially expressed among the sham-operated control, model, and muscone groups. GO items with high enrichment included neuronal synapses, postsynaptic signal transduction, etc. KEGG items with high enrichment included cholinergic synapses, calcium signaling pathway, dopaminergic synapses, etc. Protein interaction analysis revealed that the top three protein pairs were Ndufa10/Ndufa6, Kcna2/Kcnab2, and Gsk3b/Traf6. CONCLUSIONS Muscone can reduce neuronal necrosis, protect the blood-brain barrier, and improve the neurological damage caused by cerebral ischemia via molecular mechanisms mainly involving the regulation of neuronal synaptic connections. Muscone is an important active component responsible for the "consciousness-restoring resuscitation" effect of musk on ischemic stroke.
Collapse
Affiliation(s)
- Bingbing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yangang Zhao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine Shandong, 266109, PR China.
| | - Jing Yao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Na Li
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Tianhe Fang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Yuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Shandong, 250109, PR China.
| | - Wei Liu
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China.
| |
Collapse
|
7
|
Carré D, Martin V, Kouidri Y, Morin R, Norlund M, Gomes A, Lagarde JM, Lezmi S. The distribution of neuromuscular junctions depends on muscle pennation, when botulinum neurotoxin receptors and SNAREs expression are uniform in the rat. Toxicon 2022; 212:34-41. [DOI: 10.1016/j.toxicon.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
8
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
9
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
10
|
Blumer R, Streicher J, Carrero-Rojas G, Calvo PM, de la Cruz RR, Pastor AM. Palisade Endings Have an Exocytotic Machinery But Lack Acetylcholine Receptors and Distinct Acetylcholinesterase Activity. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 33369640 PMCID: PMC7774060 DOI: 10.1167/iovs.61.14.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this work was to test whether palisade endings express structural and molecular features of exocytotic machinery, and are associated with acetylcholine receptors, and enzymes for neurotransmitter breakdown. Methods Extraocular rectus muscles from six cats were studied. Whole-mount preparations of extraocular muscles (EOMs) were immunolabeled with markers for exocytotic proteins, including synaptosomal-associated protein of 25 kDa (SNAP25), syntaxin, synaptobrevin, synaptotagmin, and complexin. Acetylcholine receptors (AChRs) were visualized with α-bungarotoxin and with an antibody against AChRs, and acetylcholinesterase (AChE) was tagged with anti-AChE. Molecular features of multicolor labeled palisade endings were analyzed in the confocal scanning microscope, and their ultrastructural features were revealed in the transmission electron microscope. Results All palisade endings expressed the exocytotic proteins SNAP25, syntaxin, synaptobrevin, synaptotagmin, and complexin. At the ultrastructural level, vesicles docked at the plasma membrane of terminal varicosities of palisade endings. No AChRs were associated with palisade endings as demonstrated by the absence of α-bungarotoxin and anti-AChR binding. AChE, the degradative enzyme for acetylcholine exhibited low, if any, activity in palisade endings. Axonal tracking showed that axons with multiple en grappe motor terminals were in continuity with palisade endings. Conclusions This study demonstrates that palisade endings exhibit structural and molecular characteristics of exocytotic machinery, suggesting neurotransmitter release. However, AChRs were not associated with palisade endings, so there is no binding site for acetylcholine, and, due to low/absent AChE activity, insufficient neurotransmitter removal. Thus, the present findings indicate that palisade endings belong to an effector system that is very different from that found in other skeletal muscles.
Collapse
Affiliation(s)
- Roland Blumer
- Center of Anatomy and Cell Biology, MIC, Medical University Vienna, Vienna, Austria
| | - Johannes Streicher
- Department of Anatomy and Biomechanics, Division of Anatomy and Developmental Biology, Karl Landsteiner University of Health Science, Krems an der Donau, Austria
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
11
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Hoogstraaten RI, van Keimpema L, Toonen RF, Verhage M. Tetanus insensitive VAMP2 differentially restores synaptic and dense core vesicle fusion in tetanus neurotoxin treated neurons. Sci Rep 2020; 10:10913. [PMID: 32616842 PMCID: PMC7331729 DOI: 10.1038/s41598-020-67988-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/11/2020] [Indexed: 01/10/2023] Open
Abstract
The SNARE proteins involved in the secretion of neuromodulators from dense core vesicles (DCVs) in mammalian neurons are still poorly characterized. Here we use tetanus neurotoxin (TeNT) light chain, which cleaves VAMP1, 2 and 3, to study DCV fusion in hippocampal neurons and compare the effects on DCV fusion to those on synaptic vesicle (SV) fusion. Both DCV and SV fusion were abolished upon TeNT expression. Expression of tetanus insensitive (TI)-VAMP2 restored SV fusion in the presence of TeNT, but not DCV fusion. Expression of TI-VAMP1 or TI-VAMP3 also failed to restore DCV fusion. Co-transport assays revealed that both TI-VAMP1 and TI-VAMP2 are targeted to DCVs and travel together with DCVs in neurons. Furthermore, expression of the TeNT-cleaved VAMP2 fragment or a protease defective TeNT in wild type neurons did not affect DCV fusion and therefore cannot explain the lack of rescue of DCV fusion by TI-VAMP2. Finally, to test if two different VAMPs might both be required in the DCV secretory pathway, Vamp1 null mutants were tested. However, VAMP1 deficiency did not reduce DCV fusion. In conclusion, TeNT treatment combined with TI-VAMP2 expression differentially affects the two main regulated secretory pathways: while SV fusion is normal, DCV fusion is absent.
Collapse
Affiliation(s)
- Rein I Hoogstraaten
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands
| | - Linda van Keimpema
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands
- Sylics (Synaptologics BV), PO Box 71033, 1008 BA, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands.
- Clinical Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Dhara M, Mantero Martinez M, Makke M, Schwarz Y, Mohrmann R, Bruns D. Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release. eLife 2020; 9:e55152. [PMID: 32391794 PMCID: PMC7239655 DOI: 10.7554/elife.55152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Maria Mantero Martinez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Mazen Makke
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Yvonne Schwarz
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke UniversityMagdeburgGermany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| |
Collapse
|
15
|
Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron 2019; 98:127-141.e7. [PMID: 29621484 DOI: 10.1016/j.neuron.2018.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.
Collapse
|
16
|
Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses. J Neurosci 2019; 39:6049-6066. [PMID: 31160536 DOI: 10.1523/jneurosci.0403-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
Synaptic transmission occurs when an action potential triggers neurotransmitter release via the fusion of synaptic vesicles with the presynaptic membrane, driven by the formation of SNARE complexes composed of the vesicular (v)-SNARE synaptobrevin and the target (t)-SNAREs Snap-25 and syntaxin-1. Neurotransmitters are also released spontaneously, independent of an action potential, through the fusion of synaptic vesicles with the presynaptic membrane. The major neuronal vSNAREs, synaptobrevin-1 and synaptobrevin-2, are expressed at the developing neuromuscular junction (NMJ) in mice, but their specific roles in NMJ formation and function remain unclear. Here, we examine the NMJs in mutant mouse embryos lacking either synaptobrevin 1 (Syb1lew/lew ) or synaptobrevin 2 (Syb2 -/-), and those lacking both (Syb1lew/lewSyb2 -/-). We found that, compared with controls: (1) the number and size of NMJs was markedly increased in Syb2 -/- and Syb1lew/lewSyb2 -/- mice, but not in Syb1lew/lew mice; (2) synaptic vesicle density was markedly reduced in Syb1lew/lewSyb2 -/- NMJs; and (3) evoked neurotransmission was markedly reduced in Syb2 -/- NMJs and completely abolished in Syb1lew/lewSyb2 -/- NMJs. Surprisingly, however, spontaneous neurotransmission persists in the absence of both Syb1 and Syb2. Furthermore, spontaneous neurotransmission remains constant in Syb1lew/lewSyb2 -/- NMJs despite changing Ca2+ levels. These findings reveal an overlapping role for Syb1 and Syb2 (with Syb2 being dominant) in developing NMJs in mice. Moreover, because spontaneous release becomes Ca2+-insensitive in Syb1lew/lewSyb2 -/- NMJs, our findings suggest that synaptobrevin-based SNARE complexes play a critical role in conferring Ca2+ sensitivity during spontaneous release.SIGNIFICANCE STATEMENT Neurotransmitters can be released at synapses with (evoked) or without (spontaneous) the influence of action potentials. Whereas evoked neurotransmission requires Ca2+ influx, those underlying the spontaneous neurotransmission may occur with or without Ca2+ Our findings show that, in the absence neuronal vSNARE synaptobrevin-1 and synaptobrevin-2, evoked neurotransmission is completely abolished; however, spontaneous synaptic transmission not only persists but even increased. Furthermore, spontaneous synaptic transmission that is normally highly Ca2+-sensitive became Ca2+-independent upon deletion of vSNARE synaptobrevin-1 and synaptobrevin-2. These findings reveal distinct mechanisms for evoked and spontaneous neurotransmitter release. Moreover, these findings suggest that synaptobrevin-based SNARE complexes play critical roles in conferring Ca2+ sensitivity during spontaneous neurotransmission at developing neuromuscular synapses in mice.
Collapse
|
17
|
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. Am J Hum Genet 2019; 104:721-730. [PMID: 30929742 PMCID: PMC6451933 DOI: 10.1016/j.ajhg.2019.02.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.
Collapse
|
18
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
19
|
Monteggia LM, Lin PY, Adachi M, Kavalali ET. Behavioral Analysis of SNAP-25 and Synaptobrevin-2 Haploinsufficiency in Mice. Neuroscience 2018; 420:129-135. [PMID: 30144509 DOI: 10.1016/j.neuroscience.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
In central synapses, synaptobrevin-2 (also called VAMP-2) is the predominant synaptic vesicle SNARE protein that interacts with the plasma membrane SNAREs, SNAP-25 and syntaxin-1 to execute exocytosis. Mice deficient in synaptobrevin-2 or SNAP-25 show embryonic lethality, which precludes investigation of the complete loss-of-function of these proteins in the adult nervous system. However, mice that carry heterozygous null mutations survive into adulthood and are fertile. In order to elucidate how loss-of-function mutations in these proteins may result in human disease phenotypes it is important to develop bona fide animal models. Therefore, given the importance of these two critical SNAREs in central synaptic transmission and their association with several neurological or neuropsychiatric disorders, we performed a comprehensive behavioral analysis of SNAP-25 heterozygous null (SNAP-25+/-) mice as well as the synaptobrevin-2 heterozygous null (+/-) mice. This analysis revealed only mild phenotypes, SNAP-25 (+/-) mice exhibited marked hypoactivity, whereas synaptobrevin-2 (+/-) mice showed enhanced performance on the rotarod. The two mouse lines did not manifest significant deficits in anxiety-related behaviors, learning and memory measures, or prepulse inhibition. The rather mild behavioral deficits indicate that these key proteins, SNAP25 and synaptobrevin-2, are expressed in excess to circumvent the impact of potential fluctuations in expression levels on nervous system function.
Collapse
Affiliation(s)
- Lisa M Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Pei-Yi Lin
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Megumi Adachi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
20
|
|
21
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
22
|
Copine-6 Binds to SNAREs and Selectively Suppresses Spontaneous Neurotransmission. J Neurosci 2018; 38:5888-5899. [PMID: 29802203 DOI: 10.1523/jneurosci.0461-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that spontaneous and action potential-evoked neurotransmitter release processes are independently regulated. However, the mechanisms that uncouple the two forms of neurotransmission remain unclear. In cultured mouse and rat neurons, we show that the two C2 domain-containing protein copine-6 is localized to presynaptic terminals and binds to synaptobrevin2 as well as other SNARE proteins in a Ca2+-dependent manner. Ca2+-dependent interaction of copine-6 with synaptobrevin2 selectively suppresses spontaneous neurotransmission in a reaction that requires the tandem tryptophan residues at the C-terminal region of synaptobrevin2. Accordingly, copine-6 loss of function augmented presynaptic Ca2+ elevation-mediated neurotransmitter release. Intracellular Ca2+ chelation, on the other hand, occluded copine-6-mediated suppression of release. We also evaluated the molecular specificity of the copine-6-dependent regulation of spontaneous release and found that overexpression of copine-6 did not suppress spontaneous release in synaptobrevin2-deficient neurons. Together, these results suggest that copine-6 acts as a specific Ca2+-dependent suppressor of spontaneous neurotransmission.SIGNIFICANCE STATEMENT Synaptic transmission occurs both in response to presynaptic action potentials and spontaneously, in the absence of stimulation. Currently, much more is understood about the mechanisms underlying action potential-evoked neurotransmission compared with spontaneous release. However, recent studies have shown selective modulation of spontaneous neurotransmission process by several neuromodulators, suggesting specific molecular regulation of spontaneous release. In this study, we identify copine-6 as a specific regulator of spontaneous neurotransmission. By both gain-of-function and loss-of-function experiments, we show that copine-6 functions as a Ca2+-dependent suppressor of spontaneous release. These results further elucidate the mechanisms underlying differential regulation of evoked and spontaneous neurotransmitter release.
Collapse
|
23
|
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem 2018; 149:84-97. [PMID: 29438740 DOI: 10.1016/j.nlm.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
MeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied. To characterize the role of MeCP2 in adult neuronal function and cognition, we used a temporal and region-specific disruption of MeCP2 expression in the hippocampus of adult male mice. We found that MeCP2 is required for long-term memory formation and that it controls the learning-induced transcriptional response of hippocampal neurons required for memory consolidation. Furthermore, we uncovered MeCP2 functions in the adult hippocampus that may underlie cognitive integrity. We showed that MeCP2 maintains the developmentally established chromatin configuration and epigenetic landscape of CA1 neurons throughout the adulthood, and that it regulates the expression of neuronal and immune-related genes in the adult hippocampus. Overall, our findings identify MeCP2 as a maintenance factor in the adult hippocampus that preserves signal responsiveness of the genome and allows for integrity of cognitive functions. This study provides new insight into how MeCP2 maintains adult brain functions, but also into the mechanisms underlying the cognitive impairments observed in RTT patients and highlights the understudied role of DNA methylation interpretation in adult cognitive processes.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
25
|
Elliott M, Maignel J, Liu SM, Favre-Guilmard C, Mir I, Farrow P, Hornby F, Marlin S, Palan S, Beard M, Krupp J. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems. PLoS One 2017; 12:e0185628. [PMID: 28982136 PMCID: PMC5628846 DOI: 10.1371/journal.pone.0185628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.
Collapse
Affiliation(s)
- Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
- * E-mail:
| | | | - Sai Man Liu
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | | - Imran Mir
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Paul Farrow
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Sandra Marlin
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Shilpa Palan
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | |
Collapse
|
26
|
Abnormally Increased Secretion in Olfactory Neuronal Precursors from a Case of Schizophrenia Is Modulated by Melatonin: A Pilot Study. Int J Mol Sci 2017; 18:ijms18071439. [PMID: 28703738 PMCID: PMC5535930 DOI: 10.3390/ijms18071439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/24/2022] Open
Abstract
The alterations that underlie the pathophysiology of schizophrenia (SCZ) include the dysregulation of structural and functional properties of neurons. Among these, the secretion of neurotransmitters and hormones, which plays a key role for neuronal communication and development, is altered. Neuronal precursors from the human olfactory epithelium have been recently characterized as a reliable model for studying the etiopathogenesis of neuropsychiatric diseases. Our previous work has shown that melatonin enhances the development of morphological and functional features of cloned olfactory neuronal precursors (ONPs) from a healthy subject. In this work we found that primary cultures of ONPs obtained from a schizophrenic patient display an increased potassium-evoked secretion, when compared with ONPs from an age- and gender-matched healthy control subject (HCS). Secretion was evaluated by FM1-43 fluorescence cumulative changes in response to depolarization. Interestingly, a 12 h-melatonin treatment modulated the abnormally increased secretion in SCZ ONPs and brought it to levels similar to those found in the HCS ONPs. Our results suggest that the actin cytoskeleton might be a target for melatonin effects, since it induces the thickening of actin microfilament bundles. Further research will address the mechanisms by which melatonin modulates neurochemical secretion from ONPs.
Collapse
|
27
|
Salpietro V, Lin W, Vedove AD, Storbeck M, Liu Y, Efthymiou S, Manole A, Wiethoff S, Ye Q, Saggar A, McElreavey K, Krishnakumar SS, Pitt M, Bello OD, Rothman JE, Basel‐Vanagaite L, Hubshman MW, Aharoni S, Manzur AY, Wirth B, Houlden H. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol 2017; 81:597-603. [PMID: 28253535 PMCID: PMC5413866 DOI: 10.1002/ana.24905] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/07/2022]
Abstract
We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597–603
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Weichun Lin
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Markus Storbeck
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Yun Liu
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Qiaohong Ye
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Anand Saggar
- St George's Hospital, National Health Service Foundation TrustLondonUnited Kingdom
| | | | - Shyam S. Krishnakumar
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | | | - Matthew Pitt
- Department of Clinical NeurophysiologyGreat Ormond Street Hospital for Children, National Health Service Foundation TrustLondonUnited Kingdom
| | - Oscar D. Bello
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - James E. Rothman
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Lina Basel‐Vanagaite
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Weisz Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Sharon Aharoni
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Institute of Child Neurology, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Adnan Y. Manzur
- Department of Pediatric NeurologyDubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children National Health Service Foundation TrustLondonUnited Kingdom
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
28
|
Rodepeter FR, Wiegand S, Lüers HG, Bonaterra GA, Lowe AW, Bette M, Jacob R, Mandic R. Indication for differential sorting of the rat v-SNARE splice isoforms VAMP-1a and -1b. Biochem Cell Biol 2017; 95:500-509. [PMID: 28314111 DOI: 10.1139/bcb-2016-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are essential constituents of the intracellular trafficking machinery. The variable C-terminus in the 2 rat VAMP-1 splice isoforms VAMP-1a and -1b potentially acts as a sorting signal, because similar changes at the C-terminal end of a human VAMP-1 splice isoform resulted in its sorting to mitochondria. To evaluate the differences in the subcellular localization of these two v-SNARE proteins, VAMP-1a and -1b proteins tagged with green fluorescent protein (GFP) and red fluorescent protein (RFP) were expressed in HeLa, COS-7, and MDCK cells and evaluated by conventional confocal as well as total internal reflection fluorescence microscopy. Regions consistent with the endoplasmic reticulum and Golgi apparatus demonstrated a major overlap of both signals. In the periphery, vesicular structures were observed that mainly expressed one of the 2 isoforms. Within our experimental settings, we could not observe sorting of any of the 2 isoforms to mitochondria or peroxisomes, whereas both isoforms were found expressed in a minor subset of singular vesicles, which sporadically appeared to co-localize with the exocyst marker EXOC3/Sec6. Because vesicular structures were seen that expressed only one of the two splice variants, it is possible that VAMP-1a and VAMP-1b are sorted to distinct cellular compartments that require further characterization.
Collapse
Affiliation(s)
- Fiona R Rodepeter
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| | - Susanne Wiegand
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| | - Hans-Georg Lüers
- b Department of Cell Biology, Institute of Anatomy and Cell Biology, Philipps-Universität, Marburg, Germany
| | - Gabriel A Bonaterra
- c Department of Medical Cell Biology, Philipps-Universität, Marburg, Germany
| | - Anson W Lowe
- d Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Bette
- e Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-Universität, Marburg, Germany
| | - Ralf Jacob
- f Institute of Cell Biology and Cell Pathology, Philipps-Universität, Marburg, Germany
| | - Robert Mandic
- a Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, 3.BA, Room +3/08070, Baldingerstrasse, D-35033 Marburg, Germany
| |
Collapse
|
29
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
30
|
Shen XM, Scola RH, Lorenzoni PJ, Kay CSK, Werneck LC, Brengman J, Selcen D, Engel AG. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol 2017; 4:130-138. [PMID: 28168212 PMCID: PMC5288468 DOI: 10.1002/acn3.387] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/01/2022] Open
Abstract
Objective To identify the molecular basis and elucidate the pathogenesis of a fatal congenital myasthenic syndrome. Methods We performed clinical electrophysiology studies, exome and Sanger sequencing, and analyzed functional consequences of the identified mutation. Results Clinical electrophysiology studies of the patient revealed several‐fold potentiation of the evoked muscle action potential by high frequency nerve stimulation pointing to a presynaptic defect. Exome sequencing identified a homozygous c.340delA frameshift mutation in synaptobrevin 1 (SYB1), one of the three SNARE proteins essential for synaptic vesicle exocytosis. Analysis of both human spinal cord gray matter and normal human muscle revealed expression of the SYB1A and SYB1D isoforms, predicting expression of one or both isoforms in the motor nerve terminal. The identified mutation elongates the intravesicular C‐terminus of the A isoform from 5 to 71, and of the D isoform from 4 to 31 residues. Transfection of either mutant isoform into bovine chromaffin cells markedly reduces depolarization‐evoked exocytosis, and transfection of either mutant isoform into HEK cells significantly decreases expression of either mutant compared to wild type. Interpretation The mutation is pathogenic because elongation of the intravesicular C‐terminus of the A and D isoforms increases the energy required to move their C‐terminus into the synaptic vesicle membrane, a key step for fusion of the synaptic vesicle with the presynaptic membrane, and because it is predicted to reduce expression of either isoform in the nerve terminal.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology and Muscle Research Laboratory Mayo Clinic Rochester Minnesota 55905
| | - Rosana H Scola
- Service of Neuromuscular Disorders Division of Neurology of Hospital de Clínicas (UFPR) Curitiba 80060-900 Brazil
| | - Paulo J Lorenzoni
- Service of Neuromuscular Disorders Division of Neurology of Hospital de Clínicas (UFPR) Curitiba 80060-900 Brazil
| | - Cláudia S K Kay
- Service of Neuromuscular Disorders Division of Neurology of Hospital de Clínicas (UFPR) Curitiba 80060-900 Brazil
| | - Lineu C Werneck
- Service of Neuromuscular Disorders Division of Neurology of Hospital de Clínicas (UFPR) Curitiba 80060-900 Brazil
| | - Joan Brengman
- Department of Neurology and Muscle Research Laboratory Mayo Clinic Rochester Minnesota 55905
| | - Duygu Selcen
- Department of Neurology and Muscle Research Laboratory Mayo Clinic Rochester Minnesota 55905
| | - Andrew G Engel
- Department of Neurology and Muscle Research Laboratory Mayo Clinic Rochester Minnesota 55905
| |
Collapse
|
31
|
Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571. [PMID: 27343350 PMCID: PMC4972536 DOI: 10.7554/elife.17571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Mazen Makke
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Yvonne Schwarz
- Institute for Physiology, Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University, Erlangen, Germany
| | - Manfred Lindau
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, Homburg, Germany
| |
Collapse
|
32
|
Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content. J Neurosci 2016; 36:828-36. [PMID: 26791213 DOI: 10.1523/jneurosci.3786-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic regulation is essential for the maintenance of synaptic strength within the physiological range. The current study is the first to demonstrate that both induction and reversal of homeostatic upregulation of synaptic vesicle release can occur within seconds of blocking or unblocking acetylcholine receptors at the mouse neuromuscular junction. Our data suggest that the homeostatic upregulation of release is due to Ca(2+)-dependent increase in the size of the readily releasable pool (RRP). Blocking vesicle refilling prevented upregulation of quantal content (QC), while leaving baseline release relatively unaffected. This suggested that the upregulation of QC was due to mobilization of a distinct pool of vesicles that were rapidly recycled and thus were dependent on continued vesicle refilling. We term this pool the "homeostatic reserve pool." A detailed analysis of the time course of vesicle release triggered by a presynaptic action potential suggests that the homeostatic reserve pool of vesicles is normally released more slowly than other vesicles, but the rate of their release becomes similar to that of the major pool during homeostatic upregulation of QC. Remarkably, instead of finding a generalized increase in the recruitment of vesicles into RRP, we identified a distinct homeostatic reserve pool of vesicles that appear to only participate in synchronized release following homeostatic upregulation of QC. Once this small pool of vesicles is depleted by the block of vesicle refilling, homeostatic upregulation of QC is no longer observed. This is the first identification of the population of vesicles responsible for the blockade-induced upregulation of release previously described. Significance statement: The current study is the first to demonstrate that both the induction and reversal of homeostatic upregulation of synaptic vesicle release can occur within seconds. Our data suggest that homeostatic upregulation of release is due to Ca(2+)-dependent priming/docking of a small homeostatic reserve pool of vesicles that normally have slow-release kinetics. Following priming, the reserve pool of vesicles is released synchronously with the normal readily releasable pool of synaptic vesicles. This is the first description of this unique pool of synaptic vesicles.
Collapse
|
33
|
Harper CB, Papadopulos A, Martin S, Matthews DR, Morgan GP, Nguyen TH, Wang T, Nair D, Choquet D, Meunier FA. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles. Sci Rep 2016; 6:19654. [PMID: 26805017 PMCID: PMC4726273 DOI: 10.1038/srep19654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 11/20/2015] [Indexed: 02/03/2023] Open
Abstract
Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles.
Collapse
Affiliation(s)
- Callista B Harper
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Daniel R Matthews
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Tam H Nguyen
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Tong Wang
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Deepak Nair
- Interdisciplinary Institute for Neuroscience, The University of Bordeaux, Bordeaux, 33000, France.,Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, The University of Bordeaux, Bordeaux, 33000, France
| | - Frederic A Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| |
Collapse
|
34
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
35
|
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 2015; 350:aac4250. [PMID: 26542580 PMCID: PMC4669216 DOI: 10.1126/science.aac4250] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that β cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alan L Hutchison
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenyu Huang
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda L Allred
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Aaron R Dinner
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice. J Neurosci 2015; 35:11514-31. [PMID: 26290230 DOI: 10.1523/jneurosci.5288-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a "noncleavable" N-terminal ubiquitin moiety (Ub(G76V)). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) Ub(G76V), GFP, and a synaptic vesicle protein synaptobrevin-2 (Ub(G76V)-GFP-Syb2); (2) GFP-Syb2; or (3) Ub(G76V)-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, Ub(G76V)-GFP-Syb2, GFP-Syb2, and Ub(G76V)-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, Ub(G76V)-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and Ub(G76V)-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in Ub(G76V)-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that Ub(G76V)-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in Ub(G76V)-GFP-Syb2 mice. These findings indicate that Ub(G76V)-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (Ub(G76V)-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration.
Collapse
|
37
|
Hammel I, Meilijson I. Function Suggests Nano-Structure: Quantitative Structural Support for SNARE-Mediated Pore Formation. Neurotox Res 2015; 29:1-9. [PMID: 26407673 DOI: 10.1007/s12640-015-9559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Granule secretory content is released in either basal or calcium-activated complete exocytosis mode. A vital element in these processes is the establishment of a fusion pore between the granule membrane and the plasma membrane, initiated by the formation of a circular rosette docking arrangement of SNARE protein complexes. The controversially disputed number of SNARE complexes needed for granule priming leading to the formation of the fusion pore, is granule-size dependent and varies between secretion modes. Resorting to a statistical mechanics approach that views SNARE complexes and Ca(2+) ions as interacting particles, we have developed a relationship that links secretion rate to SNARE rosette size, Ca(2+) concentration and Ca(2+) ion cooperativity. Data are presented and discussed which suggest this SNARE-dependent generalization of existing narrow-range biophysical models that correlate secretion rate with Ca(2+) concentration and maximal Ca(2+) ion cooperativity. Evidence from dozens of examples in the literature advocate for this relation, which holds through the entire biological range. The coalescence of so many areas of diverse research methodologies has greatly augmented our understanding of so many different sequences of granule life cycle. Accordingly, these new tools may become valuable in a variety of electrophysiological experiments.
Collapse
Affiliation(s)
- Ilan Hammel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Isaac Meilijson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
38
|
Wu YJ, Tejero R, Arancillo M, Vardar G, Korotkova T, Kintscher M, Schmitz D, Ponomarenko A, Tabares L, Rosenmund C. Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol 2015. [PMID: 26203110 DOI: 10.1152/jn.00577.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STX1 is a major neuronal syntaxin protein located at the plasma membrane of the neuronal tissues. Rodent STX1 has two highly similar paralogs, STX1A and STX1B, that are thought to be functionally redundant. Interestingly, some studies have shown that the distribution patterns of STX1A and STX1B at the central and peripheral nervous systems only partially overlapped, implying that there might be differential functions between these paralogs. In the current study, we generated an STX1B knockout (KO) mouse line and studied the impact of STX1B removal in neurons of several brain regions and the neuromuscular junction (NMJ). We found that either complete removal of STX1B or selective removal of it from forebrain excitatory neurons in mice caused premature death. Autaptic hippocampal and striatal cultures derived from STX1B KO mice still maintained efficient neurotransmission compared with neurons from STX1B wild-type and heterozygous mice. Interestingly, examining high-density cerebellar cultures revealed a decrease in the spontaneous GABAergic transmission frequency, which was most likely due to a lower number of neurons in the STX1B KO cultures, suggesting that STX1B is essential for neuronal survival in vitro. Moreover, our study also demonstrated that although STX1B is dispensable for the formation of the mouse NMJ, it is required to maintain the efficiency of neurotransmission at the nerve-muscle synapse.
Collapse
Affiliation(s)
- Yuan-Ju Wu
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain; and
| | - Marife Arancillo
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gülcin Vardar
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Korotkova
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Michael Kintscher
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexey Ponomarenko
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain; and
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany;
| |
Collapse
|
39
|
Davis RVN, Lamont SJ, Rothschild MF, Persia ME, Ashwell CM, Schmidt CJ. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS One 2015; 10:e0122525. [PMID: 25821972 PMCID: PMC4379050 DOI: 10.1371/journal.pone.0122525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Agriculture provides excellent model systems for understanding how selective pressure, as applied by humans, can affect the genomes of plants and animals. One such system is modern poultry breeding in which intensive genetic selection has been applied for meat production in the domesticated chicken. As a result, modern meat-type chickens (broilers) exhibit enhanced growth, especially of the skeletal muscle, relative to their legacy counterparts. Comparative studies of modern and legacy broiler chickens provide an opportunity to identify genes and pathways affected by this human-directed evolution. This study used RNA-seq to compare the transcriptomes of a modern and a legacy broiler line to identify differentially enriched genes in the breast muscle at days 6 and 21 post-hatch. Among the 15,945 genes analyzed, 10,841 were expressed at greater than 0.1 RPKM. At day 6 post-hatch 189 genes, including several regulators of myogenic growth and development, were differentially enriched between the two lines. The transcriptional profiles between lines at day 21 post-hatch identify 193 genes differentially enriched and still include genes associated with myogenic growth. This study identified differentially enriched genes that regulate myogenic growth and differentiation between the modern and legacy broiler lines. Specifically, differences in the ratios of several positive (IGF1, IGF1R, WFIKKN2) and negative (MSTN, ACE) myogenic growth regulators may help explain the differences underlying the enhanced growth characteristics of the modern broilers.
Collapse
Affiliation(s)
- Richard V. N. Davis
- Dept. Biological Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
| | - Susan J. Lamont
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Max F. Rothschild
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Michael E. Persia
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Chris M. Ashwell
- Dept. of Poultry Science, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Carl J. Schmidt
- Dept. of Animal and Food Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kasimov MR, Giniatullin AR, Zefirov AL, Petrov AM. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:674-85. [PMID: 25725358 DOI: 10.1016/j.bbalip.2015.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
We have investigated the effects of 5α-cholesten-3-one (5Ch3, 200 nM) on synaptic transmission in mouse diaphragm. 5Ch3 had no impact on the amplitude or frequency of miniature endplate currents (MEPCs, spontaneous secretion), but decreased the amplitude of EPCs (evoked secretion) triggered by single action potentials. Treatment with 5Ch3 increased the depression of EPC amplitude and slowed the unloading of the dye FM1-43 from synaptic vesicles (exocytosis rate) during high-frequency stimulation. The estimated recycling time of vesicles did not change, suggesting that the decline of synaptic efficiency was due to the reduction in the size of the population of vesicles involved in release. The effects of 5Ch3 on synaptic transmission may be related to changes in the phase properties of the membrane. We have found that 5Ch3 reduces the staining of synaptic regions with the B-subunit of cholera toxin (a marker of lipid rafts) and increases the fluorescence of 22-NBD-cholesterol, indicating a phase change within the membrane. Manipulations of membrane cholesterol (saturation or depletion) strongly reduced the influence of 5Ch3 on both FM1-43 dye unloading and staining with the B-subunit of cholera toxin. Thus, 5Ch3 reduces the number of vesicles which are actively recruited during synaptic transmission and alters membrane properties. These effects of 5Ch3 depend on membrane cholesterol.
Collapse
Affiliation(s)
- M R Kasimov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia.
| |
Collapse
|
41
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
42
|
Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells. Anat Sci Int 2014; 90:33-9. [DOI: 10.1007/s12565-014-0266-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
43
|
Patra K, Lyons DJ, Bauer P, Hilscher MM, Sharma S, Leão RN, Kullander K. A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction. Eur J Neurosci 2014; 41:316-27. [DOI: 10.1111/ejn.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Affiliation(s)
| | - David J. Lyons
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Pavol Bauer
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Markus M. Hilscher
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- The Beijer Laboratory for Gene and Neurosciences; Uppsala Sweden
- Brain Institute; Federal University of Rio Grande do Norte; Natal Brazil
| | - Swati Sharma
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Richardson N. Leão
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- The Beijer Laboratory for Gene and Neurosciences; Uppsala Sweden
- Brain Institute; Federal University of Rio Grande do Norte; Natal Brazil
| | - Klas Kullander
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
44
|
Ramirez DMO, Kavalali ET. The role of non-canonical SNAREs in synaptic vesicle recycling. CELLULAR LOGISTICS 2014; 2:20-27. [PMID: 22645707 PMCID: PMC3355972 DOI: 10.4161/cl.20114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25.
Collapse
|
45
|
Abstract
The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)). FUS(WT) and FUS(R521G) mice that develop severe motor deficits also show neuroinflammation, denervated neuromuscular junctions, and premature death, phenocopying the human diseases. A portion of FUS(R521G) mice escape early lethality; these escapers have modest motor impairments and altered sociability, which correspond with a reduction of dendritic arbors and mature spines. Remarkably, only FUS(R521G) mice show dendritic defects; FUS(WT) mice do not. Activation of metabotropic glutamate receptors 1/5 in neocortical slices and isolated synaptoneurosomes increases endogenous mouse FUS and FUS(WT) protein levels but decreases the FUS(R521G) protein, providing a potential biochemical basis for the dendritic spine differences between FUS(WT) and FUS(R521G) mice.
Collapse
|
46
|
Zimmermann J, Trimbuch T, Rosenmund C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J Neurophysiol 2014; 112:1559-65. [DOI: 10.1152/jn.00340.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The core machinery of synaptic vesicle fusion consists of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, the two t-SNAREs at the plasma membrane (SNAP-25, Syntaxin 1) and the vesicle-bound v-SNARE synaptobrevin 2 (VAMP2). Formation of the trans-oriented four-α-helix bundle between these SNAREs brings vesicle and plasma membrane in close proximity and prepares the vesicle for fusion. The t-SNAREs are thought to be necessary for vesicle fusion. Whether the v-SNAREs are required for fusion is still unclear, as substantial vesicle priming and spontaneous release activity remain in mammalian mass-cultured synaptobrevin/cellubrevin-deficient neurons. Using the autaptic culture system from synaptobrevin 2 knockout neurons of mouse hippocampus, we found that the majority of cells were devoid of any evoked or spontaneous release and had no measurable readily releasable pool. A small subpopulation of neurons, however, displayed release, and their release activity correlated with the presence and amount of v-SNARE synaptobrevin 1 expressed. Comparison of synaptobrevin 1 and 2 in rescue experiments demonstrates that synaptobrevin 1 can substitute for the other v-SNARE, but with a lower efficiency in neurotransmitter release probability. Release activity in synaptobrevin 2-deficient mass-cultured neurons was massively reduced by a knockdown of synaptobrevin 1, demonstrating that synaptobrevin 1 is responsible for the remaining release activity. These data support the hypothesis that both t- and v-SNAREs are absolutely required for vesicle priming and evoked release and that differential expression of SNARE paralogs can contribute to differential synaptic coding in the brain.
Collapse
Affiliation(s)
- Johannes Zimmermann
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Peng L, Adler M, Demogines A, Borrell A, Liu H, Tao L, Tepp WH, Zhang SC, Johnson EA, Sawyer SL, Dong M. Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. PLoS Pathog 2014; 10:e1004177. [PMID: 25010769 PMCID: PMC4092145 DOI: 10.1371/journal.ppat.1004177] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/26/2014] [Indexed: 01/02/2023] Open
Abstract
Botulinum neurotoxins (BoNT/A-G), the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25). However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48) or sensitive (M48) to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates. Botulinum neurotoxins (BoNTs) target peripheral motor neurons and act by cleaving SNARE proteins, which are essential for neurotransmitter release from nerve terminals. SNARE proteins occur in multiple homologues and it has been difficult to determine which one is the physiologically relevant toxin target in motor nerve terminals among closely related SNARE homologues such as VAMP1 and VAMP2. Here we report that, in contrast to the highly conserved VAMP2, sequence variations in VAMP1 that confer resistance to BoNTs are widespread across vertebrates. In particular, residue 48 of VAMP1 is polymorphic between BoNT/D-sensitive residue M and BoNT/D-resistant residue I in rats. Taking advantage of this finding, we carried out an intra-species comparison, which showed that diaphragm motor nerve terminals from rats with I48 in VAMP1 were insensitive to BoNT/D as compared to those with M48. Since VAMP2 is conserved in rats, these data demonstrate that VAMP1 is the physiologically relevant toxin target in motor neurons. Interestingly, human VAMP1 encodes the BoNT/D-resistant residue I48, which may explain why humans are insensitive to BoNT/D. Finally, we found that residue 48 of VAMP1 switches frequently between M and I among 17 primate species, suggesting a potential selective pressure from BoNT/D for resistance in primates.
Collapse
Affiliation(s)
- Lisheng Peng
- Department of Microbiology and Immunobiology, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Adler
- Neurobehavioral Toxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland, United States of America
- * E-mail: (MA); (SLS); (MD)
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas, Austin, Texas, United States of America
| | - Andrew Borrell
- Neurobehavioral Toxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland, United States of America
| | - Huisheng Liu
- Waisman Center, Department of Neuroscience, Department of Neurology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Liang Tao
- Department of Microbiology and Immunobiology, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Su-Chun Zhang
- Waisman Center, Department of Neuroscience, Department of Neurology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sara L. Sawyer
- Department of Molecular Biosciences, University of Texas, Austin, Texas, United States of America
- * E-mail: (MA); (SLS); (MD)
| | - Min Dong
- Department of Microbiology and Immunobiology, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail: (MA); (SLS); (MD)
| |
Collapse
|
49
|
Meng J, Dolly JO, Wang J. Selective cleavage of SNAREs in sensory neurons unveils protein complexes mediating peptide exocytosis triggered by different stimuli. Mol Neurobiol 2014; 50:574-88. [PMID: 24604356 DOI: 10.1007/s12035-014-8665-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Oligomerisation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes is required for synaptic vesicle fusion and neurotransmitter release. How these regulate the release of pain peptides elicited by different stimuli from sensory neurons has not been established. Herein, K(+) depolarization was found to induce multiple sodium dodecyl sulfate (SDS)-resistant SNARE complexes in sensory neurons exposed to botulinum neurotoxins (BoNTs), with molecular weights ranging from 104-288 k (large) to 38-104 k (small). Isoform 1 of vesicle-associated membrane protein 1 (VAMP 1) assembled into stable complexes upon depolarisation and was required for the participation of intact synaptosome-associated protein of relative molecular mass 25 k (SNAP-25) or BoNT/A-truncated form (SNAP-25A) in the large functional and small inactive SDS-resistant SNARE complexes. Cleaving VAMP 1 decreased SNAP-25A in the functional complexes to a much greater extent than the remaining intact SNAP-25. Syntaxin 1 proved essential for the incorporation of intact and SNAP-25A into the large complexes. Truncation of syntaxin 1 by BoNT/C1 caused /A- and/or /C1-truncated SNAP-25 to appear in non-functional complexes and blocked the release of calcitonin gene-related peptide (CGRP) elicited by capsaicin, ionomycin, thapsigargin or K(+) depolarization. Only the latter two were susceptible to /A. Inhibition of CGRP release by BoNT/A was reversed by capsaicin and/or ionomycin, an effect overcome by BoNT/C1. Unlike BoNT/B, BoNT/D cleaved VAMP 1 in addition to 2 and 3 in rat sensory neurons and blocked both CGRP and substance P release. Thus, unlike SNAP-25, syntaxin 1 and VAMP 1 are more suitable targets to abolish functional SNARE complexes and pain peptide release evoked by any stimuli.
Collapse
Affiliation(s)
- Jianghui Meng
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | |
Collapse
|
50
|
Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2013; 21:79-91. [PMID: 23852373 DOI: 10.1038/cdd.2013.75] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022] Open
Abstract
The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy.
Collapse
|