1
|
Griffith EY, ElSayed M, Dura-Bernal S, Neymotin SA, Uhlrich DJ, Lytton WW, Zhu JJ. Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597830. [PMID: 38895250 PMCID: PMC11185623 DOI: 10.1101/2024.06.06.597830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices in vitro and in silico. 1. Selective blockade of calcium channel subtypes revealed that high-threshold calcium currentsI L andI P contributed strongly to the oscillation. 2. Increased extracellular K+ concentration (decreased K+currents) eliminated the oscillation. 3. Selective blockade of K+ channel subtypes demonstrated that the calcium-sensitive potassium current (I A H P ) was of primary importance. A morphologically simplified, multicompartment model of the thalamic interneuron characterized the oscillation as follows: 1. The low-threshold calcium currentI T provided the strong initial burst characteristic of the oscillation. 2. Alternating fluxes through high-threshold calcium channels andI A H P then provided the continuing oscillation's burst and interburst periods respectively. This interplay betweenI L andI A H P contrasts with the current dynamics underlying oscillations in thalamocortical and reticularis neurons, which primarily involveI T andI H , orI T andI A H P respectively. These findings thus point to a novel electrophysiological mechanism for generating intrinsic oscillations in a major thalamic cell type. Because local interneurons can sculpt the behavior of thalamocortical circuits, these results suggest new targets for the manipulation of ascending thalamocortical network activity.
Collapse
Affiliation(s)
- Erica Y Griffith
- Department of Neural and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Mohamed ElSayed
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Biomedical Engineering, SUNY Downstate School of Graduate Studies, Brooklyn, NY
- Department of Psychiatry, New Hampshire Hospital, Concord, NH
| | - Salvador Dura-Bernal
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Neurology, Kings County Hospital, Brooklyn, NY
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
2
|
Kurita A, Koshikawa H, Akiba T, Seki K, Ishikawa H, Suzuki M. Visual Hallucinations and Impaired Conscious Visual Perception in Parkinson Disease. J Geriatr Psychiatry Neurol 2020; 33:377-385. [PMID: 31808354 DOI: 10.1177/0891988719892318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Visual hallucinations (VHs) are common in patients with Parkinson disease (PD), especially those with dementia, whereas auditory hallucinations are quite rare. Recent studies have revealed the involvement of several regions along the visual information-processing system that contribute to the pathophysiological mechanism of VHs: the eyes and retina, retinofugal projection, lateral geniculate nucleus, striate cortex, ventral pathways in the temporal cortices, and frontal and parietal cortices. In addition, the concurrent involvement of other systems in the brainstem and basal forebrain further modify VHs in PD. In this review, we discuss the pathophysiological association between the regional involvement of these areas and VHs.
Collapse
Affiliation(s)
- Akira Kurita
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Koshikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Takeshi Akiba
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kanako Seki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Ishikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Megumi Suzuki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
3
|
Augustinaite S, Kuhn B. Complementary Ca 2+ Activity of Sensory Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects Behavioral State. Curr Biol 2020; 30:3945-3960.e5. [PMID: 32822605 DOI: 10.1016/j.cub.2020.07.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023]
Abstract
Layer 6 (L6) corticothalamic neurons project to thalamus, where they are thought to regulate sensory information transmission to cortex. However, the activity of these neurons during different behavioral states has not been described. Here, we imaged calcium changes in visual cortex L6 primary corticothalamic neurons with two-photon microscopy in head-fixed mice in response to passive viewing during a range of behavioral states, from locomotion to sleep. In addition to a substantial fraction of quiet neurons, we found sensory-activated and suppressed neurons, comprising two functionally distinct L6 feedback channels. Quiet neurons could be dynamically recruited to one or another functional channel, and the opposite, functional neurons could become quiet under different stimulation conditions or behavior states. The state dependence of neuronal activity was heterogeneous with respect to locomotion or level of alertness, although the average activity was largest during highest vigilance within populations of functional neurons. Interestingly, complementary activity of these distinct populations kept the overall corticothalamic feedback relatively constant during any given behavioral state. Thereby, in addition to sensory and non-sensory information, a constant activity level characteristic of behavioral state is conveyed to thalamus, where it can regulate signal transmission from the periphery to cortex.
Collapse
Affiliation(s)
- Sigita Augustinaite
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan.
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan.
| |
Collapse
|
4
|
Kimura A. Cross-modal modulation of cell activity by sound in first-order visual thalamic nucleus. J Comp Neurol 2020; 528:1917-1941. [PMID: 31983057 DOI: 10.1002/cne.24865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Cross-modal auditory influence on cell activity in the primary visual cortex emerging at short latencies raises the possibility that the first-order visual thalamic nucleus, which is considered dedicated to unimodal visual processing, could contribute to cross-modal sensory processing, as has been indicated in the auditory and somatosensory systems. To test this hypothesis, the effects of sound stimulation on visual cell activity in the dorsal lateral geniculate nucleus were examined in anesthetized rats, using juxta-cellular recording and labeling techniques. Visual responses evoked by light (white LED) were modulated by sound (noise burst) given simultaneously or 50-400 ms after the light, even though sound stimuli alone did not evoke cell activity. Alterations of visual response were observed in 71% of cells (57/80) with regard to response magnitude, latency, and/or burst spiking. Suppression predominated in response magnitude modulation, but de novo responses were also induced by combined stimulation. Sound affected not only onset responses but also late responses. Late responses were modulated by sound given before or after onset responses. Further, visual responses evoked by the second light stimulation of a double flash with a 150-700 ms interval were also modulated by sound given together with the first light stimulation. In morphological analysis of labeled cells projection cells comparable to X-, Y-, and W-like cells and interneurons were all susceptible to auditory influence. These findings suggest that the first-order visual thalamic nucleus incorporates auditory influence into parallel and complex thalamic visual processing for cross-modal modulation of visual attention and perception.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
5
|
Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proc Natl Acad Sci U S A 2020; 117:13066-13077. [PMID: 32461374 DOI: 10.1073/pnas.2002080117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.
Collapse
|
6
|
Wang W, Andolina IM, Lu Y, Jones HE, Sillito AM. Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback. Cereb Cortex 2018; 28:267-280. [PMID: 27988493 DOI: 10.1093/cercor/bhw376] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 & 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells to expand, contract or shift their spatial focus. Our results provide further evidence for a functional mechanism through which the cortex can selectively gate visual information flow from the thalamus back to the visual cortex.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ian M Andolina
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiliang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Helen E Jones
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Adam M Sillito
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
7
|
Augustinaite S, Heggelund P. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus. Neuroscience 2018; 384:76-86. [PMID: 29802882 DOI: 10.1016/j.neuroscience.2018.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| | - Paul Heggelund
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| |
Collapse
|
8
|
Martínez-Cañada P, Mobarhan MH, Halnes G, Fyhn M, Morillas C, Pelayo F, Einevoll GT. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. PLoS Comput Biol 2018; 14:e1005930. [PMID: 29377888 PMCID: PMC5805346 DOI: 10.1371/journal.pcbi.1005930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 02/08/2018] [Accepted: 12/17/2017] [Indexed: 11/19/2022] Open
Abstract
Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when feedback is present. The functional role of the dorsal lateral geniculate nucleus (dLGN), placed on route from retina to primary visual cortex in the early visual pathway, is still poorly understood. A striking feature of the dLGN circuit is that dLGN cells not only receive feedforward input from the retina, but also a prominent feedback from cells in the visual cortex. It has been seen in experiments that cortical feedback modifies the spatial properties of dLGN cells in response to visual stimuli. In particular, it has been shown to increase the center-surround antagonism for flashing-spot and patch-grating visual stimuli, i.e., the suppression of responses to very large stimuli compared to smaller stimuli. Here we investigate the putative mechanisms behind this feature by means of a comprehensive network model of biophysically detailed neuron models for RCs and INs in the dLGN and orientation-selective cortical cells providing the feedback. Our results support that the experimentally observed feedback effects may be due to a phase-reversed (‘push-pull’) arrangement of the cortical feedback where ON-symmetry RCs receive (indirect) inhibitory feedback from ON-dominated cortical cell and excitation from OFF-dominated cortical cells, and vice versa for OFF-symmetry RCs.
Collapse
Affiliation(s)
- Pablo Martínez-Cañada
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
- Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC), University of Granada, Granada, Spain
| | - Milad Hobbi Mobarhan
- Center for Integrative Neuroplasticity (CINPLA), University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Center for Integrative Neuroplasticity (CINPLA), University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Marianne Fyhn
- Center for Integrative Neuroplasticity (CINPLA), University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Christian Morillas
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
- Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC), University of Granada, Granada, Spain
| | - Francisco Pelayo
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
- Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC), University of Granada, Granada, Spain
| | - Gaute T. Einevoll
- Center for Integrative Neuroplasticity (CINPLA), University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
9
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Thompson AD, Picard N, Min L, Fagiolini M, Chen C. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement. Neuron 2016; 91:1021-1033. [PMID: 27545712 DOI: 10.1016/j.neuron.2016.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/08/2016] [Accepted: 07/08/2016] [Indexed: 01/23/2023]
Abstract
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection.
Collapse
Affiliation(s)
- Andrew D Thompson
- BBS Program, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Nathalie Picard
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lia Min
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michela Fagiolini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Heiberg T, Hagen E, Halnes G, Einevoll GT. Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells. PLoS Comput Biol 2016; 12:e1004929. [PMID: 27203421 PMCID: PMC4874694 DOI: 10.1371/journal.pcbi.1004929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/20/2016] [Indexed: 02/04/2023] Open
Abstract
Despite its prominent placement between the retina and primary visual cortex in the early visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regulating the visual signals entering the brain is still poorly understood. A striking feature of the dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses, where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell (GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking advantage of a recently developed biophysically detailed multicompartmental model for an IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic inhibition and standard axonal inhibition, on the response properties of RCs. We compute and investigate so-called area-response curves, that is, trial-averaged visual spike responses vs. spot size, for circular flashing spots in a network of RCs and INs. The model parameters are grossly tuned to give results in qualitative accordance with previous in vivo data of responses to such stimuli for cat GCs and RCs. We particularly investigate how the model ingredients affect salient response properties such as the receptive-field center size of RCs and INs, maximal responses and center-surround antagonisms. For example, while triadic inhibition not involving firing of IN action potentials was found to provide only a non-linear gain control of the conversion of input spikes to output spikes by RCs, axonal inhibition was in contrast found to substantially affect the receptive-field center size: the larger the inhibition, the more the RC center size shrinks compared to the GC providing the feedforward excitation. Thus, a possible role of the different inhibitory actions from INs to RCs in the dLGN circuit is to provide separate mechanisms for overall gain control (direct triadic inhibition) and regulation of spatial resolution (axonal inhibition) of visual signals sent to cortex.
Collapse
Affiliation(s)
- Thomas Heiberg
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Hagen
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Geir Halnes
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
12
|
Abstract
Dendritic NMDA spike/plateau potentials, first discovered in cortical pyramidal neurons, provide supralinear integration of synaptic inputs on thin and distal dendrites, thereby increasing the impact of these inputs on the soma. The more specific functional role of these potentials has been difficult to clarify, partly due to the complex circuitry of cortical neurons. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus participate in simpler circuits. They receive their primary afferent input from retina and send their output to visual cortex. Cortex, in turn, regulates this output through massive feedback to distal dendrites of the TC neurons. The TC neurons can operate in two modes related to behavioral states: burst mode prevailing during sleep, when T-type calcium bursts largely disrupt the transfer of signals from retina to cortex, and tonic mode, which provides reliable transfer of retinal signals to cortex during wakefulness. We studied dendritic potentials in TC neurons with combined two-photon calcium imaging and whole-cell recording of responses to local dendritic glutamate iontophoresis in acute brain slices from mice. We found that NMDA spike/plateaus can be elicited locally at distal dendrites of TC neurons. We suggest that these dendritic potentials have important functions in the cortical regulation of thalamocortical transmission. NMDA spike/plateaus can induce shifts in the functional mode from burst to tonic by blockade of T-type calcium conductances. Moreover, in tonic mode, they can facilitate the transfer of retinal signals to cortex by depolarization of TC neurons.
Collapse
|
13
|
Allken V, Chepkoech JL, Einevoll GT, Halnes G. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus. PLoS One 2014; 9:e107780. [PMID: 25268996 PMCID: PMC4182431 DOI: 10.1371/journal.pone.0107780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022] Open
Abstract
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
Collapse
Affiliation(s)
- Vaneeda Allken
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Joy-Loi Chepkoech
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway; Dept. of Psychology, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway; Dept. of Physics, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
14
|
Bagnato S, Boccagni C, Sant'angelo A, Fingelkurts AA, Fingelkurts AA, Galardi G. Emerging from an unresponsive wakefulness syndrome: Brain plasticity has to cross a threshold level. Neurosci Biobehav Rev 2013; 37:2721-36. [PMID: 24060531 DOI: 10.1016/j.neubiorev.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injury, Rehabilitation Department, Fondazione Istituto San Raffaele G. Giglio, Cefalù, PA, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Lintas A, Schwaller B, Villa AE. Visual thalamocortical circuits in parvalbumin-deficient mice. Brain Res 2013; 1536:107-18. [DOI: 10.1016/j.brainres.2013.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/25/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
16
|
Jurkus P, Ruksenas O, Heggelund P. Temporally advanced dynamic change of receptive field of lateral geniculate neurons during brief visual stimulation: Effects of brainstem peribrachial stimulation. Neuroscience 2013; 242:85-96. [PMID: 23542736 DOI: 10.1016/j.neuroscience.2013.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
Abstract
Processing of visual information in the brain seems to proceed from initial fast but coarse to subsequent detailed processing. Such coarse-to-fine changes appear also in the response of single neurons in the visual pathway. In the dorsal lateral geniculate nucleus (dLGN), there is a dynamic change in the receptive field (RF) properties of neurons during visual stimulation. During a stimulus flash centered on the RF, the width of the RF-center, presumably related to spatial resolution, changes rapidly from large to small in an initial transient response component. In a subsequent sustained component, the RF-center width is rather stable apart from an initial slight widening. Several brainstem nuclei modulate the geniculocortical transmission in a state-dependent manner. Thus, modulatory input from cholinergic neurons in the peribrachial brainstem region (PBR) enhances the geniculocortical transmission during arousal. We studied whether such input also influences the dynamic RF-changes during visual stimulation. We compared dynamic changes of RF-center width of dLGN neurons during brief stimulus presentation in a control condition, with changes during combined presentation of the visual stimulus and electrical PBR-stimulation. The major finding was that PBR-stimulation gave an advancement of the dynamic change of the RF-center width such that the different response components occurred earlier. Consistent with previous studies, we also found that PBR-stimulation increased the gain of firing rate during the sustained response component. However, this increase of gain was particularly strong in the transition from the transient to the sustained component at the time when the center width was minimal. The results suggest that increased modulatory PBR-input not only increase the gain of the geniculocortical transmission, but also contributes to faster dynamics of transmission. We discuss implications for possible effects on visual spatial resolution.
Collapse
Affiliation(s)
- P Jurkus
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | |
Collapse
|
17
|
Crandall SR, Cox CL. Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus. J Neurophysiol 2013; 110:470-80. [PMID: 23615551 DOI: 10.1152/jn.00559.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the visual thalamus, retinal afferents activate both local interneurons and excitatory thalamocortical relay neurons, leading to robust feedforward inhibition that regulates the transmission of sensory information from retina to neocortex. Peculiarly, this feedforward inhibitory pathway is dominated by presynaptic dendrites. Previous work has shown that the output of dendritic terminals of interneurons, also known as F2 terminals, are regulated by both ionotropic and metabotropic glutamate receptors. However, it is unclear whether both classes of glutamate receptors regulate output from the same or distinct dendritic terminals. Here, we used focal glutamate uncaging and whole cell recordings to reveal two types of F2 responses in rat visual thalamus. The first response, which we are calling a Type-A response, was mediated exclusively by ionotropic glutamate receptors (i.e., AMPA and NMDA). In contrast, the second response, which we are calling a Type-B response, was mediated by a combination of ionotropic and type 5 metabotropic glutamate receptors (i.e., mGluR(5)). In addition, we demonstrate that both F2 responses are evoked in the same postsynaptic neurons, which are morphologically distinct from neurons in which no F2 responses are observed. Since photostimulation was relatively focal and small in magnitude, these results suggest distinct F2 terminals, or small clusters of terminals, could be responsible for generating the two inhibitory responses observed. Because of the nature of ionotropic and metabotropic glutamate receptors, we predict the efficacy by which the retina communicates with the thalamus would be strongly regulated by 1) the activity level of a given retinogeniculate axon, and 2) the specific type of F2 terminals activated.
Collapse
Affiliation(s)
- Shane R Crandall
- Department of Pharmacology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
18
|
Jurgens CWD, Bell KA, McQuiston AR, Guido W. Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PLoS One 2012; 7:e45717. [PMID: 23029198 PMCID: PMC3447820 DOI: 10.1371/journal.pone.0045717] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) serves as the primary conduit of retinal information to visual cortex. In addition to retinal input, dLGN receives a large feedback projection from layer VI of visual cortex. Such input modulates thalamic signal transmission in different ways that range from gain control to synchronizing network activity in a stimulus-specific manner. However, the mechanisms underlying such modulation have been difficult to study, in part because of the complex circuitry and diverse cell types this pathway innervates. To address this and overcome some of the technical limitations inherent in studying the corticothalamic (CT) pathway, we adopted a slice preparation in which we were able to stimulate CT terminal arbors in the visual thalamus of the mouse with blue light by using an adeno-associated virus to express the light-gated ion channel, ChIEF, in layer VI neurons. To examine the postsynaptic responses evoked by repetitive CT stimulation, we recorded from identified relay cells in dLGN, as well as GFP expressing GABAergic neurons in the thalamic reticular nucleus (TRN) and intrinsic interneurons of dLGN. Relay neurons exhibited large glutamatergic responses that continued to increase in amplitude with each successive stimulus pulse. While excitatory responses were apparent at postnatal day 10, the strong facilitation noted in adult was not observed until postnatal day 21. GABAergic neurons in TRN exhibited large initial excitatory responses that quickly plateaued during repetitive stimulation, indicating that the degree of facilitation was much larger for relay cells than for TRN neurons. The responses of intrinsic interneurons were smaller and took the form of a slow depolarization. These differences in the pattern of excitation for different thalamic cell types should help provide a framework for understanding how CT feedback alters the activity of visual thalamic circuitry during sensory processing as well as different behavioral or pathophysiological states.
Collapse
Affiliation(s)
- Chris W. D. Jurgens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Karen A. Bell
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - A. Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - William Guido
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Comparisons of S- or prepotential activity, thought to derive from a retinal ganglion cell afferent, with the activity of relay cells of the lateral geniculate nucleus (LGN) have sometimes implied a loss, or leak, of visual information. The idea of the "leaky" relay cell is reconsidered in the present analysis of prepotential firing and LGN responses of color-opponent cells of the macaque LGN to stimuli varying in size, relative luminance, and spectral distribution. Above a threshold prepotential spike frequency, called the signal transfer threshold (STT), there is a range of more than 2 log units of test field luminance that has a 1:1 relationship between prepotential- and LGN-cell firing rates. Consequently, above this threshold, the LGN cell response can be viewed as an extension of prepotential firing (a "nonleaky relay cell"). The STT level decreased when the size of the stimulus increased beyond the classical receptive field center, indicating that the LGN cell is influenced by factors other than the prepotential input. For opponent ON cells, both the excitatory and the inhibitory response decreased similarly when the test field size increased beyond the center of the receptive field. These findings have consequences for the modeling of LGN cell responses and transmission of visual information, particularly for small fields. For instance, for LGN ON cells, information in the prepotential intensity-response curve for firing rates below the STT is left to be discriminated by OFF cells. Consequently, for a given light adaptation, the STT improves the separation of the response range of retinal ganglion cells into "complementary" ON and OFF pathways.
Collapse
|