1
|
Wollborn J, Siemering S, Steiger C, Buerkle H, Goebel U, Schick MA. Phosphodiesterase-4 inhibition reduces ECLS-induced vascular permeability and improves microcirculation in a rodent model of extracorporeal resuscitation. Am J Physiol Heart Circ Physiol 2019; 316:H751-H761. [PMID: 30681364 DOI: 10.1152/ajpheart.00673.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracorporeal circulation can be accompanied by increased vascular permeability leading to pathological fluid balance and organ dysfunction. The second messenger cAMP is involved in capillary permeability and maintains endothelial integrity. The aim of the present study was to evaluate the effect of phosphodiesterase-4 (PDE4) inhibition with rolipram on extracorporeal circulation-induced capillary leakage, microcirculatory dysfunction, and organ injury in rodents. Rats were randomly allocated to the following groups: sham ( n = 5), venoarterial extracorporeal circulation [extracorporeal life support (ECLS), n = 7], ECLS + rolipram ( n = 7), extracorporeal resuscitation (ECPR; n = 7), and ECPR + rolipram ( n = 7). In the groups that underwent ECPR, ECLS-based cardiopulmonary resuscitation (ECPR) was performed after the induction of hypoxic cardiac arrest. Upon return of spontaneous circulation, rolipram was administered intravenously. The mesenteric microcirculation was studied using intravital microscopy, and organ specimens were harvested upon completion of the study. ECLS and ECPR induced a proinflammatory response (cytokines IL-1β, IL-6, and TNF-α). Although PDE4 expression was upregulated in vascular tissue, PDE4 inhibition abrogated impaired microcirculation and capillary leak (albumin extravasation of the sham group: 1 ± 0.03-fold, ECLS group: 1.2 ± 0.05-fold, ECLS + rolipram group: 0.99 ± 0.04-fold, ECPR group: 1.6 ± 0.04-fold, and ECPR + rolipram group: 1.06 ± 0.02-fold from the sham group, P < 0.05). PDE4 inhibition led to stabilization of vascular cAMP levels but did not affect cytokine levels. Capillary leak was reduced, as demonstrated by the decrease of the systemic biomarkers soluble vascular-endothelial cadherin and activated complement 3. Histological analysis revealed reduced injury to the lungs and kidneys after PDE4 inhibition, with a significant decrease in systemic renal damage markers. Our findings demonstrate that extracorporeal circulation causes an inflammatory reaction associated with decreased vascular cAMP levels, increased vascular permeability, and impaired microcirculation. PDE4 inhibition proved to be capable of reducing these side effects in ECLS and ECPR, leading to reduced microcirculatory, renal, and pulmonary injury. NEW & NOTEWORTHY Various complications are common after extracorporeal circulation. Among these, endothelial injury may cause impaired microcirculation and capillary leak. Here, we report that phosphodiesterase-4 inhibition targeting endothelial cAMP is capable of reducing microvascular complications in a rodent model of extracorporeal resuscitation. Microcirculation and vascular permeability are influenced without targeting extracorporeal circulation-induced inflammation. Thus, pulmonary and renal organ protection may be conferred.
Collapse
Affiliation(s)
- Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg , Germany
| | - Svenja Siemering
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg , Germany
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts.,Institute for Pharmacy and Food Chemistry, University of Wuerzburg , Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg , Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg , Germany
| | - Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg , Germany
| |
Collapse
|
2
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
3
|
Curry FRE, Clark JF, Jiang Y, Kim MH, Adamson RH, Simon SI. The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels. Physiol Rep 2016; 4:4/18/e12968. [PMID: 27670406 PMCID: PMC5037917 DOI: 10.14814/phy2.12968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that the anti‐inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full‐thickness skin wound on the flank of LysM‐EGFP mice 24 h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin‐induced inflammatory responses were attenuated by pretreating the wound with ANP (30 min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti‐inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24 h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti‐inflammatory agent to modulate leukocyte–endothelial cell interactions.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Joyce F Clark
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Yanyan Jiang
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Min-Ho Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Roger H Adamson
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA, Wunder C, Germer CT, Spindler V, Waschke J, Schlegel N. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 2015; 107:32-44. [DOI: 10.1093/cvr/cvv144] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
5
|
Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm Coulthard's hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia. Paediatr Int Child Health 2015; 35:90-109. [PMID: 25844980 DOI: 10.1179/2046905515y.0000000010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The various types of oedema in man are considered in relation to Starling's hypothesis of fluid movement from capillaries, with the main emphasis on nutritional oedema and the nephrotic syndrome in children. It is concluded that each condition has sufficient anomalous findings to render Starling's hypothesis untenable. The finding that the endothelial glycocalyx is key to control of fluid movement from and into the capillaries calls for complete revision of our understanding of oedema formation. The factors so far known to affect the function of the glycocalyx are reviewed. As these depend upon sulphated proteoglycans and other glycosaminoglycans, the argument is advanced that the same abnormalities will extend to the interstitial space and that kwashiorkor is fundamentally related to a defect in sulphur metabolism which can explain all the clinical features of the condition, including the formation of oedema.
Collapse
Key Words
- Albumin,
- Aldosterone,
- Angiotensin,
- Beriberi,
- Edema,
- Epidemic dropsy,
- Famine oedema,
- Glycocalyx,
- Glycosaminoglycans,
- Heart failure,
- Hunger oedema,
- Kwashiorkor,
- Malnutrition,
- Nephrotic syndrome,
- Oedema,
- Potassium deficiency,
- Pre-eclampsia,
- Protein-energy malnutrition,
- Proteoglycans,
- Renin,
- Salt,
- Severe acute malnutrition
- Vitamin E deficiency,
- War oedema,
- Water,
Collapse
|
6
|
Phosphodiesterase 4 inhibition dose dependently stabilizes microvascular barrier functions and microcirculation in a rodent model of polymicrobial sepsis. Shock 2015; 41:537-45. [PMID: 24569506 DOI: 10.1097/shk.0000000000000152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Breakdown of microvascular endothelial barrier functions contributes to disturbed microcirculation, organ failure, and death in sepsis. Increased endothelial cAMP levels by systemic application of phosphodiesterase 4 inhibitors (PD-4-I) have previously been demonstrated to protect microvascular barrier properties in a model of systemic inflammation (systemic inflammatory response syndrome) suggesting a novel therapeutic option to overcome this problem. However, in a clinically relevant model of polymicrobial sepsis long-term effects, immunomodulatory effects and effectivity of PD-4-I to stabilize microvascular barrier functions and microcirculation remained unexplored. METHODS We induced polymicrobial sepsis using the colon ascendens stent peritonitis (CASP) model in which we performed macrohemodynamic and microhemodynamic monitoring with and without systemic intravenous application of different doses of PD-4-I rolipram in Sprague-Dawley rats over 26 h. RESULTS All animals with CASP showed clinical and laboratory signs of sepsis and peritonitis. Whereas macrohemodynamic adverse effects were not evident, application of PD-4-I led to stabilization of endothelial barrier properties as revealed by reduced extravasation of fluorescein isothiocyanate-albumin. However, only low-dose application of 1 mg/kg body weight per hour of PD-4-I improved microcirculatory flow in the CASP model, whereas high-dose therapy of 3 mg/kg BW per hour PDI-4-I had adverse effects. Accordingly, sepsis-induced acute kidney injury and lung edema were prevented by PD-4-I treatment. Furthermore, PD-4-I showed immunomodulatory effects as revealed by decreased interleukin 1α (IL-1α), IL-1β, IL-12, and tumor necrosis factor α levels following PD-4-I treatment, which appeared not to correlate with barrier-stabilizing effects of rolipram. CONCLUSIONS These data provide further evidence that systemic application of PD-4-I could be suitable for therapeutic microvascular barrier stabilization and improvement of microcirculatory flow in sepsis.
Collapse
|
7
|
Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 2013; 355:587-96. [PMID: 24322391 DOI: 10.1007/s00441-013-1755-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General-, Visceral, Vascular and Pediatric surgery, University Hospital Wuerzburg, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany
| | | |
Collapse
|
8
|
Curry FRE, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxf) 2013; 207:628-49. [PMID: 23374222 PMCID: PMC4054936 DOI: 10.1111/apha.12076] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signalling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signalling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active, it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first re-establishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1-dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA-dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium.
Collapse
Affiliation(s)
- F-R E Curry
- Department of Physiology & Membrane Biology, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
9
|
Abstract
The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the actions of NPs on endothelial permeability and regeneration.
Collapse
Affiliation(s)
- Michaela Kuhn
- Physiologisches Institut der Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Schick MA, Wunder C, Wollborn J, Roewer N, Waschke J, Germer CT, Schlegel N. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation. J Physiol 2012; 590:2693-708. [PMID: 22495586 DOI: 10.1113/jphysiol.2012.232116] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.
Collapse
Affiliation(s)
- Martin Alexander Schick
- University of Würzburg, Department of General, Visceral, Vascular and Paediatric Surgery (Department of Surgery I), Oberdürrbacherstraße 6, D-97080 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|