1
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2023:10738584231189435. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
2
|
Todd NPM, Govender S, Keller PE, Colebatch JG. Electrophysiological activity from over the cerebellum and cerebrum during eye blink conditioning in human subjects. Physiol Rep 2023; 11:e15642. [PMID: 36971094 PMCID: PMC10041378 DOI: 10.14814/phy2.15642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
We report the results of an experiment in which electrophysiological activity was recorded from the human cerebellum and cerebrum in a sample of 14 healthy subjects before, during and after a classical eye blink conditioning procedure with an auditory tone as conditional stimulus and a maxillary nerve unconditional stimulus. The primary aim was to show changes in the cerebellum and cerebrum correlated with behavioral ocular responses. Electrodes recorded EMG and EOG at peri-ocular sites, EEG from over the frontal eye-fields and the electrocerebellogram (ECeG) from over the posterior fossa. Of the 14 subjects half strongly conditioned while the other half were resistant. We confirmed that conditionability was linked under our conditions to the personality dimension of extraversion-introversion. Inhibition of cerebellar activity was shown prior to the conditioned response, as predicted by Albus (1971). However, pausing in high frequency ECeG and the appearance of a contingent negative variation (CNV) in both central leads occurred in all subjects. These led us to conclude that while conditioned cerebellar pausing may be necessary, it is not sufficient alone to produce overt behavioral conditioning, implying the existence of another central mechanism. The outcomes of this experiment indicate the potential value of the noninvasive electrophysiology of the cerebellum.
Collapse
Affiliation(s)
- Neil P M Todd
- Department of Psychology, University of Exeter, Exeter, UK
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
| | - Sendhil Govender
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Colebatch
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Validating a Portable Device for Blinking Analyses through Laboratory Neurophysiological Techniques. Brain Sci 2022; 12:brainsci12091228. [PMID: 36138962 PMCID: PMC9496691 DOI: 10.3390/brainsci12091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Blinking analysis contributes to the understanding of physiological mechanisms in healthy subjects as well as the pathophysiological mechanisms of neurological diseases. To date, blinking is assessed by various neurophysiological techniques, including electromyographic (EMG) recordings and optoelectronic motion analysis. We recorded eye-blink kinematics with a new portable device, the EyeStat (Generation 3, blinktbi, Inc., Charleston, SC, USA), and compared the measurements with data obtained using traditional laboratory-based techniques. Sixteen healthy adults underwent voluntary, spontaneous, and reflex blinking recordings using the EyeStat device and the SMART motion analysis system (BTS, Milan, Italy). During the blinking recordings, the EMG activity was recorded from the orbicularis oculi muscles using surface electrodes. The blinking data were analyzed through dedicated software and evaluated with repeated-measure analyses of variance. The Pearson’s product-moment correlation coefficient served to assess possible associations between the EyeStat device, the SMART motion system, and the EMG data. We found that the EMG data collected during the EyeStat and SMART system recordings did not differ. The blinking data recorded with the EyeStat showed a linear relationship with the results obtained with the SMART system (r ranging from 0.85 to 0.57; p ranging from <0.001 to 0.02). These results demonstrate a high accuracy and reliability of a blinking analysis through this portable device, compared with standard techniques. EyeStat may make it easier to record blinking in research activities and in daily clinical practice, thus allowing large-scale studies in healthy subjects and patients with neurological diseases in an outpatient clinic setting.
Collapse
|
4
|
Ponce GV, Klaus J, Schutter DJLG. A Brief History of Cerebellar Neurostimulation. CEREBELLUM (LONDON, ENGLAND) 2022; 21:715-730. [PMID: 34403075 PMCID: PMC9325826 DOI: 10.1007/s12311-021-01310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
The first attempts at using electric stimulation to study human brain functions followed the experiments of Luigi Galvani and Giovanni Aldini on animal electricity during the eighteenth century. Since then, the cerebellum has been among the areas that have been studied by invasive and non-invasive forms of electrical and magnetic stimulation. During the nineteenth century, animal experiments were conducted to map the motor-related regions of cerebellar cortex by means of direct electric stimulation. As electric stimulation research on the cerebellum moved into the twentieth century, systematic research of electric cerebellar stimulation led to a better understanding of its effects and mechanism of action. In addition, the clinical potential of cerebellar stimulation in the treatment of motor diseases started to be explored. With the introduction of transcranial electric and magnetic stimulation, cerebellar research moved to non-invasive techniques. During the twenty-first century, following on groundbreaking research that linked the cerebellum to non-motor functions, non-invasive techniques have facilitated research into different aspects of cerebellar functioning. The present review provides a brief historical account of cerebellar neurostimulation and discusses current challenges and future direction in this field of research.
Collapse
Affiliation(s)
- Gustavo V Ponce
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Maas RPPWM, Schutter DJLG, Toni I, Timmann D, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation modulates timing but not acquisition of conditioned eyeblink responses in SCA3 patients. Brain Stimul 2022; 15:806-813. [PMID: 35597518 DOI: 10.1016/j.brs.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Delay eyeblink conditioning is an extensively studied motor learning paradigm that critically depends on the integrity of the cerebellum. In healthy individuals, modulation of cerebellar excitability using transcranial direct current stimulation (tDCS) has been reported to alter the acquisition and/or timing of conditioned eyeblink responses (CRs). It remains unknown whether such effects can also be elicited in patients with cerebellar disorders. OBJECTIVE To investigate if repeated sessions of cerebellar tDCS modify acquisition and/or timing of CRs in patients with spinocerebellar ataxia type 3 (SCA3) and to evaluate possible associations between disease severity measures and eyeblink conditioning parameters. METHODS Delay eyeblink conditioning was examined in 20 mildly to moderately affected individuals with SCA3 and 31 healthy controls. After the baseline session, patients were randomly assigned to receive ten sessions of cerebellar anodal tDCS or sham tDCS (i.e., five days per week for two consecutive weeks). Patients and investigators were blinded to treatment allocation. The same eyeblink conditioning protocol was administered directly after the last tDCS session. The Scale for the Assessment and Rating of Ataxia (SARA), cerebellar cognitive affective syndrome scale (CCAS-S), and disease duration were used as clinical measures of disease severity. RESULTS At baseline, SCA3 patients exhibited significantly fewer CRs than healthy controls. Acquisition was inversely associated with the number of failed CCAS-S test items but not with SARA score. Onset and peak latencies of CRs were longer in SCA3 patients and correlated with disease duration. Repeated sessions of cerebellar anodal tDCS did not affect CR acquisition, but had a significant treatment effect on both timing parameters. While a shift of CRs toward the conditioned stimulus was observed in the sham group (i.e., timing became more similar to that of healthy controls, presumably reflecting the effect of a second eyeblink conditioning session), anodal tDCS induced a shift of CRs in the opposite direction (i.e., toward the unconditioned stimulus). CONCLUSION Our findings provide the first evidence that cerebellar tDCS is capable of modifying cerebellar function in SCA3 patients. Future studies should assess whether this intervention similarly modulates temporal processing in other degenerative ataxias.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Gelfo F, Petrosini L. Environmental Enrichment Enhances Cerebellar Compensation and Develops Cerebellar Reserve. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095697. [PMID: 35565093 PMCID: PMC9099498 DOI: 10.3390/ijerph19095697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
The brain is able to change its structure and function in response to environmental stimulations. Several human and animal studies have documented that enhanced stimulations provide individuals with strengthened brain structure and function that allow them to better cope with damage. In this framework, studies based on the exposure of animals to environmental enrichment (EE) have provided indications of the mechanisms involved in such a beneficial action. The cerebellum is a very plastic brain region that responds to every experience with deep structural and functional rearrangement. The present review specifically aims to collect and synthesize the evidence provided by animal models on EE exposure effects on cerebellar structure and function by considering the studies on healthy subjects and on animals exposed to EE both before and after damage involving cerebellar functionality. On the whole, the evidence supports the role of EE in enhancing cerebellar compensation and developing cerebellar reserve. However, since studies addressing this issue are still scarce, large areas of inconsistency and lack of clarity remain. Further studies are required to provide suggestions on possible mechanisms of enhancement of compensatory responses in human patients following cerebellar damage.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
- Correspondence:
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
| |
Collapse
|
7
|
Ortelli P, Ferrazzoli D, Maestri R, Saltuari L, Kofler M, Alibardi A, Koch G, Spampinato D, Castagna A, Sebastianelli L, Versace V. Experimental Protocol to Test Explicit Motor Learning–Cerebellar Theta Burst Stimulation. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:720184. [PMID: 36188833 PMCID: PMC9397715 DOI: 10.3389/fresc.2021.720184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022]
Abstract
Implicit and explicit motor learning processes work interactively in everyday life to promote the creation of highly automatized motor behaviors. The cerebellum is crucial for motor sequence learning and adaptation, as it contributes to the error correction and to sensorimotor integration of on-going actions. A non-invasive cerebellar stimulation has been demonstrated to modulate implicit motor learning and adaptation. The present study aimed to explore the potential role of cerebellar theta burst stimulation (TBS) in modulating explicit motor learning and adaptation, in healthy subjects. Cerebellar TBS will be applied immediately before the learning phase of a computerized task based on a modified Serial Reaction Time Task (SRTT) paradigm. Here, we present a study protocol aimed at evaluating the behavioral effects of continuous (cTBS), intermittent TBS (iTBS), or sham Theta Burst Stimulation (TBS) on four different conditions: learning, adaptation, delayed recall and re-adaptation of SRTT. We are confident to find modulation of SRTT performance induced by cerebellar TBS, in particular, processing acceleration and reduction of error in all the conditions induced by cerebellar iTBS, as already known for implicit processes. On the other hand, we expect that cerebellar cTBS could induce opposite effects. Results from this protocol are supposed to advance the knowledge about the role of non-invasive cerebellar modulation in neurorehabilitation, providing clinicians with useful data for further exploiting this technique in different clinical conditions.
Collapse
Affiliation(s)
- Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
- *Correspondence: Paola Ortelli
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Roberto Maestri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Alessia Alibardi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Danny Spampinato
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Anna Castagna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
8
|
Loi N, Ginatempo F, Doppiu C, Deriu F. Emotional Face Expressions Influence the Delay Eye-blink Classical Conditioning. Neuroscience 2021; 471:72-79. [PMID: 34332014 DOI: 10.1016/j.neuroscience.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
Recent evidence raised the importance of the cerebellum in emotional processes, with specific regard to negative emotions. However, its role in the processing of face emotional expressions is still unknown. This study was aimed at assessing whether face emotional expressions influence the cerebellar learning processes, using the delay eyeblink classical conditioning (EBCC) as a model. Visual stimuli composed of faces expressing happy, sad and neutral emotions were used as conditioning stimulus in forty healthy subjects to modulate the cerebellum-brainstem pathway underlying the EBCC. The same stimuli were used to explore their effects on the blink reflex (BR) and its recovery cycle (BRRC) and on the cerebellar-brain inhibition (CBI). Data analysis revealed that the learning component of the EBCC was significantly reduced following the passive view of sad faces, while the extinction phase was modulated by both sad and happy faces. By contrast, BR, BRRC and CBI were not significantly affected by the view of emotional face expressions. The present study provides first evidence that the passive viewing of faces displaying emotional expressions, are processed by the cerebellum, with no apparent involvement of the brainstem and the cerebello-cortical connection. In particular, the view of sad faces, reduces the excitability of the cerebellar circuit underlying the learning phase of the EBCC. Differently, the extinction phase was shortened by both happy and sad faces, suggesting that different neural bases underlie learning and extinction of emotions expressed by faces.
Collapse
Affiliation(s)
- Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Cristina Doppiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
9
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
10
|
Kumru H, Kofler M, Valls-Sole J. Modulation of brainstem reflexes induced by non-invasive brain stimulation: is there a future? Neural Regen Res 2021; 16:2004-2005. [PMID: 33642379 PMCID: PMC8343321 DOI: 10.4103/1673-5374.308083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hatice Kumru
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 089M6 Badalona - Barcelona; Univ Autonoma de Barcelona, 08M93 Bellaterra (Cerdanyola del Vallès); Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | | |
Collapse
|
11
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
12
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
13
|
Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence. Neuroimage 2020; 208:116424. [DOI: 10.1016/j.neuroimage.2019.116424] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
|
14
|
Laidi C, Levenes C, Suarez-Perez A, Février C, Durand F, Bouaziz N, Januel D. Cognitive Impact of Cerebellar Non-invasive Stimulation in a Patient With Schizophrenia. Front Psychiatry 2020; 11:174. [PMID: 32256404 PMCID: PMC7090138 DOI: 10.3389/fpsyt.2020.00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Cerebellum plays a role in the regulation of cognitive processes. Cerebellar alterations could explain cognitive impairments in schizophrenia. We describe the case of a 50 years old patient with schizophrenia whom underwent cerebellar transcranial direct current stimulation (tDCS). In order to study the effect of cerebellar stimulation on cognitive functions, the patient underwent a neuropsychological assessment and an eyeblink conditioning (EBC) protocol. Although the effect of brain stimulation cannot be only assessed in a single-case study, our results suggest that cerebellar stimulation may have an effect on a broad range of cognitive functions typically impaired in patients with schizophrenia, including verbal episodic, short term, and working memory. In addition to neuropsychological tests, we evaluated the cerebellar function by performing EBC before and after tDCS. Our data suggest that tDCS can improve EBC. Further clinical trials are required for better understanding of how cerebellar stimulation can modulate cognitive processes in patients with schizophrenia and healthy controls.
Collapse
Affiliation(s)
- Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France.,Fondation Fondamental, Créteil, France
| | - Carole Levenes
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Alex Suarez-Perez
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Caroline Février
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France
| | - Florence Durand
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Noomane Bouaziz
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Dominique Januel
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
15
|
Maas RPPWM, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov Disord 2019; 35:215-227. [PMID: 31820832 PMCID: PMC7027854 DOI: 10.1002/mds.27919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Over the last three decades, measuring and modulating cerebellar activity and its connectivity with other brain regions has become an emerging research topic in clinical neuroscience. The most important connection is the cerebellothalamocortical pathway, which can be functionally interrogated using a paired‐pulse transcranial magnetic stimulation paradigm. Cerebellar brain inhibition reflects the magnitude of suppression of motor cortex excitability after stimulating the contralateral cerebellar hemisphere and therefore represents a neurophysiological marker of the integrity of the efferent cerebellar tract. Observations that cerebellar noninvasive stimulation techniques enhanced performance of certain motor and cognitive tasks in healthy individuals have inspired attempts to modulate cerebellar activity and connectivity in patients with cerebellar diseases in order to achieve clinical benefit. We here comprehensively explore the therapeutic potential of these techniques in two movement disorders characterized by prominent cerebellar involvement, namely the degenerative ataxias and essential tremor. The article aims to illustrate the (patho)physiological insights obtained from these studies and how these translate into clinical practice, where possible by addressing the association with cerebellar brain inhibition. Finally, possible explanations for some discordant interstudy findings, shortcomings in our current understanding, and recommendations for future research will be provided. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick C G Helmich
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology & Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Gilligan TM, Rafal RD. An Opponent Process Cerebellar Asymmetry for Regulating Word Association Priming. THE CEREBELLUM 2019; 18:47-55. [PMID: 29949097 PMCID: PMC6351516 DOI: 10.1007/s12311-018-0949-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A consensus has emerged that the cerebellum makes important contributions to a spectrum of linguistic processes, but that the psychobiology of these contributions remains enigmatic (Mariën et al., Cerebellum 13(3):386–410, 2014). One aspect of this enigma arises from the fact that, although the language-dominant left cerebral hemisphere is connected to the right cerebellum, distinctive contributions of the left cerebellar hemisphere have been documented (Murdoch and Whelan, Folia Phoniatr Logop 59:184–9, 2007), but remain poorly understood. Here, we report that neurodisruption of the left and right cerebellar hemispheres have opposite effects on associative word priming in a lexical decision task. Reaction time was measured for decisions on whether a target letter string constituted a word (e.g. bread) or, with equal probability, a pronounceable non-word (e.g. dreab). A prime word was presented for 150 ms before the target and could either, and with equal probability, be related (e.g. BUTTER) or unrelated (TRACTOR). Associative word priming was computed as the reduction in lexical decision RT on trials with related primes. Left cerebellar hemisphere continuous theta-burst transcranial magnetic stimulation (TMS) decreased, and right hemisphere stimulation increased, priming. The results suggest that the cerebellum contributes to predictive sequential processing, in this case language, through an opponent process mechanism coordinated by both cerebellar hemispheres.
Collapse
Affiliation(s)
| | - Robert D Rafal
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
18
|
van Gaalen J, Maas RPPWM, Ippel EF, Elting MW, van Spaendonck-Zwarts KY, Vermeer S, Verschuuren-Bemelmans C, Timmann D, van de Warrenburg BP. Abnormal eyeblink conditioning is an early marker of cerebellar dysfunction in preclinical SCA3 mutation carriers. Exp Brain Res 2018; 237:427-433. [PMID: 30430184 PMCID: PMC6373441 DOI: 10.1007/s00221-018-5424-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Background Spinocerebellar ataxias (SCAs) are a group of autosomal dominantly inherited degenerative diseases. As the pathological process probably commences years before the first appearance of clinical symptoms, preclinical carriers of a SCA mutation offer the opportunity to study the earliest stages of cerebellar dysfunction and degeneration. Eyeblink classical conditioning (EBCC) is a motor learning paradigm, crucially dependent on the integrity of the olivocerebellar circuit, and has been shown to be able to detect subtle alterations of cerebellar function, which might already be present in preclinical carriers. Methods In order to acquire conditioned responses, we performed EBCC, delay paradigm, in 18 preclinical carriers of a SCA3 mutation and 16 healthy, age-matched controls by presenting repeated pairings of an auditory tone with a supraorbital nerve stimulus with a delay interval of 400 ms. Results Preclinical carriers acquired significantly less conditioned eyeblink responses than controls and learning rates were significantly reduced. This motor learning defect was, however, not associated with the predicted time to onset. Conclusions EBCC is impaired in preclinical carriers of a SCA3 mutation, as a result of impaired motor learning capacities of the cerebellum and is thus suggestive of cerebellar dysfunction. EBCC can be used to detect but probably not monitor preclinical cerebellar dysfunction in genetic ataxias, such as SCA3. Electronic supplementary material The online version of this article (10.1007/s00221-018-5424-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E F Ippel
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - M W Elting
- Department of Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - S Vermeer
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Verschuuren-Bemelmans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. Neural Plast 2018; 2018:6856475. [PMID: 30402087 PMCID: PMC6198564 DOI: 10.1155/2018/6856475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Associative learning of sensorimotor contingences, as it occurs in eyeblink classical conditioning (EBCC), is known to involve the cerebellum, but its mechanism remains controversial. EBCC involves a sequence of learning processes which are thought to occur in the cerebellar cortex and deep cerebellar nuclei. Recently, the extinction phase of EBCC has been shown to be modulated after one week by cerebellar continuous theta-burst stimulation (cTBS). Here, we asked whether cerebellar cTBS could affect retention and reacquisition of conditioned responses (CRs) tested immediately after conditioning. We also investigated a possible lateralized cerebellar control of EBCC by applying cTBS on both the right and left cerebellar hemispheres. Both right and left cerebellar cTBSs induced a statistically significant impairment in retention and new acquisition of conditioned responses (CRs), the disruption effect being marginally more effective when the left cerebellar hemisphere was stimulated. These data support a model in which cTBS impairs retention and reacquisition of CR in the cerebellum, possibly by interfering with the transfer of memory to the deep cerebellar nuclei.
Collapse
|
20
|
Antonietti A, Monaco J, D'Angelo E, Pedrocchi A, Casellato C. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS. Int J Neural Syst 2018; 28:1850020. [PMID: 29914314 DOI: 10.1142/s012906571850020x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During natural learning, synaptic plasticity is thought to evolve dynamically and redistribute within and among subcircuits. This process should emerge in plastic neural networks evolving under behavioral feedback and should involve changes distributed across multiple synaptic sites. In eyeblink classical conditioning (EBCC), the cerebellum learns to predict the precise timing between two stimuli, hence EBCC represents an elementary yet meaningful paradigm to investigate the cerebellar network functioning. We have simulated EBCC mechanisms by reconstructing a realistic cerebellar microcircuit model and embedding multiple plasticity rules imitating those revealed experimentally. The model was tuned to fit experimental EBCC human data, estimating the underlying learning time-constants. Learning started rapidly with plastic changes in the cerebellar cortex followed by slower changes in the deep cerebellar nuclei. This process was characterized by differential development of long-term potentiation and depression at individual synapses, with a progressive accumulation of plasticity distributed over the whole network. The experimental data included two EBCC sessions interleaved by a trans-cranial magnetic stimulation (TMS). The experimental and the model response data were not significantly different in each learning phase, and the model goodness-of-fit was [Formula: see text] for all the experimental conditions. The models fitted on TMS data revealed a slowed down re-acquisition (sessions-2) compared to the control condition ([Formula: see text]). The plasticity parameters characterizing each model significantly differ among conditions, and thus mechanistically explain these response changes. Importantly, the model was able to capture the alteration in EBCC consolidation caused by TMS and showed that TMS affected plasticity at cortical synapses thereby altering the fast learning phase. This, secondarily, also affected plasticity in deep cerebellar nuclei altering learning dynamics in the entire sensory-motor loop. This observation reveals dynamic redistribution of changes over the entire network and suggests how TMS affects local circuit computation and memory processing in the cerebellum.
Collapse
Affiliation(s)
- Alberto Antonietti
- 1 Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Jessica Monaco
- 2 Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, Pavia, Italy.,3 Brain Connectivity Center, Istituto Neurologico IRCCS Fondazione C. Mondino, Via Mondino 2, 1-27100 Pavia, Italy
| | - Egidio D'Angelo
- 2 Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, Pavia, Italy.,3 Brain Connectivity Center, Istituto Neurologico IRCCS Fondazione C. Mondino, Via Mondino 2, 1-27100 Pavia, Italy
| | - Alessandra Pedrocchi
- 1 Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Claudia Casellato
- 2 Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, Pavia, Italy
| |
Collapse
|
21
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
22
|
Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? THE CEREBELLUM 2017; 17:359-371. [DOI: 10.1007/s12311-017-0906-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Antonietti A, Casellato C, D'Angelo E, Pedrocchi A. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2748-2762. [PMID: 27608482 DOI: 10.1109/tnnls.2016.2598190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
Collapse
Affiliation(s)
- Alberto Antonietti
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Casellato
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico and the Istituto Neurologico Nazionale C. Mondino, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
24
|
Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, Eidelberg D, Raike RS, Smith Y, Jinnah HA, Hess EJ, Meunier S, Hallett M, Fremont R, Khodakhah K, LeDoux MS, Popa T, Gallea C, Lehericy S, Bostan AC, Strick PL. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. THE CEREBELLUM 2017; 16:577-594. [PMID: 27734238 DOI: 10.1007/s12311-016-0825-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Collapse
Affiliation(s)
- Vikram G Shakkottai
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Amit Batla
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - William T Dauer
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christian Dresel
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Yoland Smith
- Yerkes National Primate Center and Department of Neurology, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR, S 1127, Paris, France.,Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, and The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Traian Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Cécile Gallea
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Centre de NeuroImagerie de Recherche - CENIR, ICM, F-75013, Paris, France
| | - Stéphane Lehericy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Andreea C Bostan
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Strick
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
26
|
Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Front Hum Neurosci 2017; 11:23. [PMID: 28203151 PMCID: PMC5285376 DOI: 10.3389/fnhum.2017.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based on individual anatomy may also play role. Likewise cerebellar tDCS during extinction did not modulate extinction or reacquisition. Further studies are needed in larger subject populations to determine parameters of stimulation and learning paradigms yielding robust cerebellar tDCS effects.
Collapse
Affiliation(s)
- Linda Beyer
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | | | - Dagmar Timmann
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
27
|
D'Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, Prestori F, Pedrocchi A, Ros E. Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. THE CEREBELLUM 2016; 15:139-51. [PMID: 26304953 DOI: 10.1007/s12311-015-0711-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber-Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy. .,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | | | - Jesus A Garrido
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| | - Niceto Luque
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| | - Jessica Monaco
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Eduardo Ros
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Lametti DR, Oostwoud Wijdenes L, Bonaiuto J, Bestmann S, Rothwell JC. Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. J Neurophysiol 2016; 116:2023-2032. [PMID: 27489368 PMCID: PMC5102311 DOI: 10.1152/jn.00433.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and speech perceptual learning. However, it remains unclear what this role is: does the cerebellum help shape the perceptual decision, or does it contribute to the timing of perceptual decisions? To test this, we used transcranial direct current stimulation (tDCS) in combination with a speech perception task. Participants experienced a series of speech perceptual tests designed to measure and then manipulate (via training) their perception of a phonetic contrast. One group received cerebellar tDCS during speech perceptual learning, and a different group received sham tDCS during the same task. Both groups showed similar learning-related changes in speech perception that transferred to a different phonetic contrast. For both trained and untrained speech perceptual decisions, cerebellar tDCS significantly increased the time it took participants to indicate their decisions with a keyboard press. By analyzing perceptual responses made by both hands, we present evidence that cerebellar tDCS disrupted the timing of perceptual decisions, while leaving the eventual decision unaltered. In support of this conclusion, we use the drift diffusion model to decompose the data into processes that determine the outcome of perceptual decision-making and those that do not. The modeling suggests that cerebellar tDCS disrupted processes unrelated to decision-making. Taken together, the empirical data and modeling demonstrate that right cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change. The results provide initial evidence in healthy humans that the cerebellum critically contributes to speech timing in the perceptual domain.
Collapse
Affiliation(s)
- Daniel R Lametti
- Department of Experimental Psychology, The University of Oxford, Oxford, United Kingdom;
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | - James Bonaiuto
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Bologna M, Paparella G, Fabbrini A, Leodori G, Rocchi L, Hallett M, Berardelli A. Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clin Neurophysiol 2016; 127:3472-3479. [PMID: 27721106 DOI: 10.1016/j.clinph.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the cerebellar inhibitory influence on the primary motor cortex in patients with focal dystonia using a cerebellar continuous theta-burst stimulation protocol (cTBS) and to evaluate any relationship with movement abnormalities. METHODS Thirteen patients with focal hand dystonia, 13 patients with cervical dystonia and 13 healthy subjects underwent two sessions: (i) cTBS over the cerebellar hemisphere (real cTBS) and (ii) cTBS over the neck muscles (sham cTBS). The effects of cerebellar cTBS were quantified as excitability changes in the contralateral primary motor cortex, as well as possible changes in arm and neck movements in patients. RESULTS Real cerebellar cTBS reduced the excitability in the contralateral primary motor cortex in healthy subjects and in patients with cervical dystonia, though not in patients with focal hand dystonia. There was no correlation between changes in primary motor cortex excitability and arm and neck movement kinematics in patients. There were no changes in clinical scores or in kinematic measures, after either real or sham cerebellar cTBS in patients. CONCLUSIONS The reduced cerebellar inhibitory modulation of primary motor cortex excitability in focal dystonia may be related to the body areas affected by dystonia as opposed to being a widespread pathophysiological abnormality. SIGNIFICANCE The present study yields information on the differential role played by the cerebellum in the pathophysiology of different focal dystonias.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy
| | - Giulia Paparella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giorgio Leodori
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke - NINDS, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy.
| |
Collapse
|
30
|
Falcon MI, Gomez CM, Chen EE, Shereen A, Solodkin A. Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6. Cereb Cortex 2016; 26:3205-18. [PMID: 26209844 PMCID: PMC4898673 DOI: 10.1093/cercor/bhv154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies.
Collapse
Affiliation(s)
| | - C M Gomez
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - E E Chen
- Department of Anatomy and Neurobiology
| | - A Shereen
- Department of Anatomy and Neurobiology
| | - A Solodkin
- Department of Anatomy and Neurobiology Department of Neurology, UC Irvine School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
31
|
Yamaguchi K, Sakurai Y. Inactivation of Cerebellar Cortical Crus II Disrupts Temporal Processing of Absolute Timing but not Relative Timing in Voluntary Movements. Front Syst Neurosci 2016; 10:16. [PMID: 26941621 PMCID: PMC4764692 DOI: 10.3389/fnsys.2016.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated that the cerebellum plays an important role in temporal processing at the scale of milliseconds. However, it is not clear whether intrinsic cerebellar function involves the temporal processing of discrete or continuous events. Temporal processing during discrete events functions by counting absolute time like a stopwatch, while during continuous events it measures events at intervals. During the temporal processing of continuous events, animals might respond to rhythmic timing of sequential responses rather than to the absolute durations of intervals. Here, we tested the contribution of the cerebellar cortex to temporal processing of absolute and relative timings in voluntary movements. We injected muscimol and baclofen to a part of the cerebellar cortex of rats. We then tested the accuracy of their absolute or relative timing prediction using two timing tasks requiring almost identical reaching movements. Inactivation of the cerebellar cortex disrupted accurate temporal prediction in the absolute timing task. The rats formed two groups based on the changes to their timing accuracy following one of two distinct patterns which can be described as longer or shorter declines in the accuracy of learned intervals. However, a part of the cerebellar cortical inactivation did not affect the rats' performance of relative timing tasks. We concluded that a part of the cerebellar cortex, Crus II, contributes to the accurate temporal prediction of absolute timing and that the entire cerebellar cortex may be unnecessary in cases in which accurately knowing the absolute duration of an interval is not required for temporal prediction.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Department of Psychology, Graduate School of Letters, Kyoto UniversityKyoto, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University Kyotanabe, Japan
| |
Collapse
|
32
|
Understanding and modulating motor learning with cerebellar stimulation. THE CEREBELLUM 2015; 14:171-4. [PMID: 25283180 DOI: 10.1007/s12311-014-0607-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Non-invasive brain stimulation techniques are a powerful approach to investigate the physiology and function of the central nervous system. Recent years have seen numerous investigations delivering transcranial magnetic stimulation (TMS) and or transcranial direct current stimulation (tDCS) to the cerebellum to determine its role in motor, cognitive and emotional behaviours. Early studies have shown that it is possible to assess cerebellar-motor cortex (CB-M1) connectivity using a paired-pulse TMS paradigm called cerebellar inhibition (CBI), and indirectly infer the state of cerebellar excitability. Thus, it has been shown that CBI changes proportionally to the magnitude of locomotor learning and in association with reaching adaption tasks. In addition, CBI has been used to demonstrate at a physiological level the effects of applying TMS or tDCS to modulate, up or down, the excitability of cerebellar-M1 connectivity. These studies became the fundamental substrate to newer investigations showing that we can affect motor, cognitive and emotional behaviour when targeting the cerebellum with TMS or tDCS in the context of performance. Furthermore, newer investigations are starting to report the effects of cerebellar non-invasive stimulation to treat symptoms associated with neurological conditions such as stroke and dystonia. Altogether, given the scarcity of current effective therapeutic options, non-invasive cerebellar stimulation can potentially become a game changer for the management of conditions that affect the cerebellum. This brief manuscript presents some of the current evidence demonstrating the effects of cerebellar stimulation to modulate motor behaviour and its use to assess physiological processes underlying motor learning.
Collapse
|
33
|
|
34
|
Bologna M, Di Biasio F, Conte A, Iezzi E, Modugno N, Berardelli A. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:1061-6. [DOI: 10.1016/j.parkreldis.2015.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
35
|
Does the cerebellum intervene in the abnormal somatosensory temporal discrimination in Parkinson's disease? Parkinsonism Relat Disord 2015; 21:789-92. [DOI: 10.1016/j.parkreldis.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/24/2022]
|
36
|
Meunier S, Popa T, Hubsch C, Roze E, Kishore A. Reply: A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain 2015; 138:e356. [PMID: 25395099 PMCID: PMC4614138 DOI: 10.1093/brain/awu322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sabine Meunier
- 1 ICM - Institut du Cerveau et de la Moëlle épinière, Paris, France 2 Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U975, Paris, France
| | - Traian Popa
- 1 ICM - Institut du Cerveau et de la Moëlle épinière, Paris, France 2 Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U975, Paris, France
| | - Cécile Hubsch
- 1 ICM - Institut du Cerveau et de la Moëlle épinière, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Emmanuel Roze
- 1 ICM - Institut du Cerveau et de la Moëlle épinière, Paris, France 2 Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U975, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Asha Kishore
- 6 Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| |
Collapse
|
37
|
Casellato C, Antonietti A, Garrido JA, Ferrigno G, D'Angelo E, Pedrocchi A. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks. Front Comput Neurosci 2015; 9:24. [PMID: 25762922 PMCID: PMC4340181 DOI: 10.3389/fncom.2015.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/08/2015] [Indexed: 11/23/2022] Open
Abstract
The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.
Collapse
Affiliation(s)
- Claudia Casellato
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy ; Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy
| | - Jesus A Garrido
- Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy ; Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Giancarlo Ferrigno
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino Pavia, Italy ; Department Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Alessandra Pedrocchi
- NeuroEngineering And Medical Robotics Laboratory, Department Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| |
Collapse
|
38
|
Abstract
There is increasing evidence for a cerebellar role in working memory. Clinical research has shown that working memory impairments after cerebellar damage and neuroimaging studies have revealed task-specific activation in the cerebellum during working memory processing. A lateralisation of cerebellar function within working memory has been proposed with the right hemisphere making the greater contribution to verbal processing and the left hemisphere for visuospatial tasks. We used continuous theta burst stimulation (cTBS) to examine whether differences in post-stimulation performance could be observed based on the cerebellar hemisphere stimulated and the type of data presented. We observed that participants were significantly less accurate on a verbal version of a Sternberg task after stimulation to the right cerebellar hemisphere when compared to left hemisphere stimulation. Performance on a visual Sternberg task was unaffected by stimulation of either hemisphere. We discuss our results in the context of prior studies that have used cerebellar stimulation to investigate working memory and highlight the cerebellar role in phonological encoding.
Collapse
|
39
|
Cerebellar Continuous Theta Burst Stimulation in Essential Tremor. THE CEREBELLUM 2014; 14:133-41. [DOI: 10.1007/s12311-014-0621-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Linssen MW, van Gaalen J, Munneke MAM, Hoffland BS, Hulstijn W, van de Warrenburg BPC. A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain 2014; 138:e355. [PMID: 25395100 DOI: 10.1093/brain/awu321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manon W Linssen
- 1 Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Judith van Gaalen
- 1 Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Moniek A M Munneke
- 1 Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Britt S Hoffland
- 1 Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wouter Hulstijn
- 2 Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bart P C van de Warrenburg
- 1 Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, Pedrocchi A, D'Angelo E. Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 2014; 9:e112265. [PMID: 25390365 PMCID: PMC4229206 DOI: 10.1371/journal.pone.0112265] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/11/2014] [Indexed: 11/29/2022] Open
Abstract
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Collapse
Affiliation(s)
- Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy; Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy
| | - Jesus A Garrido
- Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Richard R Carrillo
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Niceto R Luque
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerías Informática y de Telecomunicación, University of Granada, Granada, Spain
| | - Alessandra Pedrocchi
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U. Non-invasive cerebellar stimulation--a consensus paper. THE CEREBELLUM 2014; 13:121-38. [PMID: 23943521 DOI: 10.1007/s12311-013-0514-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.
Collapse
Affiliation(s)
- G Grimaldi
- Unité d'Etude du Mouvement, Hôpital Erasme-ULB, 808 Route de Lennik, 1070, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monaco J, Casellato C, Koch G, D'Angelo E. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci 2014; 40:3363-70. [DOI: 10.1111/ejn.12700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J. Monaco
- Brain Connectivity Center; C. Mondino National Neurological Institute; Via Mondino 2 Pavia I-27100 Italy
| | - C. Casellato
- NeuroEngineering and Medical Robotics Laboratory; Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milano Italy
| | - G. Koch
- Non-invasive Brain Stimulation Unit; Santa Lucia Foundation IRCCS; Via Ardeatina 306 00179 Rome Italy
| | - E. D'Angelo
- Brain Connectivity Center; C. Mondino National Neurological Institute; Via Mondino 2 Pavia I-27100 Italy
- Department of Brain and Behavioral Sciences; University of Pavia; Via Forlanini 6 Pavia I-27100 Italy
| |
Collapse
|
44
|
Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul 2014; 7:525-31. [PMID: 24776785 DOI: 10.1016/j.brs.2014.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Classical conditioning of the eyeblink reflex is a simple form of motor learning which depends on the integrity of the cerebellum. Acquisition of conditioned eyeblink responses is markedly reduced in patients with cerebellar disorders. Noninvasive transcranial direct current stimulation (tDCS) has been reported to modify the excitability of the cerebellar cortex. OBJECTIVE The aim of the study was to assess whether acquisition of conditioned eyeblink responses (CR) is altered by cerebellar tDCS. METHODS A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 30 healthy subjects (18 female, 12 male, mean age 23.4 ± 1.9 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. tDCS (2 mA intensity, ramp like onset) was applied over the right cerebellar hemisphere ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 10) using anodal, cathodal or sham stimulation. The investigator as well as the participants was blinded to the stimulation modality. RESULTS CR acquisition was significantly enhanced by anodal tDCS (mean total CR incidence 73.4 ± 25.2%) and significantly reduced by cathodal stimulation (12.6 ± 17.2%) compared to sham stimulation (43.8 ± 24.1%). During anodal tDCS CR onset occurred significantly earlier, that is mean onset of responses was shifted closer to CS onset. CONCLUSION Acquisition and timing of conditioned eyeblink responses is modified by cerebellar tDCS in a polarity dependent manner.
Collapse
Affiliation(s)
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Germany.
| |
Collapse
|
45
|
Cerebellar vermis plays a causal role in visual motion discrimination. Cortex 2014; 58:272-80. [PMID: 24656591 DOI: 10.1016/j.cortex.2014.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/27/2013] [Accepted: 01/23/2014] [Indexed: 11/20/2022]
Abstract
Cerebellar patients have been found to show deficits in visual motion discrimination, suggesting that the cerebellum may play a role in visual sensory processing beyond mediating motor control. Here we show that triple-pulse online transcranial magnetic stimulation (TMS) over cerebellar vermis but not over the cerebellar hemispheres significantly impaired motion discrimination. Critically, the interference caused by vermis TMS on motion discrimination did not depend on an indirect effect of TMS over nearby visual areas, as demonstrated by a control experiment in which TMS over V1 but not over cerebellar vermis significantly impaired orientation discrimination. These findings demonstrate the causal role of the cerebellar vermis in visual motion processing in neurologically normal participants.
Collapse
|
46
|
Bradnam L, Barry C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci 2013; 33:18358-67. [PMID: 24259561 PMCID: PMC6618800 DOI: 10.1523/jneurosci.3544-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022] Open
Abstract
Isolated focal dystonia is a neurological disorder that manifests as repetitive involuntary spasms and/or aberrant postures of the affected body part. Craniocervical dystonia involves muscles of the eye, jaw, larynx, or neck. The pathophysiology is unclear, and effective therapies are limited. One mechanism for increased muscle activity in craniocervical dystonia is loss of inhibition involving the trigeminal sensory nuclear complex (TSNC). The TSNC is tightly integrated into functionally connected regions subserving sensorimotor control of the neck and face. It mediates both excitatory and inhibitory reflexes of the jaw, face, and neck. These reflexes are often aberrant in craniocervical dystonia, leading to our hypothesis that the TSNC may play a central role in these particular focal dystonias. In this review, we present a hypothetical extended brain network model that includes the TSNC in describing the pathophysiology of craniocervical dystonia. Our model suggests the TSNC may become hyperexcitable due to loss of tonic inhibition by functionally connected motor nuclei such as the motor cortex, basal ganglia, and cerebellum. Disordered sensory input from trigeminal nerve afferents, such as aberrant feedback from dystonic muscles, may continue to potentiate brainstem circuits subserving craniocervical muscle control. We suggest that potentiation of the TSNC may also contribute to disordered sensorimotor control of face and neck muscles via ascending and cortical descending projections. Better understanding of the role of the TSNC within the extended neural network contributing to the pathophysiology of craniocervical dystonia may facilitate the development of new therapies such as noninvasive brain stimulation.
Collapse
Affiliation(s)
- Lynley Bradnam
- Applied Brain Research Laboratory, Centre for Neuroscience
- Effectiveness of Therapy Group, Centre for Clinical Change and Healthcare Research, School of Medicine, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Christine Barry
- Applied Brain Research Laboratory, Centre for Neuroscience
- Department of Anatomy and Histology School of Medicine, and
| |
Collapse
|
47
|
Li Voti P, Conte A, Rocchi L, Bologna M, Khan N, Leodori G, Berardelli A. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans. Eur J Neurosci 2013; 39:124-31. [DOI: 10.1111/ejn.12391] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Affiliation(s)
| | - Antonella Conte
- IRCCS Neuromed Institute; Pozzilli IS Italy
- Department of Neurology and Psychiatry; “Sapienza” University of Rome; Viale dell'Università, 30 00185 Rome Italy
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry; “Sapienza” University of Rome; Viale dell'Università, 30 00185 Rome Italy
| | | | - Nashaba Khan
- Department of Neurology and Psychiatry; “Sapienza” University of Rome; Viale dell'Università, 30 00185 Rome Italy
| | - Giorgio Leodori
- Department of Neurology and Psychiatry; “Sapienza” University of Rome; Viale dell'Università, 30 00185 Rome Italy
| | - Alfredo Berardelli
- IRCCS Neuromed Institute; Pozzilli IS Italy
- Department of Neurology and Psychiatry; “Sapienza” University of Rome; Viale dell'Università, 30 00185 Rome Italy
| |
Collapse
|
48
|
Oristaglio J, Hyman West S, Ghaffari M, Lech MS, Verma BR, Harvey JA, Welsh JP, Malone RP. Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning. Neuroscience 2013; 248:708-18. [PMID: 23769889 PMCID: PMC3791861 DOI: 10.1016/j.neuroscience.2013.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022]
Abstract
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes the subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from TD subjects with regard to the learning rate or the timing of the conditioned response. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of the cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals.
Collapse
Affiliation(s)
- J Oristaglio
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kojovic M, Pareés I, Kassavetis P, Palomar FJ, Mir P, Teo JT, Cordivari C, Rothwell JC, Bhatia KP, Edwards MJ. Secondary and primary dystonia: pathophysiological differences. ACTA ACUST UNITED AC 2013; 136:2038-49. [PMID: 23771342 DOI: 10.1093/brain/awt150] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Primary dystonia is thought to be a disorder of the basal ganglia because the symptoms resemble those of patients who have anatomical lesions in the same regions of the brain (secondary dystonia). However, these two groups of patients respond differently to therapy suggesting differences in pathophysiological mechanisms. Pathophysiological deficits in primary dystonia are well characterized and include reduced inhibition at many levels of the motor system and increased plasticity, while emerging evidence suggests additional cerebellar deficits. We compared electrophysiological features of primary and secondary dystonia, using transcranial magnetic stimulation of motor cortex and eye blink classical conditioning paradigm, to test whether dystonia symptoms share the same underlying mechanism. Eleven patients with hemidystonia caused by basal ganglia or thalamic lesions were tested over both hemispheres, corresponding to affected and non-affected side and compared with 10 patients with primary segmental dystonia with arm involvement and 10 healthy participants of similar age. We measured resting motor threshold, active motor threshold, input/output curve, short interval intracortical inhibition and cortical silent period. Plasticity was probed using an excitatory paired associative stimulation protocol. In secondary dystonia cerebellar-dependent conditioning was measured using delayed eye blink classical conditioning paradigm and results were compared with the data of patients with primary dystonia obtained previously. We found no difference in motor thresholds, input/output curves or cortical silent period between patients with secondary and primary dystonia or healthy controls. In secondary dystonia short interval intracortical inhibition was reduced on the affected side, whereas it was normal on the non-affected side. Patients with secondary dystonia had a normal response to the plasticity protocol on both the affected and non-affected side and normal eye blink classical conditioning that was not different from healthy participants. In contrast, patients with primary dystonia showed increased cortical plasticity and reduced eye blink classical conditioning. Normal motor cortex plasticity in secondary dystonia demonstrates that abnormally enhanced cortical plasticity is not required for clinical expression of dystonia, and normal eye blink conditioning suggests an absence of functional cerebellar involvement in this form of dystonia. Reduced short interval intracortical inhibition on the side of the lesion may result from abnormal basal ganglia output or may be a consequence of maintaining an abnormal dystonic posture. Dystonia appears to be a motor symptom that can reflect different pathophysiological states triggered by a variety of insults.
Collapse
Affiliation(s)
- Maja Kojovic
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, WC1N 3BG, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: A systematic review. Neurosci Biobehav Rev 2013; 37:766-89. [DOI: 10.1016/j.neubiorev.2013.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
|