1
|
Clément BF, Petrella L, Wallimann L, Duru J, Tringides CM, Vörös J, Ruff T. An in vitro platform for characterizing axonal electrophysiology of individual human iPSC-derived nociceptors. Biosens Bioelectron 2025; 281:117418. [PMID: 40215890 DOI: 10.1016/j.bios.2025.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/04/2025]
Abstract
Neuropathic pain is characterized by aberrant activity of specific nociceptor populations, as demonstrated through functional assessments such as microneurography. Current treatments against severe forms of neuropathic pain demonstrate insufficient efficacy or lead to unwanted side effects as they fail to specifically target the affected nociceptors. Tools that can recapitulate aspects of microneurography in vitro would enable a more targeted compound screening. Therefore, we developed an in vitro platform combining a CMOS-based high-density microelectrode array with a polydimethylsiloxane (PDMS) guiding microstructure that captures the electrophysiological responses of individual axons. Human induced pluripotent stem cell-derived (hiPSC) sensory neurons were cultured in a way that allowed axons to be distributed through parallel 4 ×10μm microchannels exiting the seeding well before converging to a bigger axon-collecting channel. This configuration allowed the measurement of stimulation-induced responses of individual axons. Sensory neurons were found to exhibit a great diversity of electrophysiological response profiles that can be classified into different functional archetypes. Moreover, we show that some responses are affected by applying the TRPV1 agonist capsaicin. Overall, results using our platform demonstrate that we were able to distinguish individual axon responses, making the platform a promising tool for testing therapeutic candidates targeting particular sensory neuron subtypes.
Collapse
Affiliation(s)
- Blandine F Clément
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Lorenzo Petrella
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Lea Wallimann
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Christina M Tringides
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland.
| |
Collapse
|
2
|
Namer B, Lampert A. Functional signatures of human somatosensory C fibers by microneurography. Pain 2025:00006396-990000000-00883. [PMID: 40294386 DOI: 10.1097/j.pain.0000000000003605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025]
Abstract
ABSTRACT Microneurography allows the recording of single C-fiber action potentials of a peripheral nerve innervating the skin in the awake, conscious human. The method is highly relevant to assess and understand the function of human peripheral nociceptors and correlate nociceptor discharges to human sensation. Given the current translational gap between preclinical and clinical research, in-depth understanding of human nerve fiber physiology becomes increasingly important. In this review, we bring together the current knowledge of afferent C-fiber types described to date and describe by which assays their function can be determined, how they react to the applied stimuli, and how this leads to the current classification(s) used in the field. We provide novel synthesis of C-fiber functions and discuss potential links between specific fiber characteristics and their physiology. The review aims to provide an in-depth overview of existing microneurography data of human dermal C fibers, which may serve as basis for efforts to bridge the gap between functional and structural studies in pain research. The knowledge presented here may help to establish a link between the functional microneurography findings in humans and other basic science research methods such as RNA sequencing techniques. This is a prerequisite for translational studies of the somatosensory system to identify biomarkers or develop well-targeted treatment for pain and itch in human.
Collapse
Affiliation(s)
- Barbara Namer
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen-SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research Within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Department Anaesthesiology, Intensive Care, Emergency Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen-SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Maxion A, Kutafina E, Dohrn MF, Sacré P, Lampert A, Tigerholm J, Namer B. A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients. Front Comput Neurosci 2023; 17:1265958. [PMID: 38156040 PMCID: PMC10752960 DOI: 10.3389/fncom.2023.1265958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.
Collapse
Affiliation(s)
- Anna Maxion
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University Aachen, Aachen, Germany
| | - Jenny Tigerholm
- Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Koroleva K, Svitko S, Ananev A, Buglinina A, Bogatova K, Yakovleva O, Nurmieva D, Shaidullov I, Sitdikova G. Effects of Nitric Oxide on the Activity of P2X and TRPV1 Receptors in Rat Meningeal Afferents of the Trigeminal Nerve. Int J Mol Sci 2023; 24:ijms24087519. [PMID: 37108677 PMCID: PMC10144808 DOI: 10.3390/ijms24087519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Nitric oxide is one of the endogenous molecules that play a key role in migraine. However, the interaction between NO and the main players in the nociceptive activity of the meningeal trigeminal afferents-TRPV1 and P2X3 receptors-remains unstudied. In the current project, the effects of acute and chronic NO administration on the activity of TRPV1 and P2X3 receptors in the peripheral afferents were studied using electrophysiological recording of action potentials of the trigeminal nerve in the rat hemiskull preparations. The data obtained indicate that exogenous and endogenous NO increased the activity of the trigeminal nerve independent on the inhibition of the TRPV1 and P2X3 receptors. The activity of the trigeminal nerve triggered by ATP changed neither in acute incubation in the NO donor-sodium nitroprusside (SNP) nor in the chronic nitroglycerine (NG)-induced migraine model. Moreover, the chronic NG administration did not increase in the number of degranulated mast cells in the rat meninges. At the same time, the capsaicin-induced activity of the trigeminal nerve was higher with chronic NO administration or after acute NO application, and these effects were prevented by N-ethylmaleimide. In conclusion, we suggested that NO positively modulates the activity of TRPV1 receptors by S-nitrosylation, which may contribute to the pro-nociceptive action of NO and underlie the sensitization of meningeal afferents in chronic migraine.
Collapse
Affiliation(s)
- Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Svitko
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anton Ananev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anastasiia Buglinina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ksenia Bogatova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dinara Nurmieva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilnar Shaidullov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Della Pietra A, Krivoshein G, Ivanov K, Giniatullina R, Jyrkkänen HK, Leinonen V, Lehtonen M, van den Maagdenberg AMJM, Savinainen J, Giniatullin R. Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain. J Headache Pain 2023; 24:38. [PMID: 37038131 PMCID: PMC10088116 DOI: 10.1186/s10194-023-01568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Konstantin Ivanov
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juha Savinainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Krivoshein G, Bakreen A, van den Maagdenberg AMJM, Malm T, Giniatullin R, Jolkkonen J. Activation of Meningeal Afferents Relevant to Trigeminal Headache Pain after Photothrombotic Stroke Lesion: A Pilot Study in Mice. Int J Mol Sci 2022; 23:ijms232012590. [PMID: 36293444 PMCID: PMC9604291 DOI: 10.3390/ijms232012590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.
Collapse
Affiliation(s)
- Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Abdulhameed Bakreen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
7
|
Kutafina E, Troglio A, de Col R, Röhrig R, Rossmanith P, Namer B. Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve? Front Comput Neurosci 2022; 16:899584. [PMID: 35966281 PMCID: PMC9366140 DOI: 10.3389/fncom.2022.899584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
To understand neural encoding of neuropathic pain, evoked and resting activity of peripheral human C-fibers are studied via microneurography experiments. Before different spiking patterns can be analyzed, spike sorting is necessary to distinguish the activity of particular fibers of a recorded bundle. Due to single-electrode measurements and high noise contamination, standard methods based on spike shapes are insufficient and need to be enhanced with additional information. Such information can be derived from the activity-dependent slowing of the fiber propagation speed, which in turn can be assessed by introducing continuous "background" 0.125-0.25 Hz electrical stimulation and recording the corresponding responses from the fibers. Each fiber's speed propagation remains almost constant in the absence of spontaneous firing or additional stimulation. This way, the responses to the "background stimulation" can be sorted by fiber. In this article, we model the changes in the propagation speed resulting from the history of fiber activity with polynomial regression. This is done to assess the feasibility of using the developed models to enhance the spike shape-based sorting. In addition to human microneurography data, we use animal in-vitro recordings with a similar stimulation protocol as higher signal-to-noise ratio data example for the models.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Alina Troglio
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Roberto de Col
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Röhrig
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peter Rossmanith
- Theoretical Computer Science, Department of Computer Science, RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Koroleva KS, Svitko SO, Nurmieva DA, Gafurov OS, Buglinina AD, Sitdikova GF. Effects of Nitric Oxide on the Electrical Activity of the Rat Trigeminal Nerve and Mast Cell Morphology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Buccino AP, Yuan X, Emmenegger V, Xue X, Gänswein T, Hierlemann A. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays. J Neural Eng 2022; 19:026026. [PMID: 35234667 PMCID: PMC7612575 DOI: 10.1088/1741-2552/ac59a2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
Abstract
Objective:Neurons communicate with each other by sending action potentials (APs) through their axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This velocity can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing.Approach:In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called 'electrical footprints' of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned, and axonal action-potential propagation velocities are computed.Main results:We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput.Significance:We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.
Collapse
Affiliation(s)
| | - Xinyue Yuan
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | | | - Xiaohan Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Tobias Gänswein
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| |
Collapse
|
10
|
Krivoshein G, Tolner EA, Amjm VDM, Giniatullin RA. Migraine-relevant sex-dependent activation of mouse meningeal afferents by TRPM3 agonists. J Headache Pain 2022; 23:4. [PMID: 35012445 PMCID: PMC8903645 DOI: 10.1186/s10194-021-01383-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Migraine is a common brain disorder that predominantly affects women. Migraine pain seems mediated by the activation of mechanosensitive channels in meningeal afferents. Given the role of transient receptor potential melastatin 3 (TRPM3) channels in mechanical activation, as well as hormonal regulation, these channels may play a role in the sex difference in migraine. Therefore, we investigated whether nociceptive firing induced by TRPM3 channel agonists in meningeal afferents was different between male and female mice. In addition, we assessed the relative contribution of mechanosensitive TRPM3 channels and that of mechanosensitive Piezo1 channels and transient receptor potential vanilloid 1 (TRPV1) channels to nociceptive firing relevant to migraine in both sexes. Methods Ten- to 13-week-old male and female wildtype (WT) C57BL/6 J mice were used. Nociceptive spikes were recorded directly from nerve terminals in the meninges in the hemiskull preparations. Results Selective agonists of TRPM3 channels profoundly activated peripheral trigeminal nerve fibres in mouse meninges. A sex difference was observed for nociceptive firing induced by either PregS or CIM0216, both agonists of TRPM3 channels, with the induced firing being particularly prominent for female mice. Application of Yoda1, an agonist of Piezo1 channels, or capsaicin activating TRPV1 channels, although also leading to increased nociceptive firing of meningeal fibres, did not reveal a sex difference. Cluster analyses of spike activities indicated a massive and long-lasting activation of TRPM3 channels with preferential induction of large-amplitude spikes in female mice. Additional spectral analysis revealed a dominant contribution of spiking activity in the α- and β-ranges following TRPM3 agonists in female mice. Conclusions Together, we revealed a specific mechanosensitive profile of nociceptive firing in females and suggest TRPM3 channels as a potential novel candidate for the generation of migraine pain, with particular relevance to females.
Collapse
Affiliation(s)
- G Krivoshein
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - E A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - van den Maagdenberg Amjm
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - R A Giniatullin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland. .,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
11
|
Attenuation of Sensory Transmission Through the Rat Trigeminal Ganglion by GABA Receptor Activation. Neuroscience 2021; 471:80-92. [PMID: 34311018 DOI: 10.1016/j.neuroscience.2021.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
While the trigeminal ganglion is often considered a passive conduit of sensory transmission, neurons and satellite glial cells (SGCs) within it can release neurotransmitters and express neuroreceptors. Some trigeminal ganglion neurons contain the neurotransmitter γ-aminobutyric acid (GABA) and express GABA receptors. There is behavioral evidence that increased GABA levels in the trigeminal ganglion decreases nociception, while a loss of GABA receptors results in hyperalgesia, although the neural mechanisms for this remain to be investigated. In this study, the expression of GABA receptors by trigeminal ganglion neurons that innervate rat labial skin and masseter muscle was compared using immunohistochemistry. The effect of intraganglionic administration of GABA receptor agonists was investigated by single unit recording of trigeminal brainstem and ganglion neuron responses to stimulation of the labial skin and/or masseter muscle in anesthetized rats. The mean frequency of expression of GABAA and GABAB receptors by masseter and labial skin ganglion neurons was 62.5% and 92.7%, and 55.4% and 20.3%, respectively. The expression of both GABA receptors was significantly greater in skin ganglion neurons. Masticatory muscle evoked brainstem trigeminal neuron responses were significantly attenuated by intraganglionic injection of muscimol (GABAA) but not baclofen (GABAB). The mechanical sensitivity of slow and fast conducting masticatory muscle afferent fibers was decreased and increased, respectively, by intraganglionic injection of both muscimol and baclofen. Activation of GABAA receptors may exert a gating effect on sensory transmission through the trigeminal ganglion by decreasing putative nociceptive input and enhancing innocuous sensory input.
Collapse
|
12
|
Ford JB, Ganguly M, Zhuo J, McPheeters MT, Jenkins MW, Chiel HJ, Jansen ED. Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds. J Neural Eng 2021; 18:10.1088/1741-2552/abf00d. [PMID: 33735846 PMCID: PMC11189657 DOI: 10.1088/1741-2552/abf00d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
Objective. Infrared neural inhibition (INI) is a method of blocking the generation or propagation of neural action potentials through laser heating with wavelengths strongly absorbed by water. Recent work has identified that the distance heated along axons, the block length (BL), modulates the temperature needed for inhibition; however, this relationship has not been characterized. This study explores how BL during INI can be optimized towards minimizing its temperature threshold.Approach. To understand the relationship between BL and the temperature required for INI, excised nerves fromAplysia californicawere laser-heated over different lengths of axon during electrical stimulation of compound action potentials. INI was provided by irradiation (λ= 1470 nm) from a custom probe (n= 6 nerves), and subsequent validation was performed by providing heat block using perfused hot media over nerves (n= 5 nerves).Main Results. Two BL regimes were identified. Short BLs (thermal full width at half maximum (tFWHM) = 0.81-1.13 mm) demonstrated that increasing the tFWHM resulted in lower temperature thresholds for INI (p< 0.0125), while longer BLs (tFWHM = 1.13-3.03 mm) showed no significant change between the temperature threshold and tFWHM (p> 0.0125). Validation of this longer regime was performed using perfused hot media over different lengths of nerves. This secondary heating method similarly showed no significant change (p> 0.025) in the temperature threshold (tFWHM = 1.25-4.42 mm).Significance. This work characterized how the temperature threshold for neural heat block varies with BL and identified an optimal BL around tFWHM = 1.13 mm which minimizes both the maximum temperature applied to tissue and the volume of tissue heated during INI. Understanding how to optimally target lengths of nerve to minimize temperature during INI can help inform the design of devices for longitudinal animal studies and human implementation.
Collapse
Affiliation(s)
- Jeremy B Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Matthew T McPheeters
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
13
|
Koroleva K, Ermakova E, Mustafina A, Giniatullina R, Giniatullin R, Sitdikova G. Protective Effects of Hydrogen Sulfide Against the ATP-Induced Meningeal Nociception. Front Cell Neurosci 2020; 14:266. [PMID: 32982692 PMCID: PMC7492747 DOI: 10.3389/fncel.2020.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022] Open
Abstract
We previously showed that extracellular ATP and hydrogen sulfide (H2S), a recently discovered gasotransmitter, are both triggering the nociceptive firing in trigeminal nociceptors implicated in migraine pain. ATP contributes to meningeal nociception by activating the P2X3 subunit-containing receptors whereas H2S operates mainly via TRP receptors. However, H2S was also proposed as a neuroprotective and anti-nociceptive agent. This study aimed to test the effect of H2S on ATP-mediated nociceptive responses in rat meningeal afferents and trigeminal neurons and on ATP-induced degranulation of dural mast cells. Electrophysiological recording of trigeminal nerve activity in meninges was supplemented by patch-clamp and calcium imaging studies of isolated trigeminal neurons. The H2S donor NaHS induced a mild activation of afferents and fully suppressed the subsequent ATP-induced firing of meningeal trigeminal nerve fibers. This anti-nociceptive effect of H2S was specific as an even stronger effect of capsaicin did not abolish the action of ATP. In isolated trigeminal neurons, NaHS decreased the inward currents and calcium transients evoked by activation of ATP-gated P2X3 receptors. Moreover, NaHS prevented ATP-induced P2X7 receptor-mediated degranulation of meningeal mast cells which emerged as triggers of migraine pain. Finally, NaHS decreased the concentration of extracellular ATP in the meningeal preparation. Thus, H2S exerted the multiple protective actions against the nociceptive effects of ATP. These data highlight the novel pathways to reduce purinergic mechanisms of migraine with pharmacological donors or by stimulation production of endogenous H2S.
Collapse
Affiliation(s)
- Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elizaveta Ermakova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alsu Mustafina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
14
|
Vianna ECB, Herkrath FJ, Martins IEB, Lopes LPB, Marques AAF, Sponchiado Júnior EC. Effect of Occlusal Adjustment on Postoperative Pain after Root Canal Treatment: A Randomized Clinical Trial. Braz Dent J 2020; 31:353-359. [PMID: 32901709 DOI: 10.1590/0103-6440202003248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this prospective, randomized, clinical study was to analyze the influence of occlusal adjustment on the prevalence of postoperative pain after endodontic treatment. Seventy-eight patients, diagnosed with symptomatic irreversible pulpitis with indication for endodontic treatment, were selected to participate in the study. The participants were randomized and divided into two groups: in the occlusal adjustment group (OAG), endodontic treatment was performed with subsequent occlusal adjustment. In the control group (CG), endodontic treatment was performed without occlusal adjustment. Treatments were performed by the same operator. Pain occurrence and intensity were recorded on two scales: the verbal rating scale (VRS) and numerical rating scale (NRS). Pain assessment was carried out by a second examiner, blinded to the experiment, 6, 24 and 72 h after endodontic treatment. Data were analyzed using Mann-Whitney, chi-squared, and Fisher's exact tests. In the occlusal adjustment group, 71.1% reported postoperative pain and 67.5% reported pain in the control group. At the 6-hour assessment, 21 individuals reported pain in the occlusal adjustment group and 24 in the control group (p=0.672). At the 24-hour assessment, 18 and 19 individuals reported pain (p=0.991) and at the 72-hour assessment, 8 and 4 reported pain (p=0.219), respectively. Occlusal adjustment did not influence the prevalence of postoperative pain of endodontically treated teeth with symptomatic irreversible pulpitis.
Collapse
|
15
|
Ford JB, Ganguly M, Poorman ME, Grissom WA, Jenkins MW, Chiel HJ, Jansen ED. Identifying the Role of Block Length in Neural Heat Block to Reduce Temperatures During Infrared Neural Inhibition. Lasers Surg Med 2020; 52:259-275. [PMID: 31347188 PMCID: PMC6981060 DOI: 10.1002/lsm.23139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study is to assess the hypothesis that the length of axon heated, defined here as block length (BL), affects the temperature required for thermal inhibition of action potential propagation applied using laser heating. The presence of such a phenomenon has implications for how this technique, called infrared neural inhibition (INI), may be applied in a clinically safe manner since it suggests that temperatures required for therapy may be reduced through the proper spatial application of light. Here, we validate the presence of this phenomenon by assessing how the peak temperatures during INI are reduced when two different BLs are applied using irradiation from either one or two adjacent optical fibers. STUDY DESIGN/MATERIALS AND METHODS Assessment of the role of BL was carried out over two phases. First, a computational proof of concept was performed in the neural conduction simulation environment, NEURON, simulating the response of action potentials to increased temperatures applied at different full-width at half-maxima (FWHM) along axons. Second, ex vivo validation of these predictions was performed by measuring the radiant exposure, peak temperature rise, and FWHM of heat distributions associated with INI from one or two adjacent optical fibers. Electrophysiological assessment of radiant exposures at inhibition threshold were carried out in ex vivo Aplysia californica (sea slug) pleural abdominal nerves ( n = 6), an invertebrate with unmyelinated axons. Measurement of the maximum temperature rise required for induced heat block was performed in a water bath using a fine wire thermocouple. Finally, magnetic resonance thermometry (MRT) was performed on a nerve immersed in saline to assess the elevated temperature distribution at these radiant exposures. RESULTS Computational modeling in NEURON provided a theoretical proof of concept that the BL is an important factor contributing to the peak temperature required during neural heat block, predicting a 11.7% reduction in temperature rise when the FWHM along an axon is increased by 42.9%. Experimental validation showed that, when using two adjacent fibers instead of one, a 38.5 ± 2.2% (mean ± standard error of the mean) reduction in radiant exposure per pulse per fiber threshold at the fiber output (P = 7.3E-6) is measured, resulting in a reduction in peak temperature rise under each fiber of 23.5 ± 2.1% ( P = 9.3E-5) and 15.0 ± 2.4% ( P = 1.4E-3) and an increase in the FWHM of heating by 37.7 ± 6.4% ( P = 1E-3), 68.4 ± 5.2% ( P = 2.4E-5), and 51.9 ± 9.9% ( P = 1.7E-3) in three MRT slices. CONCLUSIONS This study provides the first experimental evidence for a phenomenon during the heat block in which the temperature for inhibition is dependent on the BL. While more work is needed to further reduce the temperature during INI, the results highlight that spatial application of the temperature rise during INI must be considered. Optimized implementation of INI may leverage this cellular response to provide optical modulation of neural signals with lower temperatures over greater time periods, which may increase the utility of the technique for laboratory and clinical use. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeremy B. Ford
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
| | - Megan E. Poorman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| | - William A. Grissom
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106
- Department of Pediatrics, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106
| | - Hillel J. Chiel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd, Cleveland, Ohio 44106
- Department of Neurosciences, Case Western Reserve University, 2210 Circle Drive, Cleveland, Ohio 44106
| | - E. Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Neurological Surgery, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| |
Collapse
|
16
|
Dux M, Rosta J, Messlinger K. TRP Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches. Int J Mol Sci 2020; 21:ijms21010342. [PMID: 31948011 PMCID: PMC6981722 DOI: 10.3390/ijms21010342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pain in trigeminal areas is driven by nociceptive trigeminal afferents. Transduction molecules, among them the nonspecific cation channels transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are activated by endogenous and exogenous ligands, are expressed by a significant population of trigeminal nociceptors innervating meningeal tissues. Many of these nociceptors also contain vasoactive neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P. Release of neuropeptides and other functional properties are frequently examined using the cell bodies of trigeminal neurons as models of their sensory endings. Pathophysiological conditions cause phosphorylation, increased expression and trafficking of transient receptor potential (TRP) channels, neuropeptides and other mediators, which accelerate activation of nociceptive pathways. Since nociceptor activation may be a significant pathophysiological mechanism involved in both peripheral and central sensitization of the trigeminal nociceptive pathway, its contribution to the pathophysiology of primary headaches is more than likely. Metabolic disorders and medication-induced painful states are frequently associated with TRP receptor activation and may increase the risk for primary headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-374; Fax: +36-62-545-842
| | - Judit Rosta
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany;
| |
Collapse
|
17
|
Global Transcriptomic Profile of Dorsal Root Ganglion and Physiological Correlates of Cisplatin-Induced Peripheral Neuropathy. Nurs Res 2019; 68:145-155. [PMID: 30586060 DOI: 10.1097/nnr.0000000000000338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Multiple cell signaling pathways are implicated in the development, progression, and persistence of cisplatin-induced peripheral neuropathy. Although advances have been made in terms of understanding specific neurotoxic mechanisms, there are few predictive factors identified that can help inform the clinician approach to symptom prevention or management. OBJECTIVE We investigate the differential sensitivity to cisplatin-induced peripheral neuropathy and examine the contribution of dorsal root ganglion (DRG) transcriptional profiles across two inbred strains of mice. METHODS Cisplatin (4 mg/kg intraperitoneal or vehicle control) was administered twice a week for 4 weeks to adult female C57BL/6J and A/J mice-the C57BL/6J strain of mice characterized by a robust mechanical allodynia and the A/J with a mild largely resistant allodynia phenotype. Peripheral nerve conduction velocities (NCVs), electrophysiological evaluation of wide dynamic range (WDR) neurons, morphological examination of DRG neurons, and microarray analysis of spinal cord tissues were compared across the 4 weeks. RESULTS The A/J strain presents with an early, mild nocifensive response to cisplatin with reduced neuronal activity in WDR neurons and small changes in cross-sectional nucleus size in DRG neurons at 4 weeks. The more nocifensive-sensitive C57BL/6J strain presents with no early changes in WDR neuron responsiveness; however, there were significant changes in DRG size. Both strains demonstrate a drop in NCV after 4 weeks of treatment, with the greatest reduction present in the A/J strain. Transcriptome data implicate neuroimmune modulation in the differential response to cisplatin in the DRGs of A/J and C57BL/6J mice. DISCUSSION Nocifensive responses in both strains implicate involvement of small myelinated and unmyelinated fibers in neurotoxic cisplatin response, whereas reductions in NCV reflect involvement of the largest myelinated fibers in the peripheral nerves. Microarray data analysis identifies neuropathy-relevant gene sets with differential activation of pathways, suggesting a role for antigen presentation in the differential neurotoxic response to cisplatin across strains. Further research is indicated to determine the relative contributions of each of these potential pathological mechanisms to both the neurotoxic response to cisplatin and to the potential for targeted therapy.
Collapse
|
18
|
Maurer M, Papotto N, Sertel-Nakajima J, Schueler M, De Col R, Möhrlen F, Messlinger K, Frings S, Carr RW. Photoactivation of olfactory sensory neurons does not affect action potential conduction in individual trigeminal sensory axons innervating the rodent nasal cavity. PLoS One 2019; 14:e0211175. [PMID: 31412038 PMCID: PMC6693769 DOI: 10.1371/journal.pone.0211175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Olfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. While imaging studies indicate overlap in limbic and cortical somatosensory areas activated by nasal trigeminal and olfactory stimuli, there is also potential cross-talk at the level of the olfactory epithelium, the olfactory bulb and trigeminal brainstem. Here we explored the influence of olfactory and trigeminal signaling in the nasal cavity. A forced choice water consumption paradigm was used to ascertain whether trigeminal and olfactory stimuli could influence behaviour in mice. Mice avoided water sources surrounded by both volatile TRPV1 (cyclohexanone) and TRPA1 (allyl isothiocyanate) irritants and the aversion to cyclohexanone was mitigated when combined with a pure odorant (rose fragrance, phenylethyl alcohol, PEA). To determine whether olfactory-trigeminal interactions within the nose could potentially account for this behavioural effect we recorded from single trigeminal sensory axons innervating the nasal respiratory and olfactory epithelium using an isolated in vitro preparation. To circumvent non-specific effects of chemical stimuli, optical stimulation was used to excite olfactory sensory neurons in mice expressing channel-rhodopsin (ChR2) under the olfactory marker protein (OMP) promoter. Photoactivation of olfactory sensory neurons produced no modulation of axonal action potential conduction in individual trigeminal axons. Similarly, no evidence was found for collateral branching of trigeminal axon that might serve as a conduit for cross-talk between the olfactory and respiratory epithelium and olfactory dura mater. Using direct assessment of action potential activity in trigeminal axons we observed neither paracrine nor axon reflex mediated cross-talk between olfactory and trigeminal sensory systems in the rodent nasal cavity. Our current results suggest that olfactory sensory neurons exert minimal influence on trigeminal signals within the nasal cavity.
Collapse
Affiliation(s)
- Margot Maurer
- Experimental Pain Research, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Nunzia Papotto
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Julika Sertel-Nakajima
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Roberto De Col
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Möhrlen
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Karl Messlinger
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan Frings
- Centre for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Richard W. Carr
- Experimental Pain Research, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
19
|
Mikhailov N, Leskinen J, Fagerlund I, Poguzhelskaya E, Giniatullina R, Gafurov O, Malm T, Karjalainen T, Gröhn O, Giniatullin R. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology 2019; 149:113-123. [PMID: 30768945 DOI: 10.1016/j.neuropharm.2019.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent discovery of mechanosensitive Piezo receptors in trigeminal ganglia suggested the novel molecular candidate for generation of migraine pain. However, the contribution of Piezo channels in migraine pathology was not tested yet. Therefore, in this study, we explored a potential involvement of Piezo channels in peripheral trigeminal nociception implicated in generation of migraine pain. METHODS We used immunohistochemistry, calcium imaging, calcitonin gene related peptide (CGRP) release assay and electrophysiology in mouse and rat isolated trigeminal neurons and rat hemiskulls to study action of various stimulants of Piezo receptors on migraine-related peripheral nociception. RESULTS We found that essential (35%) fraction of isolated rat trigeminal neurons responded to chemical Piezo1 agonist Yoda1 and about a half of Yoda1 positive neurons responded to hypo-osmotic solution (HOS) and a quarter to mechanical stimulation by focused ultrasound (US). In ex vivo hemiskull preparation, Yoda1 and HOS largely activated persistent nociceptive firing in meningeal branches of trigeminal nerve. By using our novel cluster analysis of pain spikes, we demonstrated that 42% of fibers responded to Piezo1 agonist and 20% of trigeminal fibers were activated by Yoda1 and by capsaicin, suggesting expression of Piezo receptors in TRPV1 positive peptidergic nociceptive nerve fibers. Consistent with this, Yoda1 promoted the release of the key migraine mediator CGRP from hemiskull preparation. CONCLUSION Taken together, our data suggest the involvement of mechanosensitive Piezo receptors, in particular, Piezo1 subtype in peripheral trigeminal nociception, which provides a new view on mechanotransduction in migraine pathology and suggests novel molecular targets for anti-migraine medicine.
Collapse
Affiliation(s)
- Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jarkko Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ilkka Fagerlund
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ekaterina Poguzhelskaya
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Raisa Giniatullina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Tarja Malm
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Tero Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia.
| |
Collapse
|
20
|
Vastani N, Guenther F, Gentry C, Austin AL, King AJ, Bevan S, Andersson DA. Impaired Nociception in the Diabetic Ins2+/Akita Mouse. Diabetes 2018; 67:1650-1662. [PMID: 29875100 DOI: 10.2337/db17-1306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/18/2018] [Indexed: 11/13/2022]
Abstract
The mechanisms responsible for painful and insensate diabetic neuropathy are not completely understood. Here, we have investigated sensory neuropathy in the Ins2+/Akita mouse, a hereditary model of diabetes. Akita mice become diabetic soon after weaning, and we show that this is accompanied by an impaired mechanical and thermal nociception and a significant loss of intraepidermal nerve fibers. Electrophysiological investigations of skin-nerve preparations identified a reduced rate of action potential discharge in Ins2+/Akita mechanonociceptors compared with wild-type littermates, whereas the function of low-threshold A-fibers was essentially intact. Studies of isolated sensory neurons demonstrated a markedly reduced heat responsiveness in Ins2+/Akita dorsal root ganglion (DRG) neurons, but a mostly unchanged function of cold-sensitive neurons. Restoration of normal glucose control by islet transplantation produced a rapid recovery of nociception, which occurred before normoglycemia had been achieved. Islet transplantation also restored Ins2+/Akita intraepidermal nerve fiber density to the same level as wild-type mice, indicating that restored insulin production can reverse both sensory and anatomical abnormalities of diabetic neuropathy in mice. The reduced rate of action potential discharge in nociceptive fibers and the impaired heat responsiveness of Ins2+/Akita DRG neurons suggest that ionic sensory transduction and transmission mechanisms are modified by diabetes.
Collapse
MESH Headings
- Action Potentials
- Amino Acid Substitution
- Animals
- Behavior, Animal
- Cells, Cultured
- Diabetes Mellitus/blood
- Diabetes Mellitus/surgery
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Epidermis/innervation
- Epidermis/metabolism
- Epidermis/pathology
- Epidermis/physiopathology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Heterozygote
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans Transplantation
- Kidney
- Male
- Mechanoreceptors/metabolism
- Mechanoreceptors/pathology
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Fibers, Unmyelinated/metabolism
- Nerve Fibers, Unmyelinated/pathology
- Pain Measurement
- Somatosensory Disorders/complications
- Somatosensory Disorders/metabolism
- Somatosensory Disorders/physiopathology
- Somatosensory Disorders/prevention & control
- Thermoreceptors/metabolism
- Thermoreceptors/pathology
- Thermoreceptors/physiopathology
- Transplantation, Heterotopic
Collapse
Affiliation(s)
- Nisha Vastani
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, U.K
| | - Franziska Guenther
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, U.K
- Institut für Physiologie und Pathophysiologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, U.K
| | - Amazon L Austin
- Diabetes & Nutritional Sciences Division, King's College London, London, U.K
| | - Aileen J King
- Diabetes & Nutritional Sciences Division, King's College London, London, U.K
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, U.K
| | - David A Andersson
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, U.K.
| |
Collapse
|
21
|
Messlinger K. Commentary: Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017; 8:623. [PMID: 29276497 PMCID: PMC5727421 DOI: 10.3389/fneur.2017.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Karl Messlinger,
| |
Collapse
|
22
|
|
23
|
Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current. J Neurosci 2017; 37:9705-9714. [PMID: 28877968 DOI: 10.1523/jneurosci.1703-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons.SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release, conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new pharmacological strategies for targeting pain-sensing neurons selectively.
Collapse
|
24
|
|
25
|
Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord. J Neurosci 2017; 37:6488-6502. [PMID: 28576935 PMCID: PMC5511880 DOI: 10.1523/jneurosci.3816-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 11/21/2022] Open
Abstract
C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (≥1 Hz) results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were made, from dorsal roots isolated from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation, in response to electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1–10 Hz stimulus trains) without altering the incidence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimulation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation, and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to sex/inflammation-dependent differences in pain sensitivity. SIGNIFICANCE STATEMENT The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal cord. C fibers conduct successive action potentials at progressively slower speeds, but the impact of this activity-dependent slowing (ADS) is unknown. Here we demonstrate that ADS is more prevalent in females than males and is reduced in an inflammatory pain model in females only. We also demonstrate a progressive delay of C fiber monosynaptic transmission to the spinal cord that is similarly sex and inflammation dependent. Experimentally manipulating ADS strongly influences spinal summation consistent with sex differences in behavioral pain thresholds. This suggests that ADS provides a peripheral mechanism that can regulate spinal nociceptive processing and pain sensation.
Collapse
|
26
|
Watkins RH, Wessberg J, Backlund Wasling H, Dunham JP, Olausson H, Johnson RD, Ackerley R. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing. J Neurophysiol 2017; 117:1608-1614. [PMID: 28123010 PMCID: PMC5376601 DOI: 10.1152/jn.00939.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Human skin encodes a plethora of touch interactions, and affective tactile information is primarily signaled by slowly conducting C-mechanoreceptive afferents. We show that electrical stimulation of low-threshold C-tactile afferents produces markedly different patterns of activity compared with high-threshold C-mechanoreceptive nociceptors, although the populations overlap in their responses to mechanical stimulation. This fundamental distinction demonstrates a divergence in affective touch signaling from the first stage of sensory processing, having implications for the processing of interpersonal touch. C-mechanoreceptors in humans comprise a population of unmyelinated afferents exhibiting a wide range of mechanical sensitivities. C-mechanoreceptors are putatively divided into those signaling gentle touch (C-tactile afferents, CTs) and nociception (C-mechanosensitive nociceptors, CMs), giving rise to positive and negative affect, respectively. We sought to distinguish, compare, and contrast the properties of a population of human C-mechanoreceptors to see how fundamental the divisions between these putative subpopulations are. We used microneurography to record from individual afferents in humans and applied electrical and mechanical stimulation to their receptive fields. We show that C-mechanoreceptors can be distinguished unequivocally into two putative populations, comprising CTs and CMs, by electrically evoked spike latency changes (slowing). After both natural mechanical stimulation and repetitive electrical stimulation there was markedly less latency slowing in CTs compared with CMs. Electrical receptive field stimulation, which bypasses the receptor end organ, was most effective in classifying C-mechanoreceptors, as responses to mechanical receptive field stimulation overlapped somewhat, which may lead to misclassification. Furthermore, we report a subclass of low-threshold CM responding to gentle mechanical stimulation and a potential subclass of CT afferent displaying burst firing. We show that substantial differences exist in the mechanisms governing axonal conduction between CTs and CMs. We provide clear electrophysiological “signatures” (extent of latency slowing) that can be used in unequivocally identifying populations of C-mechanoreceptors in single-unit and multiunit microneurography studies and in translational animal research into affective touch. Additionally, these differential mechanisms may be pharmacologically targetable for separate modulation of positive and negative affective touch information. NEW & NOTEWORTHY Human skin encodes a plethora of touch interactions, and affective tactile information is primarily signaled by slowly conducting C-mechanoreceptive afferents. We show that electrical stimulation of low-threshold C-tactile afferents produces markedly different patterns of activity compared with high-threshold C-mechanoreceptive nociceptors, although the populations overlap in their responses to mechanical stimulation. This fundamental distinction demonstrates a divergence in affective touch signaling from the first stage of sensory processing, having implications for the processing of interpersonal touch.
Collapse
Affiliation(s)
- Roger H Watkins
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden; .,School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Johan Wessberg
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - James P Dunham
- University Division of Anaesthesia, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
| | - Håkan Olausson
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden.,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden; and
| | - Richard D Johnson
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden.,Laboratoire de Neurosciences Intégratives et Adaptatives (UMR 7260), Aix-Marseille Université-CNRS, Marseille, France
| |
Collapse
|
27
|
Kleggetveit IP, Schmidt R, Namer B, Salter H, Helås T, Schmelz M, Jørum E. Pathological nociceptors in two patients with erythromelalgia-like symptoms and rare genetic Nav 1.9 variants. Brain Behav 2016; 6:e00528. [PMID: 27781142 PMCID: PMC5064340 DOI: 10.1002/brb3.528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The sodium channel Nav 1.9 is expressed in peripheral nociceptors and has recently been linked to human pain conditions, but the exact role of Nav 1.9 for human nociceptor excitability is still unclear. METHODS C-nociceptors from two patients with late onset of erythromelalgia-like pain, signs of small fiber neuropathy, and rare genetic variants of Nav 1.9 (N1169S, I1293V) were assessed by microneurography. RESULTS Compared with patients with comparable pain phenotypes (erythromelalgia-like pain without Nav-mutations and painful polyneuropathy), there was a tendency toward more activity-dependent slowing of conduction velocity in mechanoinsensitive C-nociceptors. Hyperexcitability to heating and electrical stimulation were seen in some nociceptors, and other unspecific signs of increased excitability, including spontaneous activity and mechanical sensitization, were also observed. CONCLUSIONS Although the functional roles of these genetic variants are still unknown, the microneurography findings may be compatible with increased C-nociceptor excitability based on increased Nav 1.9 function.
Collapse
Affiliation(s)
- Inge P. Kleggetveit
- Section of Clinical NeurophysiologyDepartment of NeurologyOslo University Hospital‐RikshospitaletOsloNorway
| | - Roland Schmidt
- Department of Clinical NeurophysiologyUppsala UniversityUppsalaSweden
| | - Barbara Namer
- Institute of Physiology and PathophysiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Hugh Salter
- AstraZeneca Translational Science CentreDepartment of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
| | - Tormod Helås
- Section of Clinical NeurophysiologyDepartment of NeurologyOslo University Hospital‐RikshospitaletOsloNorway
| | - Martin Schmelz
- Department of Anesthesiology MannheimHeidelberg UniversityMannheimGermany
| | - Ellen Jørum
- Section of Clinical NeurophysiologyDepartment of NeurologyOslo University Hospital‐RikshospitaletOsloNorway
| |
Collapse
|
28
|
Zakharov A, Koroleva K, Giniatullin R. Clustering Analysis for Sorting ATP-Induced Nociceptive Firing in rat Meninges. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0276-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Kist AM, Sagafos D, Rush AM, Neacsu C, Eberhardt E, Schmidt R, Lunden LK, Ørstavik K, Kaluza L, Meents J, Zhang Z, Carr TH, Salter H, Malinowsky D, Wollberg P, Krupp J, Kleggetveit IP, Schmelz M, Jørum E, Lampert A, Namer B. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing. PLoS One 2016; 11:e0161789. [PMID: 27598514 PMCID: PMC5012686 DOI: 10.1371/journal.pone.0161789] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient’s peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.
Collapse
Affiliation(s)
- Andreas M. Kist
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dagrun Sagafos
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | | | - Cristian Neacsu
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Esther Eberhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Roland Schmidt
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Lars Kristian Lunden
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Kristin Ørstavik
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Luisa Kaluza
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | | | | | | | | | | | - Inge Petter Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Martin Schmelz
- Department of Anesthesiology Mannheim, Heidelberg University, Mannheim, Germany
| | - Ellen Jørum
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
- * E-mail: (EJ); (AL); (BN)
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail: (EJ); (AL); (BN)
| | - Barbara Namer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail: (EJ); (AL); (BN)
| |
Collapse
|
30
|
Specific changes in conduction velocity recovery cycles of single nociceptors in a patient with erythromelalgia with the I848T gain-of-function mutation of Nav1.7. Pain 2016; 156:1637-1646. [PMID: 25993546 DOI: 10.1097/j.pain.0000000000000229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Seven patients diagnosed with erythromelalgia (EM) were investigated by microneurography to record from unmyelinated nerve fibers in the peroneal nerve. Two patients had characterized variants of sodium channel Nav1.7 (I848T, I228M), whereas no mutations of coding regions of Navs were found in 5 patients with EM. Irrespective of Nav1.7 mutations, more than 50% of the silent nociceptors in the patients with EM showed spontaneous activity. In the patient with mutation I848T, all nociceptors, but not sympathetic efferents, displayed enhanced early subnormal conduction in the velocity recovery cycles and the expected late subnormality was reversed to supranormal conduction. The larger hyperpolarizing shift of activation might explain the difference to the I228M mutation. Sympathetic fibers that lack Nav1.8 did not show supranormal conduction in the patient carrying the I848T mutation, confirming in human subjects that the presence of Nav1.8 crucially modulates conduction in cells expressing EM mutant channels. The characteristic pattern of changes in conduction velocity observed in the patient with the I848T gain-of function mutation in Nav1.7 could be explained by axonal depolarization and concomitant inactivation of Nav1.7. If this were true, activity-dependent hyperpolarization would reverse inactivation of Nav1.7 and account for the supranormal CV. This mechanism might explain normal pain thresholds under resting conditions.
Collapse
|
31
|
Matson DJ, Hamamoto DT, Bregman H, Cooke M, DiMauro EF, Huang L, Johnson D, Li X, McDermott J, Morgan C, Wilenkin B, Malmberg AB, McDonough SI, Simone DA. Inhibition of Inactive States of Tetrodotoxin-Sensitive Sodium Channels Reduces Spontaneous Firing of C-Fiber Nociceptors and Produces Analgesia in Formalin and Complete Freund's Adjuvant Models of Pain. PLoS One 2015; 10:e0138140. [PMID: 26379236 PMCID: PMC4575030 DOI: 10.1371/journal.pone.0138140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported "compound 52" aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund's adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.
Collapse
Affiliation(s)
- David J. Matson
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Darryl T. Hamamoto
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Howard Bregman
- Department of Medicinal Chemistry, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Melanie Cooke
- Department of Pharmaceutics Research & Development, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Erin F. DiMauro
- Department of Medicinal Chemistry, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Liyue Huang
- Department of Pharmacokinetics & Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Danielle Johnson
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Xingwen Li
- Department of Pharmacokinetics & Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Jeff McDermott
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Carrie Morgan
- Department of Pharmaceutics Research & Development, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Ben Wilenkin
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Annika B. Malmberg
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Stefan I. McDonough
- Department of Neuroscience, Amgen Inc., Cambridge, Massachusetts, United States of America
| | - Donald A. Simone
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| |
Collapse
|
32
|
Zakharov A, Vitale C, Kilinc E, Koroleva K, Fayuk D, Shelukhina I, Naumenko N, Skorinkin A, Khazipov R, Giniatullin R. Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 2015; 9:287. [PMID: 26283923 PMCID: PMC4516892 DOI: 10.3389/fncel.2015.00287] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish "responder" (65%) from "non-responder" clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine.
Collapse
Affiliation(s)
- A. Zakharov
- Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
- Department of Physiology, Kazan State Medical UniversityKazan, Russia
| | - C. Vitale
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - E. Kilinc
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
- Medical Faculty, Department of Physiology, Abant Izzet Baysal UniversityBolu, Turkey
| | - K. Koroleva
- Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - D. Fayuk
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - I. Shelukhina
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscow, Russia
| | - N. Naumenko
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - A. Skorinkin
- Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
- Kazan Institute of Biochemistry and BiophysicsKazan, Russia
| | - R. Khazipov
- Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
- INSERM U901/Aix Marseille UniversityMarseille, France
| | - R. Giniatullin
- Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
33
|
Mice and rats differ with respect to activity-dependent slowing of conduction velocity in the saphenous peripheral nerve. Neurosci Lett 2015; 592:12-6. [DOI: 10.1016/j.neulet.2015.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
|
34
|
Shimba K, Sakai K, Isomura T, Kotani K, Jimbo Y. Axonal conduction slowing induced by spontaneous bursting activity in cortical neurons cultured in a microtunnel device. Integr Biol (Camb) 2015; 7:64-72. [DOI: 10.1039/c4ib00223g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated that spontaneous bursting activity can decrease the axonal conduction velocity of cortical neurons cultured in a microtunnel device.
Collapse
Affiliation(s)
- Kenta Shimba
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Koji Sakai
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takuya Isomura
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo
- Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
35
|
Uebner M, Carr RW, Messlinger K, De Col R. Activity-dependent sensory signal processing in mechanically responsive slowly conducting meningeal afferents. J Neurophysiol 2014; 112:3077-85. [DOI: 10.1152/jn.00243.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activity-dependent processes in slowly conducting afferents have been shown to modulate conduction and receptive properties, but it is not known how the frequency of action potential firing determines the responses of such fibers to mechanical stimulation. We examined the responses of slowly conducting meningeal afferents to mechanical stimuli and the influence of preceding action potential activity. In hemisected rat heads with adhering cranial dura mater, recordings were made from meningeal nerves. Dural receptive fields of mechanically sensitive afferent fibers were stimulated with a custom-made electromechanostimulator. Sinusoidal mechanical stimuli of different stimulus durations and amplitudes were applied to produce either high-frequency (phasic) or low-frequency (tonic) discharges. Most fibers showed slowing of their axonal conduction velocity on electrically evoked activity at ≥2 Hz. In this state, the peak firing frequency of phasic responses to a 250-ms mechanical stimulus was significantly reduced compared with control. In contrast, the frequency of tonic responses induced by mechanical stimuli of >500 ms did not change. In a rare subtype of afferents, which showed conduction velocity speeding during activity, an increase in the phasic responses to mechanical stimuli was observed. Depending on the axonal properties of the afferent fibers, encoding of phasic components of mechanical stimuli is altered according to the immediate firing history. Preceding activity in mechanoreceptors slowing their conduction velocity seems to provide a form of low-pass filtering of action potential discharges predominantly reducing the phasic component. This may improve discrimination between harmless and potentially harmful mechanical stimuli in normal tissue.
Collapse
Affiliation(s)
- Michael Uebner
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Richard W. Carr
- Department of Anaesthesia and Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Roberto De Col
- Department of Anaesthesia and Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
36
|
Chida K, Kaneko K, Fujii S, Yamazaki Y. Activity-dependent modulation of the axonal conduction of action potentials along rat hippocampal mossy fibers. Eur J Neurosci 2014; 41:45-54. [PMID: 25345805 DOI: 10.1111/ejn.12762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 01/20/2023]
Abstract
The axonal conduction of action potentials in the nervous system is generally considered to be a stable signal for the relaying of information, and its dysfunction is involved in impairment of cognitive function. Recent evidence suggests that the conduction properties and excitability of axons are more variable than traditionally thought. To investigate possible changes in the conduction of action potentials along axons in the central nervous system, we recorded action potentials from granule cells that were evoked and conducted antidromically along unmyelinated mossy fibers in the rat hippocampus. To evaluate changes in axons by eliminating any involvement of changes in the somata, two latency values were obtained by stimulating at two different positions and the latency difference between the action potentials was measured. A conditioning electrical stimulus of 20 pulses at 1 Hz increased the latency difference and this effect, which lasted for approximately 30 s, was inhibited by the application of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist or a GluK1-containing kainate receptor antagonist, but not by an AMPA receptor-selective antagonist or an N-methyl-d-aspartate receptor antagonist. These results indicated that axonal conduction in mossy fibers is modulated in an activity-dependent manner through the activation of GluK1-containing kainate receptors. These dynamic changes in axonal conduction may contribute to the physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Kuniaki Chida
- Department of Physiology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | | | | | | |
Collapse
|
37
|
Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol 2013; 111:1721-35. [PMID: 24371290 DOI: 10.1152/jn.00777.2012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.
Collapse
Affiliation(s)
- Jenny Tigerholm
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Schueler M, Messlinger K, Dux M, Neuhuber WL, De R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 2013; 154:1622-1631. [DOI: 10.1016/j.pain.2013.04.040] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/29/2023]
|
39
|
Taguchi T, Yasui M, Kubo A, Abe M, Kiyama H, Yamanaka A, Mizumura K. Nociception originating from the crural fascia in rats. Pain 2013; 154:1103-14. [DOI: 10.1016/j.pain.2013.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 10/26/2022]
|
40
|
Zotova EG, Arezzo JC. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT. PHYSIOLOGY JOURNAL 2013; 2013:254789. [PMID: 23580940 PMCID: PMC3620683 DOI: 10.1155/2013/254789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p<0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p<0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Collapse
Affiliation(s)
- Elena G. Zotova
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Joseph C. Arezzo
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
41
|
Kleggetveit IP, Namer B, Schmidt R, Helås T, Rückel M, Ørstavik K, Schmelz M, Jørum E. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 2012; 153:2040-2047. [DOI: 10.1016/j.pain.2012.05.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
|
42
|
Affiliation(s)
- Mark D Baker
- Queen Mary University of London, Neuroscience and Trauma, Blizard Institute, London E1 2AT, UK.
| | | |
Collapse
|