1
|
Ohmori H, Hirai Y, Matsui R, Watanabe D. High resolution recording of local field currents simultaneously with sound-evoked calcium signals by a photometric patch electrode in the auditory cortex field L of the chick. J Neurosci Methods 2023; 392:109863. [PMID: 37075913 DOI: 10.1016/j.jneumeth.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Functioning of the brain is based on both electrical and metabolic activity of neural ensembles. Accordingly, it would be useful to measure intracellular metabolic signaling simultaneously with electrical activity in the brain in vivo. NEW METHOD We innovated a PhotoMetric-patch-Electrode (PME) recording system that has a high temporal resolution incorporating a photomultiplier tube as a light detector. The PME is fabricated from a quartz glass capillary to transmit light as a light guide, and it can detect electrical signals as a patch electrode simultaneously with a fluorescence signal. RESULTS We measured the sound-evoked Local Field Current (LFC) and fluorescence Ca2+ signal from neurons labeled with Ca2+-sensitive dye Oregon Green BAPTA1 in field L, the avian auditory cortex. Sound stimulation evoked multi-unit spike bursts and Ca2+ signals, and enhanced the fluctuation of LFC. After a brief sound stimulation, the cross-correlation between LFC and Ca2+ signal was prolonged. D-AP5 (antagonist for NMDA receptors) suppressed the sound-evoked Ca2+ signal when applied locally by pressure from the tip of PME. COMPARISON WITH EXISTING METHODS In contrast to existing multiphoton imaging or optical fiber recording methods, the PME is a patch electrode pulled simply from a quartz glass capillary and can measure fluorescence signals at the tip simultaneously with electrical signal at any depth of the brain structure. CONCLUSION The PME is devised to record electrical and optical signals simultaneously with high temporal resolution. Moreover, it can inject chemical agents dissolved in the tip-filling medium locally by pressure, allowing manipulation of neural activity pharmacologically.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasuharu Hirai
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Schwalm M, Tabuena DR, Easton C, Richner TJ, Mourad P, Watari H, Moody WJ, Stroh A. Functional States Shape the Spatiotemporal Representation of Local and Cortex-wide Neural Activity in Mouse Sensory Cortex. J Neurophysiol 2022; 128:763-777. [PMID: 35975935 DOI: 10.1152/jn.00424.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatiotemporal representation of neural activity during rest and upon sensory stimulation in cortical areas is highly dynamic, and may be predominantly governed by cortical state. On the mesoscale level, intrinsic neuronal activity ranges from a persistent state, generally associated with a sustained depolarization of neurons, to a bimodal, slow-wave like state with bursts of neuronal activation, alternating with silent periods. These different activity states are prevalent under certain types of sedatives, or are associated with specific behavioral or vigilance conditions. Neurophysiological experiments assessing circuit activity, usually assume a constant underlying state, yet reports of variability of neuronal responses under seemingly constant conditions are common in the field. Even when a certain type of neural activity or cortical state can stably be maintained over time, the associated response properties are highly relevant for explaining experimental outcomes. Here we describe the spatiotemporal characteristics of ongoing activity and sensory evoked responses under two predominant functional states in the sensory cortices of mice: persistent activity (PA) and slow wave activity (SWA). Using electrophysiological recordings, and local and wide-field calcium recordings, we examine whether spontaneous and sensory evoked neuronal activity propagate throughout the cortex in a state dependent manner. We find that PA and SWA differ in their spatiotemporal characteristics which determine the cortical network's response to a sensory stimulus. During PA state, sensory stimulation elicits gamma-based short-latency responses which precisely follow each stimulation pulse and are prone to adaptation upon higher stimulation frequencies. Sensory responses during SWA are more variable, dependent on refractory periods following spontaneous slow waves. While spontaneous slow waves propagated in anterior-posterior direction in a majority of observations, the direction of propagation of stimulus-elicited wave depends on the sensory modality. These findings suggest that cortical state explains variance and should be considered when investigating multi-scale correlates of functional neurocircuit activity.
Collapse
Affiliation(s)
- Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dennis R Tabuena
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Curtis Easton
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Thomas J Richner
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Pierre Mourad
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Hirofumi Watari
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biology, University of Washington, Seattle, WA, United States
| | - William J Moody
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
4
|
Cleppien D, Aedo-Jury F, Stroh A. Beyond correlation: functional OPTO-MAgnetic Integration Concept (OPTOMAIC) to reveal the brain-wide signature of local neuronal signals-of-interest. NEUROPHOTONICS 2022; 9:032213. [PMID: 35813935 PMCID: PMC9259002 DOI: 10.1117/1.nph.9.3.032213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Significance: Due to the vascular origin of the fMRI signal, the spatiotemporally precise interpretation of the blood oxygen level-dependent (BOLD) response as brain-wide correlate of neuronal activity is limited. Optical fiber-based neuronal calcium recordings provide a specific and temporally highly resolved signal yet lacking brain-wide coverage. The cross-modal integration of both modalities holds the potential for unique synergies. Aim: The OPTO-MAgnetic Integration Concept (OPTOMAIC) extracts the very fraction of the BOLD response that reacts to optically recorded neuronal signals-of-interest. Approach and Results: First, OPTOMAIC identifies the trials containing neuronal signal-of-interest (SoI) in the optical recordings. The long duration of the BOLD response is considered by calculating and thresholding neuronal interevent intervals. The resulting optical regression vector is probed for a positive BOLD response with single-event and single-voxel resolution, generating a BOLD response matrix containing only those events and voxels with both a neuronal SoI and a positive fMRI signal increase. Last, the onset of the BOLD response is being quantified, representing the section of the BOLD response most reliably reporting at least components of the neuronal signal. Conclusions: The seven OPTOMAIC steps result in a brain-wide BOLD signature reflecting the underlying neuronal SoI with utmost cross-modal integration depth and taking full advantage of the specific strengths of each method.
Collapse
Affiliation(s)
- Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | | | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
6
|
Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci 2021; 24:1686-1698. [PMID: 34782794 DOI: 10.1038/s41593-021-00949-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/27/2021] [Indexed: 01/28/2023]
Abstract
Memory persistence is a fundamental cognitive process for guiding behaviors and is considered to rely mostly on neuronal and synaptic plasticity. Whether and how astrocytes contribute to memory persistence is largely unknown. Here, by using two-photon Ca2+ imaging in head-fixed mice and fiber photometry in freely moving mice, we show that aversive sensory stimulation activates α7-nicotinic acetylcholine receptors (nAChRs) in a subpopulation of astrocytes in the auditory cortex. We demonstrate that fear learning causes the de novo induction of sound-evoked Ca2+ transients in these astrocytes. The astrocytic responsiveness persisted over days along with fear memory and disappeared in animals that underwent extinction of learned freezing behavior. Conditional genetic deletion of α7-nAChRs in astrocytes significantly impaired fear memory persistence. We conclude that learning-acquired, α7-nAChR-dependent astrocytic responsiveness is an integral part of the cellular substrate underlying memory persistence.
Collapse
|
7
|
Qin H, He W, Yang C, Li J, Jian T, Liang S, Chen T, Feng H, Chen X, Liao X, Zhang K. Monitoring Astrocytic Ca 2+ Activity in Freely Behaving Mice. Front Cell Neurosci 2020; 14:603095. [PMID: 33343304 PMCID: PMC7744696 DOI: 10.3389/fncel.2020.603095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Monitoring astrocytic Ca2+ activity is essential to understand the physiological and pathological roles of astrocytes in the brain. However, previous commonly used methods for studying astrocytic Ca2+ activities can be applied in only anesthetized or head-fixed animals, which significantly affects in vivo astrocytic Ca2+ dynamics. In the current study, we combined optic fiber recordings with genetically encoded Ca2+ indicators (GECIs) to monitor astrocytic activity in freely behaving mice. This approach enabled selective and reliable measurement of astrocytic Ca2+ activity, which was verified by the astrocyte-specific labeling of GECIs and few movement artifacts. Additionally, astrocytic Ca2+ activities induced by locomotion or footshock were stably recorded in the cortices and hippocampi of freely behaving mice. Furthermore, this method allowed for the longitudinal study of astrocytic activities over several weeks. This work provides a powerful approach to record astrocytic activity selectively, stably, and chronically in freely behaving mice.
Collapse
Affiliation(s)
- Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.,Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Wenjing He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Aedo-Jury F, Schwalm M, Hamzehpour L, Stroh A. Brain states govern the spatio-temporal dynamics of resting-state functional connectivity. eLife 2020; 9:53186. [PMID: 32568067 PMCID: PMC7329332 DOI: 10.7554/elife.53186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity. During slow wave activity, we find a correlation between the occurring slow wave events and the strength of functional connectivity between different cortical areas. These findings suggest that down-up transitions of neuronal excitability can drive cortex-wide functional connectivity. This study provides further evidence that changes in functional connectivity are dependent on the brain's current state, directly linked to the generation of slow waves.
Collapse
Affiliation(s)
- Felipe Aedo-Jury
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Lara Hamzehpour
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
9
|
Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT. Computational Modeling of Genetic Contributions to Excitability and Neural Coding in Layer V Pyramidal Cells: Applications to Schizophrenia Pathology. Front Comput Neurosci 2019; 13:66. [PMID: 31616272 PMCID: PMC6775251 DOI: 10.3389/fncom.2019.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Pyramidal cells in layer V of the neocortex are one of the most widely studied neuron types in the mammalian brain. Due to their role as integrators of feedforward and cortical feedback inputs, they are well-positioned to contribute to the symptoms and pathology in mental disorders-such as schizophrenia-that are characterized by a mismatch between the internal perception and external inputs. In this modeling study, we analyze the input/output properties of layer V pyramidal cells and their sensitivity to modeled genetic variants in schizophrenia-associated genes. We show that the excitability of layer V pyramidal cells and the way they integrate inputs in space and time are altered by many types of variants in ion-channel and Ca2+ transporter-encoding genes that have been identified as risk genes by recent genome-wide association studies. We also show that the variability in the output patterns of spiking and Ca2+ transients in layer V pyramidal cells is altered by these model variants. Importantly, we show that many of the predicted effects are robust to noise and qualitatively similar across different computational models of layer V pyramidal cells. Our modeling framework reveals several aspects of single-neuron excitability that can be linked to known schizophrenia-related phenotypes and existing hypotheses on disease mechanisms. In particular, our models predict that single-cell steady-state firing rate is positively correlated with the coding capacity of the neuron and negatively correlated with the amplitude of a prepulse-mediated adaptation and sensitivity to coincidence of stimuli in the apical dendrite and the perisomatic region of a layer V pyramidal cell. These results help to uncover the voltage-gated ion-channel and Ca2+ transporter-associated genetic underpinnings of schizophrenia phenotypes and biomarkers.
Collapse
Affiliation(s)
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States.,Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Abstract
Multisensory integration (MSI) is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60) expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. VIDEO ABSTRACT.
Collapse
|
11
|
van Alst TM, Wachsmuth L, Datunashvili M, Albers F, Just N, Budde T, Faber C. Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. Neuroimage 2019; 195:89-103. [DOI: 10.1016/j.neuroimage.2019.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
|
12
|
Qin H, Lu J, Jin W, Chen X, Fu L. Multichannel fiber photometry for mapping axonal terminal activity in a restricted brain region in freely moving mice. NEUROPHOTONICS 2019; 6:035011. [PMID: 31528656 PMCID: PMC6739620 DOI: 10.1117/1.nph.6.3.035011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 05/30/2023]
Abstract
Fiber photometry has been increasingly popular in neuroscience research in freely behaving animals. In combination with genetically encoded calcium indicators, it allows for real-time monitoring of neural activity in neuronal somata, dendrites, and axonal terminals. We developed a multichannel fiber photometry device to map the activity of axonal terminals in a restricted, 100 - μ m -wide brain region in freely moving mice. This device consists of four bundled multimode fibers, each with a 50 - μ m core diameter and a scientific complementary metal-oxide semiconductor camera to simultaneously acquire fluorescence. We achieved a sampling rate of 100 frames / s and sufficient sensitivity to acquire data from axonal terminals. To avoid interference with neighboring channels, the recording depth of each channel was restricted to < 250 μ m . Furthermore, the small-core-diameter fibers did not restrict mouse locomotion. Using the Ca 2 + indicator GCaMP5G, we validated the system by recording Ca 2 + signals in axonal terminals from the medial entorhinal cortex layer II to the hippocampal dentate gyrus (DG) in freely moving mice. We detected spatially separated Ca 2 + signals at four different sites in the DG. Therefore, our multichannel fiber photometry device provides a simple but powerful method to functionally map axonal terminals in spatially confined brain areas of freely moving animals.
Collapse
Affiliation(s)
- Han Qin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Key Laboratory for Biomedical Photonics of Ministry of Education, Wuhan, China
| | - Jian Lu
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Wenjun Jin
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Ling Fu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Key Laboratory for Biomedical Photonics of Ministry of Education, Wuhan, China
| |
Collapse
|
13
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
14
|
Pisanello M, Pisano F, Hyun M, Maglie E, Balena A, De Vittorio M, Sabatini BL, Pisanello F. The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. Front Neurosci 2019; 13:82. [PMID: 30863275 PMCID: PMC6399578 DOI: 10.3389/fnins.2019.00082] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 105 to 106 μm3 volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume.
Collapse
Affiliation(s)
- Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - Minsuk Hyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Emanuela Maglie
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| |
Collapse
|
15
|
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v3i4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon. The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission. The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information. Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials. Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process. Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses. Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.
Collapse
|
16
|
A corticopontine circuit for initiation of urination. Nat Neurosci 2018; 21:1541-1550. [DOI: 10.1038/s41593-018-0256-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
|
17
|
Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka GI, Goll Y, Refaeli R, Zviran O, Lim BK, Groysman M, Goshen I, Mizrahi A, Nelken I, Citri A. The Claustrum Supports Resilience to Distraction. Curr Biol 2018; 28:2752-2762.e7. [PMID: 30122531 PMCID: PMC6485402 DOI: 10.1016/j.cub.2018.06.068] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.
Collapse
Affiliation(s)
- Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Anna Terem
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | - Kamini Sehrawat
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Jerry Gonzales
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Pozner
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Gen-Ichi Tasaka
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Yael Goll
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ori Zviran
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Groysman
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Adi Mizrahi
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
18
|
Simone K, Füzesi T, Rosenegger D, Bains J, Murari K. Open-source, cost-effective system for low-light in vivo fiber photometry. NEUROPHOTONICS 2018; 5:025006. [PMID: 29687037 PMCID: PMC5895965 DOI: 10.1117/1.nph.5.2.025006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/21/2018] [Indexed: 06/01/2023]
Abstract
Fiber photometry uses genetically encoded optical reporters to link specific cellular activity in stereotaxically targeted brain structures to specific behaviors. There are still a number of barriers that have hindered the widespread adoption of this approach. This includes cost, but also the high-levels of light required to excite the fluorophore, limiting commercial systems to the investigation of short-term transients in neuronal activity to avoid damage of tissue by light. Here, we present a cost-effective optoelectronic system for in vivo fiber photometry that achieves high-sensitivity to changes in fluorescence intensity, enabling detection of optical transients of a popular calcium reporter with excitation powers as low as 100 nW. By realizing a coherent detection scheme and by using a photomultiplier tube as a detector, the system demonstrates reliable study of in vivo neuronal activity, positioning it for future use in the experiments inquiring into learning and memory processes. The system was applied to study stress-evoked calcium transients in corticotropin-releasing hormone neurons in the mouse hypothalamus.
Collapse
Affiliation(s)
- Kathryn Simone
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
| | - Tamás Füzesi
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - David Rosenegger
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - Jaideep Bains
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - Kartikeya Murari
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Electrical and Computer Engineering, Calgary, Canada
| |
Collapse
|
19
|
Schwalm M, Schmid F, Wachsmuth L, Backhaus H, Kronfeld A, Aedo Jury F, Prouvot PH, Fois C, Albers F, van Alst T, Faber C, Stroh A. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves. eLife 2017; 6:27602. [PMID: 28914607 PMCID: PMC5658067 DOI: 10.7554/elife.27602] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023] Open
Abstract
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. When a person is in a deep non-dreaming sleep, neurons in their brain alternate slowly between periods of silence and periods of activity. This gives rise to low-frequency brain rhythms called slow waves, which are thought to help stabilize memories. Slow wave activity can be detected on multiple scales, from the pattern of electrical impulses sent by an individual neuron to the collective activity of the brain’s entire outer layer, the cortex. But does slow wave activity in an individual group of neurons in the cortex affect the activity of the rest of the brain? To find out, Schwalm, Schmid, Wachsmuth et al. took advantage of the fact that slow waves also occur under general anesthesia, and placed anesthetized rats inside miniature whole-brain scanners. A small region of cortex in each rat had been injected with a dye that fluoresces whenever the neurons in that region are active. An optical fiber was lowered into the rat’s brain to transmit the fluorescence signals to a computer. Monitoring these signals while the animals lay inside the scanner revealed that slow-wave activity in any one group of cortical neurons was accompanied by slow-wave activity across the cortex as a whole. This relationship was seen only for slow waves, and not for other brain rhythms. Slow waves seem to occur in all species of animal with a backbone, and in both healthy and diseased brains. While it is not possible to inject fluorescent dyes into the human brain, it is possible to monitor neuronal activity using electrodes. Comparing local electrode recordings with measures of whole-brain activity from scanners could thus allow similar experiments to be performed in people. There is growing evidence – from animal models and from studies of patients – that slow waves may be altered in Alzheimer’s disease. Further work is required to determine whether detecting these changes could help diagnose disease at earlier stages, and whether reversing them may have therapeutic potential.
Collapse
Affiliation(s)
- Miriam Schwalm
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,GRADE Brain, Goethe Graduate Academy, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Florian Schmid
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Hendrik Backhaus
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Kronfeld
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felipe Aedo Jury
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pierre-Hugues Prouvot
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Consuelo Fois
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Timo van Alst
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Kato HK, Asinof SK, Isaacson JS. Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron 2017; 95:412-423.e4. [PMID: 28689982 DOI: 10.1016/j.neuron.2017.06.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022]
Abstract
Lateral inhibition is a fundamental circuit operation that sharpens the tuning properties of cortical neurons. This operation is classically attributed to an increase in GABAergic synaptic input triggered by non-preferred stimuli. Here we use in vivo whole-cell recording and two-photon Ca2+ imaging in awake mice to show that lateral inhibition shapes frequency tuning in primary auditory cortex via an unconventional mechanism: non-preferred tones suppress both excitatory and inhibitory synaptic inputs onto layer 2/3 cells ("network suppression"). Moreover, optogenetic inactivation of inhibitory interneurons elicits a paradoxical increase in inhibitory synaptic input. These results indicate that GABAergic interneurons regulate cortical activity indirectly via the suppression of recurrent excitation. Furthermore, the network suppression underlying lateral inhibition was blocked by inactivation of somatostatin-expressing interneurons (SOM cells), but not parvalbumin-expressing interneurons (PV cells). Together, these findings reveal that SOM cells govern lateral inhibition and control cortical frequency tuning through the regulation of reverberating recurrent circuits.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | - Samuel K Asinof
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeffry S Isaacson
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules. J Neurosci 2017; 37:7513-7533. [PMID: 28674167 DOI: 10.1523/jneurosci.3560-16.2017] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Connectivity mapping based on resting-state activity in mice has revealed functional motifs of correlated activity. However, the rules by which motifs organize into larger functional modules that lead to hemisphere wide spatial-temporal activity sequences is not clear. We explore cortical activity parcellation in head-fixed, quiet awake GCaMP6 mice from both sexes by using mesoscopic calcium imaging. Spectral decomposition of spontaneous cortical activity revealed the presence of two dominant frequency modes (<1 and ∼3 Hz), each of them associated with a unique spatial signature of cortical macro-parcellation not predicted by classical cytoarchitectonic definitions of cortical areas. Based on assessment of 0.1-1 Hz activity, we define two macro-organizing principles: the first being a rotating polymodal-association pinwheel structure around which activity flows sequentially from visual to barrel then to hindlimb somatosensory; the second principle is correlated activity symmetry planes that exist on many levels within a single domain such as intrahemispheric reflections of sensory and motor cortices. In contrast, higher frequency activity >1 Hz yielded two larger clusters of coactivated areas with an enlarged default mode network-like posterior region. We suggest that the apparent constrained structure for intra-areal cortical activity flow could be exploited in future efforts to normalize activity in diseases of the nervous system.SIGNIFICANCE STATEMENT Increasingly, functional connectivity mapping of spontaneous activity is being used to reveal the organization of the brain. However, because the brain operates across multiple space and time domains a more detailed understanding of this organization is necessary. We used in vivo wide-field calcium imaging of the indicator GCaMP6 in head-fixed, awake mice to characterize the organization of spontaneous cortical activity at different spatiotemporal scales. Correlation analysis defines the presence of two to three superclusters of activity that span traditionally defined functional territories and were frequency dependent. This work helps define the rules for how different cortical areas interact in time and space. We provide a framework necessary for future studies that explore functional reorganization of brain circuits in disease models.
Collapse
|
22
|
Yashiro H, Nakahara I, Funabiki K, Riquimaroux H. Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse’s inferior colliculus. Neurosci Res 2017; 119:61-69. [DOI: 10.1016/j.neures.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
|
23
|
Zhang Q, Yao J, Guang Y, Liang S, Guan J, Qin H, Liao X, Jin W, Zhang J, Pan J, Jia H, Yan J, Feng Z, Li W, Chen X. Locomotion-Related Population Cortical Ca 2+ Transients in Freely Behaving Mice. Front Neural Circuits 2017; 11:24. [PMID: 28439229 PMCID: PMC5383702 DOI: 10.3389/fncir.2017.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Locomotion involves complex neural activity throughout different cortical and subcortical networks. The primary motor cortex (M1) receives a variety of projections from different brain regions and is responsible for executing movements. The primary visual cortex (V1) receives external visual stimuli and plays an important role in guiding locomotion. Understanding how exactly the M1 and the V1 are involved in locomotion requires recording the neural activities in these areas in freely moving animals. Here, we used an optical fiber-based method for the real-time monitoring of neuronal population activities in freely moving mice. We combined the bulk loading of a synthetic Ca2+ indicator and the optical fiber-based Ca2+ recordings of neuronal activities. An optical fiber 200 μm in diameter can detect the coherent activity of a subpopulation of neurons. In layer 5 of the M1 and V1, we showed that population Ca2+ transients reliably occurred preceding the impending locomotion. Interestingly, the M1 Ca2+ transients started ~100 ms earlier than that in V1. Furthermore, the population Ca2+ transients were robustly correlated with head movements. Thus, our work provides a simple but efficient approach for monitoring the cortical Ca2+ activity of a local cluster of neurons during locomotion in freely moving animals.
Collapse
Affiliation(s)
- Quanchao Zhang
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Jiwei Yao
- Institute of Urinary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yu Guang
- Department of Psychology, Third Military Medical UniversityChongqing, China
| | - Shanshan Liang
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Jiangheng Guan
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Han Qin
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Wenjun Jin
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Jianxiong Zhang
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Junxia Pan
- Brain Research Center, Third Military Medical UniversityChongqing, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of SciencesSuzhou, China
| | - Junan Yan
- Institute of Urinary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Zhengzhi Feng
- Department of Psychology, Third Military Medical UniversityChongqing, China
| | - Weibing Li
- Institute of Urinary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing, China.,Clinical Center for Urological Disease, The Third Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical UniversityChongqing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
24
|
Li J, Liao X, Zhang J, Wang M, Yang N, Zhang J, Lv G, Li H, Lu J, Ding R, Li X, Guang Y, Yang Z, Qin H, Jin W, Zhang K, He C, Jia H, Zeng S, Hu Z, Nelken I, Chen X. Primary Auditory Cortex is Required for Anticipatory Motor Response. Cereb Cortex 2017; 27:3254-3271. [DOI: 10.1093/cercor/bhx079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jingcheng Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jianxiong Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Meng Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Nian Yang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Jun Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Guanghui Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jian Lu
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Ran Ding
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xingyi Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yu Guang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Israel Nelken
- Department of Neurobiology, Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 9190401, Israel
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
25
|
Yarden TS, Nelken I. Stimulus-specific adaptation in a recurrent network model of primary auditory cortex. PLoS Comput Biol 2017; 13:e1005437. [PMID: 28288158 PMCID: PMC5367837 DOI: 10.1371/journal.pcbi.1005437] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 03/27/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
Stimulus-specific adaptation (SSA) occurs when neurons decrease their responses to frequently-presented (standard) stimuli but not, or not as much, to other, rare (deviant) stimuli. SSA is present in all mammalian species in which it has been tested as well as in birds. SSA confers short-term memory to neuronal responses, and may lie upstream of the generation of mismatch negativity (MMN), an important human event-related potential. Previously published models of SSA mostly rely on synaptic depression of the feedforward, thalamocortical input. Here we study SSA in a recurrent neural network model of primary auditory cortex. When the recurrent, intracortical synapses display synaptic depression, the network generates population spikes (PSs). SSA occurs in this network when deviants elicit a PS but standards do not, and we demarcate the regions in parameter space that allow SSA. While SSA based on PSs does not require feedforward depression, we identify feedforward depression as a mechanism for expanding the range of parameters that support SSA. We provide predictions for experiments that could help differentiate between SSA due to synaptic depression of feedforward connections and SSA due to synaptic depression of recurrent connections. Similar to experimental data, the magnitude of SSA in the model depends on the frequency difference between deviant and standard, probability of the deviant, inter-stimulus interval and input amplitude. In contrast to models based on feedforward depression, our model shows true deviance sensitivity as found in experiments.
Collapse
Affiliation(s)
- Tohar S. Yarden
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Israel Nelken
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
26
|
Liu S, Li C, Xing Y, Wang Y, Tao F. Role of Neuromodulation and Optogenetic Manipulation in Pain Treatment. Curr Neuropharmacol 2017; 14:654-61. [PMID: 26935535 PMCID: PMC4981737 DOI: 10.2174/1570159x14666160303110503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/30/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Neuromodulation, including invasive and non-invasive stimulation, has been used to treat intractable chronic pain. However, the mechanisms by which neuromodulation produces antinociceptive effect still remain uncertain. Optogenetic manipulation, a recently developed novel approach, has already proven its value to clinicians by providing new insights into mechanisms of current clinical neuromodulation methods as well as pathophysiology of nervous system diseases at the circuit level. Here, we discuss the principles of two neuromodulation methods (deep brain stimulation and motor cortex stimulation) and their applications in pain treatment. More important, we summarize the new information from recent studies regarding optogenetic manipulation in neuroscience research and its potential utility in pain study.
Collapse
Affiliation(s)
| | | | | | | | - Feng Tao
- Department of Biomedical Sciences at Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas.
| |
Collapse
|
27
|
Schmid F, Wachsmuth L, Schwalm M, Prouvot PH, Jubal ER, Fois C, Pramanik G, Zimmer C, Faber C, Stroh A. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings. J Cereb Blood Flow Metab 2016; 36:1885-1900. [PMID: 26661247 PMCID: PMC5094300 DOI: 10.1177/0271678x15619428] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping.
Collapse
Affiliation(s)
- Florian Schmid
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Miriam Schwalm
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pierre-Hugues Prouvot
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Eduardo Rosales Jubal
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Faculty of Psychology, Diego Portales University, Santiago, Chile
| | - Consuelo Fois
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gautam Pramanik
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Albrecht Stroh
- Focus Program translational Neuroscience & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Geissler DB, Schmidt HS, Ehret G. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice. Front Neurosci 2016; 10:98. [PMID: 27013959 PMCID: PMC4789409 DOI: 10.3389/fnins.2016.00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition.
Collapse
Affiliation(s)
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm Ulm, Germany
| |
Collapse
|
29
|
Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex. J Neurosci 2015; 35:12560-73. [PMID: 26354921 DOI: 10.1523/jneurosci.2240-15.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major challenge for sensory processing in the brain is considering stimulus context, such as stimulus probability, which may be relevant for survival. Excitatory neurons in auditory cortex, for example, adapt to repetitive tones in a stimulus-specific manner without fully generalizing to a low-probability deviant tone ("oddball") that breaks the preceding regularity. Whether such stimulus-specific adaptation (SSA) also prevails in inhibitory neurons and how it might relate to deviance detection remains elusive. We obtained whole-cell recordings from excitatory neurons and somatostatin- and parvalbumin-positive GABAergic interneurons in layer 2/3 of mouse auditory cortex and measured tone-evoked membrane potential responses. All cell types displayed SSA of fast ("early") subthreshold and suprathreshold responses with oddball tones of a deviant frequency eliciting enlarged responses compared with adapted standards. SSA was especially strong when oddball frequency matched neuronal preference. In addition, we identified a slower "late" response component (200-400 ms after tone onset), most clearly in excitatory and parvalbumin-positive neurons, which also displayed SSA. For excitatory neurons, this late component reflected genuine deviance detection. Moreover, intracellular blockade of NMDA receptors reduced early and late responses in excitatory but not parvalbumin-positive neurons. The late component in excitatory neurons thus shares time course, deviance detection, and pharmacological features with the deviant-evoked event-related potential known as mismatch negativity (MMN) and provides a potential link between neuronal SSA and MMN. In summary, our results suggest a two-phase cortical activation upon oddball stimulation, with oddball tones first reactivating the adapted auditory cortex circuitry and subsequently triggering delayed reverberating network activity. Significance statement: Understanding how the brain encodes sensory context in addition to stimulus feature has been a main focus in neuroscience. Using in vivo targeted whole-cell recordings from excitatory and inhibitory neurons of mouse primary auditory cortex, we report two temporally distinct components of membrane potential responses encoding oddball tones that break stimulus regularity. Both components display stimulus-specific adaptation upon oddball paradigm stimulation in the three recorded cell types. The late response component, in particular, carries signatures of genuine deviance detection. In excitatory but not parvalbumin-positive inhibitory neurons, both early and late components depend on NMDA receptor-signaling. Our work proposes a potential neuronal substrate of a known deviant-evoked event-related potential, which is of fundamental significance in basic and clinical neuroscience.
Collapse
|
30
|
Busche MA, Kekuš M, Adelsberger H, Noda T, Förstl H, Nelken I, Konnerth A. Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nat Neurosci 2015; 18:1623-30. [DOI: 10.1038/nn.4137] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/09/2015] [Indexed: 02/05/2023]
|
31
|
Guo Q, Zhou J, Feng Q, Lin R, Gong H, Luo Q, Zeng S, Luo M, Fu L. Multi-channel fiber photometry for population neuronal activity recording. BIOMEDICAL OPTICS EXPRESS 2015; 6:3919-31. [PMID: 26504642 PMCID: PMC4605051 DOI: 10.1364/boe.6.003919] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 05/05/2023]
Abstract
Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.
Collapse
Affiliation(s)
- Qingchun Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Jingfeng Zhou
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100081, China
- National Institute of Biological Sciences, Beijing 102206, China
- These authors contributed equally to this work
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
32
|
Miyamoto D, Murayama M. The fiber-optic imaging and manipulation of neural activity during animal behavior. Neurosci Res 2015; 103:1-9. [PMID: 26427958 DOI: 10.1016/j.neures.2015.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Behavioral Neurophysiology Laboratory, Brain Science Institute, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanori Murayama
- Behavioral Neurophysiology Laboratory, Brain Science Institute, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
33
|
Hirai Y, Nishino E, Ohmori H. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo. J Neurophysiol 2015; 113:3930-42. [PMID: 25761950 DOI: 10.1152/jn.00005.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022] Open
Abstract
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices.
Collapse
Affiliation(s)
- Yasuharu Hirai
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Eri Nishino
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and
| | - Harunori Ohmori
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and
| |
Collapse
|
34
|
Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CPJ, Oberlaender M. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex. Cereb Cortex 2015; 25:4450-68. [PMID: 25838038 PMCID: PMC4816792 DOI: 10.1093/cercor/bhv053] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli.
Collapse
Affiliation(s)
- Rajeevan T Narayanan
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Robert Egger
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany Graduate School of Neural Information Processing, University of Tuebingen, Tuebingen, Germany
| | - Andrew S Johnson
- Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Bert Sakmann
- Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Marcel Oberlaender
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter , FL 33458, USA Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
35
|
Grienberger C, Chen X, Konnerth A. Dendritic function in vivo. Trends Neurosci 2014; 38:45-54. [PMID: 25432423 DOI: 10.1016/j.tins.2014.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Dendrites are the predominant entry site for excitatory synaptic potentials in most types of central neurons. There is increasing evidence that dendrites are not just passive transmitting devices but play active roles in synaptic integration through linear and non-linear mechanisms. Frequently, excitatory synapses are formed on dendritic spines. In addition to relaying incoming electrical signals, spines can play important roles in modifying these signals through complex biochemical processes and, thereby, determine learning and memory formation. Here, we review recent advances in our understanding of the function of spines and dendrites in central mammalian neurons in vivo by focusing particularly on insights obtained from Ca(2+) imaging studies.
Collapse
Affiliation(s)
- Christine Grienberger
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Xiaowei Chen
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Brain Research Center, Third Military Medical University, Chongqing, China
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany.
| |
Collapse
|
36
|
Wu J, Abdelfattah AS, Miraucourt LS, Kutsarova E, Ruangkittisakul A, Zhou H, Ballanyi K, Wicks G, Drobizhev M, Rebane A, Ruthazer ES, Campbell RE. A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. Nat Commun 2014; 5:5262. [PMID: 25358432 PMCID: PMC4920544 DOI: 10.1038/ncomms6262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/12/2014] [Indexed: 11/09/2022] Open
Abstract
The introduction of calcium ion (Ca(2+)) indicators based on red fluorescent proteins (RFPs) has created new opportunities for multicolour visualization of intracellular Ca(2+) dynamics. However, one drawback of these indicators is that they have optimal two-photon excitation outside the near-infrared window (650-1,000 nm) where tissue is most transparent to light. To address this shortcoming, we developed a long Stokes shift RFP-based Ca(2+) indicator, REX-GECO1, with optimal two-photon excitation at <1,000 nm. REX-GECO1 fluoresces at 585 nm when excited at 480 nm or 910 nm by a one- or two-photon process, respectively. We demonstrate that REX-GECO1 can be used as either a ratiometric or intensiometric Ca(2+) indicator in organotypic hippocampal slice cultures (one- and two-photon) and the visual system of albino tadpoles (two-photon). Furthermore, we demonstrate single excitation wavelength two-colour Ca(2+) and glutamate imaging in organotypic cultures.
Collapse
Affiliation(s)
- Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ahmed S Abdelfattah
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Loïs S Miraucourt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Neuroengineering Program, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Elena Kutsarova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Neuroengineering Program, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | - Hang Zhou
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Geoffrey Wicks
- Department of Physics, Montana State University, Bozeman, Montana 59717, USA
| | - Mikhail Drobizhev
- Department of Physics, Montana State University, Bozeman, Montana 59717, USA
| | - Aleksander Rebane
- 1] Department of Physics, Montana State University, Bozeman, Montana 59717, USA [2] National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 12618
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Neuroengineering Program, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
37
|
Saldeitis K, Happel MF, Ohl FW, Scheich H, Budinger E. Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. J Comp Neurol 2014; 522:2397-430. [DOI: 10.1002/cne.23540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Katja Saldeitis
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
| | - Max F.K. Happel
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
| | - Frank W. Ohl
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Henning Scheich
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Eike Budinger
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Clinic of Neurology; Otto-von-Guericke-University Magdeburg; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| |
Collapse
|
38
|
Nishimura M, Song WJ. Greenwood frequency–position relationship in the primary auditory cortex in guinea pigs. Neuroimage 2014; 89:181-91. [DOI: 10.1016/j.neuroimage.2013.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022] Open
|
39
|
Calcium imaging of infrared-stimulated activity in rodent brain. Cell Calcium 2014; 55:183-90. [PMID: 24674600 DOI: 10.1016/j.ceca.2014.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/20/2022]
Abstract
Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain.
Collapse
|
40
|
Bee MA. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 2014; 95:216-37. [PMID: 24424243 DOI: 10.1016/j.ijpsycho.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 01/01/2014] [Indexed: 01/18/2023]
Abstract
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding "choruses". Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
41
|
Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates. Proc Natl Acad Sci U S A 2013; 111:463-8. [PMID: 24344287 DOI: 10.1073/pnas.1321612111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.
Collapse
|
42
|
Doronina-Amitonova LV, Fedotov IV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice. Sci Rep 2013; 3:3265. [PMID: 24253232 PMCID: PMC3835161 DOI: 10.1038/srep03265] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022] Open
Abstract
Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.
Collapse
Affiliation(s)
- L V Doronina-Amitonova
- 1] International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia [2] Kurchatov Institute National Research Center, Moscow, Russia [3] Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region, 1430125 Russia
| | | | | | | | | | | | | |
Collapse
|
43
|
Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 2013; 16:1426-35. [PMID: 23974708 DOI: 10.1038/nn.3499] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.
Collapse
Affiliation(s)
- Majid H Mohajerani
- 1] Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada. [2] Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. [3] [4]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reactivation of the same synapses during spontaneous up states and sensory stimuli. Cell Rep 2013; 4:31-9. [PMID: 23810558 DOI: 10.1016/j.celrep.2013.05.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/10/2013] [Accepted: 05/28/2013] [Indexed: 01/17/2023] Open
Abstract
In the mammalian brain, calcium signals in dendritic spines are involved in many neuronal functions, particularly in the induction of synaptic plasticity. Recent studies have identified sensory stimulation-evoked spine calcium signals in cortical neurons in vivo. However, spine signaling during ongoing cortical activity in the absence of sensory input, which is essential for important functions like memory consolidation, is not well understood. Here, by using in vivo two-photon imaging of auditory cortical neurons, we demonstrate that subthreshold, NMDA-receptor-dependent spine calcium signals are abundant during up states, but almost absent during down states. In each neuron, about 500 nonclustered spines, which are widely dispersed throughout the dendritic field, are on average active during an up state. The same subset of spines is reliably active during both sensory stimulation and up states. Thus, spontaneously recurring up states evoke in these spines "patterned" calcium activity that may control consolidation of synaptic strength following epochs of sensory stimulation.
Collapse
|
45
|
Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 2013; 77:1136-50. [PMID: 23522048 DOI: 10.1016/j.neuron.2013.01.031] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.
Collapse
Affiliation(s)
- Albrecht Stroh
- Institute of Neuroscience, Technical University Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
SCHEMANN MICHAEL, CAMILLERI MICHAEL. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013; 144:698-704.e4. [PMID: 23354018 PMCID: PMC3922647 DOI: 10.1053/j.gastro.2013.01.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/05/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022]
Abstract
Close association between nerves and mast cells in the gut wall provides the microanatomic basis for functional interactions between these elements, supporting the hypothesis that a mast cell-nerve axis influences gut functions in health and disease. Advanced morphology and imaging techniques are now available to assess structural and functional relationships of the mast cell-nerve axis in human gut tissues. Morphologic techniques including co-labeling of mast cells and nerves serve to evaluate changes in their densities and anatomic proximity. Calcium (Ca(++)) and potentiometric dye imaging provide novel insights into functions such as mast cell-nerve signaling in the human gut tissues. Such imaging promises to reveal new ionic or molecular targets to normalize nerve sensitization induced by mast cell hyperactivity or mast cell sensitization by neurogenic inflammatory pathways. These targets include proteinase-activated receptor (PAR) 1 or histamine receptors. In patients, optical imaging in the gut in vivo has the potential to identify neural structures and inflammation in vivo. The latter has some risks and potential of sampling error with a single biopsy. Techniques that image nerve fibers in the retina without the need for contrast agents (optical coherence tomography and full-field optical coherence microscopy) may be applied to study submucous neural plexus. Moreover, the combination of submucosal dissection, use of a fluorescent marker, and endoscopic confocal microscopy provides detailed imaging of myenteric neurons and smooth muscle cells in the muscularis propria. Studies of motility and functional gastrointestinal disorders would be feasible without the need for full-thickness biopsy.
Collapse
Affiliation(s)
- MICHAEL SCHEMANN
- Human Biology, Technische Universität
München, Freising, Germany
| | - MICHAEL CAMILLERI
- Clinical Enteric Neuroscience Translational and
Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Chandrasekaran L, Xiao Y, Sivaramakrishnan S. Functional architecture of the inferior colliculus revealed with voltage-sensitive dyes. Front Neural Circuits 2013; 7:41. [PMID: 23518906 PMCID: PMC3602642 DOI: 10.3389/fncir.2013.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/28/2013] [Indexed: 11/22/2022] Open
Abstract
We used optical imaging with voltage-sensitive dyes to investigate the spatio-temporal dynamics of synaptically evoked activity in brain slices of the inferior colliculus (IC). Responses in transverse slices which preserve cross-frequency connections and in modified sagittal slices that preserve connections within frequency laminae were evoked by activating the lateral lemniscal tract. Comparing activity between small and large populations of cells revealed response areas in the central nucleus of the IC that were similar in magnitude but graded temporally. In transverse sections, these response areas are summed to generate a topographic response profile. Activity through the commissure to the contralateral IC required an excitation threshold that was reached when GABAergic inhibition was blocked. Within laminae, module interaction created temporal homeostasis. Diffuse activity evoked by a single lemniscal shock re-organized into distinct spatial and temporal compartments when stimulus trains were used, and generated a directional activity profile within the lamina. Using different stimulus patterns to activate subsets of microcircuits in the central nucleus of the IC, we found that localized responses evoked by low-frequency stimulus trains spread extensively when train frequency was increased, suggesting recruitment of silent microcircuits. Long stimulus trains activated a circuit specific to post-inhibitory rebound neurons. Rebound microcircuits were defined by a focal point of initiation that spread to an annular ring that oscillated between inhibition and excitation. We propose that much of the computing power of the IC is derived from local circuits, some of which are cell-type specific. These circuits organize activity within and across frequency laminae, and are critical in determining the stimulus-selectivity of auditory coding.
Collapse
Affiliation(s)
- Lakshmi Chandrasekaran
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | | | | |
Collapse
|
48
|
Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J Neurosci 2012; 32:9159-72. [PMID: 22764225 DOI: 10.1523/jneurosci.0065-12.2012] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Topographically organized maps of the sensory receptor epithelia are regarded as cornerstones of cortical organization as well as valuable readouts of diverse biological processes ranging from evolution to neural plasticity. However, maps are most often derived from multiunit activity recorded in the thalamic input layers of anesthetized animals using near-threshold stimuli. Less distinct topography has been described by studies that deviated from the formula above, which brings into question the generality of the principle. Here, we explicitly compared the strength of tonotopic organization at various depths within core and belt regions of the auditory cortex using electrophysiological measurements ranging from single units to delta-band local field potentials (LFP) in the awake and anesthetized mouse. Unit recordings in the middle cortical layers revealed a precise tonotopic organization in core, but not belt, regions of auditory cortex that was similarly robust in awake and anesthetized conditions. In core fields, tonotopy was degraded outside the middle layers or when LFP signals were substituted for unit activity, due to an increasing proportion of recording sites with irregular tuning for pure tones. However, restricting our analysis to clearly defined receptive fields revealed an equivalent tonotopic organization in all layers of the cortical column and for LFP activity ranging from gamma to theta bands. Thus, core fields represent a transition between topographically organized simple receptive field arrangements that extend throughout all layers of the cortical column and the emergence of nontonotopic representations outside the input layers that are further elaborated in the belt fields.
Collapse
|
49
|
Palmer L, Murayama M, Larkum M. Inhibitory Regulation of Dendritic Activity in vivo. Front Neural Circuits 2012; 6:26. [PMID: 22654734 PMCID: PMC3360463 DOI: 10.3389/fncir.2012.00026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/20/2012] [Indexed: 12/12/2022] Open
Abstract
The spatiotemporal control of neuronal excitability is fundamental to the inhibitory process. We now have a wealth of information about the active dendritic properties of cortical neurons including axonally generated sodium action potentials as well as local sodium spikelets generated in the dendrites, calcium plateau spikes, and NMDA spikes. All of these events have been shown to be highly modified by the spatiotemporal pattern of nearby inhibitory input which can drastically change the output firing mode of the neuron. This means that particular populations of interneurons embedded in the neocortical microcircuitry can more precisely control pyramidal cell output than has previously been thought. Furthermore, the output of any given neuron tends to feed back onto inhibitory circuits making the resultant network activity further dependent on inhibition. Network activity is therefore ultimately governed by the subcellular microcircuitry of the cortex and it is impossible to ignore the subcompartmentalization of inhibitory influence at the neuronal level in order to understand its effects at the network level. In this article, we summarize the inhibitory circuits that have been shown so far to act on specific dendritic compartments in vivo.
Collapse
Affiliation(s)
- Lucy Palmer
- Institute for Physiology, University of Bern Bern, Switzerland
| | | | | |
Collapse
|
50
|
|