1
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Akkuratov EE, Westin L, Vazquez-Juarez E, de Marothy M, Melnikova AK, Blom H, Lindskog M, Brismar H, Aperia A. Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol Neurobiol 2020; 57:4018-4030. [PMID: 32651756 PMCID: PMC7467916 DOI: 10.1007/s12035-020-01984-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 μM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor–dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.
Collapse
Affiliation(s)
- Evgeny E Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Linda Westin
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Minttu de Marothy
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Leenen FHH, Wang HW, Hamlyn JM. Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium 2019; 86:102151. [PMID: 31954234 DOI: 10.1016/j.ceca.2019.102151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence obtained over the last three decades has revealed a neuroendocrine system in the brain that mediates long term increases in blood pressure. The system involves distinct ion transport pathways including the alpha-2 isoform of the Na,K pump and epithelial sodium channels, as well as critical hormone elements such as angiotensin II, aldosterone, mineralocorticoid receptors and endogenous ouabain. Activation of this system either by circulating or central sodium ions and/or angiotensin II leads to a cascading sequence of events that begins in the hypothalamus and involves the participation of several brain nuclei including the subfornical organ, supraoptic and paraventricular nuclei and the rostral ventral medulla. Key events include heightened aldosterone synthesis and mineralocorticoid receptor activation, upregulation of epithelial sodium channels, augmented synthesis and secretion of endogenous ouabain from hypothalamic magnocellular neurons, and sustained increases in sympathetic outflow. The latter step depends upon increased production of angiotensin II and the primary amplification of angiotensin II type I receptor signaling from the paraventricular nucleus to the rostral ventral lateral medulla. The transmission of sympathetic traffic is secondarily amplified in the periphery by increased short- and long-term potentiation in sympathetic ganglia and by sustained actions of endogenous ouabain in the vascular wall that augment expression of sodium calcium exchange, increase cytosolic Ca2+ and heighten myogenic tone and contractility. Upregulation of this multi-amplifier system participates in forms of hypertension where salt, angiotensin and/or aldosterone are elevated and contributes to adverse outcomes in heart failure.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - John M Hamlyn
- Department of Physiology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
7
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
8
|
Regulation of Neuronal Na +/K +-ATPase by Specific Protein Kinases and Protein Phosphatases. J Neurosci 2019; 39:5440-5451. [PMID: 31085608 DOI: 10.1523/jneurosci.0265-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasmalemma of living cells. Numerous studies in non-neuronal tissues have shown that this transport mechanism is reversibly regulated by phosphorylation/dephosphorylation of the catalytic α subunit and/or associated proteins. In neurons, Na+/K+ transport by NKA is essential for almost all neuronal operations, consuming up to two-thirds of the neuron's energy expenditure. However, little is known about its cellular regulatory mechanisms. Here we have used an electrophysiological approach to monitor NKA transport activity in male rat hippocampal neurons in situ We report that this activity is regulated by a balance between serine/threonine phosphorylation and dephosphorylation. Phosphorylation by the protein kinases PKG and PKC inhibits NKA activity, whereas dephosphorylation by the protein phosphatases PP-1 and PP-2B (calcineurin) reverses this effect. Given that these kinases and phosphatases serve as downstream effectors in key neuronal signaling pathways, they may mediate the coupling of primary messengers, such as neurotransmitters, hormones, and growth factors, to the NKAs, through which multiple brain functions can be regulated or dysregulated.SIGNIFICANCE STATEMENT The Na+/K+-ATPase (NKA), known as the "Na+ pump," is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasma membrane of living cells. In neurons, as in most types of cells, the NKA generates the negative resting membrane potential, which is the basis for almost all aspects of cellular function. Here we used an electrophysiological approach to monitor physiological NKA transport activity in single hippocampal pyramidal cells in situ We have found that neuronal NKA activity is oppositely regulated by phosphorylation and dephosphorylation, and we have identified the main protein kinases and phosphatases mediating this regulation. This fundamental form of NKA regulation likely plays a role in multiple brain functions.
Collapse
|
9
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
10
|
Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca 2+ -activated K + channels and Na + /K + -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018; 28:338-357. [PMID: 29431274 PMCID: PMC5947627 DOI: 10.1002/hipo.22836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
In many types of CNS neurons, repetitive spiking produces a slow afterhyperpolarization (sAHP), providing sustained, intrinsically generated negative feedback to neuronal excitation. Changes in the sAHP have been implicated in learning behaviors, in cognitive decline in aging, and in epileptogenesis. Despite its importance in brain function, the mechanisms generating the sAHP are still controversial. Here we have addressed the roles of M-type K+ current (IM ), Ca2+ -gated K+ currents (ICa(K) 's) and Na+ /K+ -ATPases (NKAs) current to sAHP generation in adult rat CA1 pyramidal cells maintained at near-physiological temperature (35 °C). No evidence for IM contribution to the sAHP was found in these neurons. Both ICa(K) 's and NKA current contributed to sAHP generation, the latter being the predominant generator of the sAHP, particularly when evoked with short trains of spikes. Of the different NKA isoenzymes, α1 -NKA played the key role, endowing the sAHP a steep voltage-dependence. Thus normal and pathological changes in α1 -NKA expression or function may affect cognitive processes by modulating the inhibitory efficacy of the sAHP.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Sandesh Mohan
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoav Biala
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| | - Yoel Yaari
- Department of Medical Neurobiology; Institute for Medical Research Israel‐CanadaThe Hebrew University‐Hadassah School of MedicineJerusalem91120Israel
| |
Collapse
|
11
|
Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C. Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci 2018; 10:451. [PMID: 29386994 PMCID: PMC5776105 DOI: 10.3389/fnmol.2017.00451] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn Medical School, Bonn, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,German Center for Degenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
13
|
Smedemark-Margulies N, Brownstein CA, Vargas S, Tembulkar SK, Towne MC, Shi J, Gonzalez-Cuevas E, Liu KX, Bilguvar K, Kleiman RJ, Han MJ, Torres A, Berry GT, Yu TW, Beggs AH, Agrawal PB, Gonzalez-Heydrich J. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia. Cold Spring Harb Mol Case Stud 2016; 2:a001008. [PMID: 27626066 PMCID: PMC5002930 DOI: 10.1101/mcs.a001008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene.
Collapse
Affiliation(s)
- Niklas Smedemark-Margulies
- Division of Immunology, Harvard Medical School, Boston, Massachusetts 02115, USA;; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Catherine A Brownstein
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sigella Vargas
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sahil K Tembulkar
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Meghan C Towne
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Elisa Gonzalez-Cuevas
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Kevin X Liu
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut 06511, USA
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;; Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Min-Joon Han
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;; Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Alcy Torres
- Division of Pediatric Neurology, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Gerard T Berry
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Timothy W Yu
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph Gonzalez-Heydrich
- Developmental Neuropsychiatry Research Program, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts 02115, USA;; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
15
|
Affiliation(s)
- John M Hamlyn
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| | - Mordecai P Blaustein
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| |
Collapse
|
16
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
17
|
Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis 2016; 20:1200-10. [PMID: 26067145 DOI: 10.1007/s10495-015-1144-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In rodents, ubiquitous α1-Na(+), K(+)-ATPase is inhibited by ouabain and other cardiotonic steroids (CTS) at ~10(3)-fold higher concentrations than those effective in other mammals. To examine the specific roles of the CTS-sensitive α1S- and CTS-resistant α1R-Na(+), K(+)-ATPase isoforms, we compared the effects of ouabain on intracellular Na(+) and K(+) content, cell survival, and mitogen-activated protein kinases (MAPK) in human and rat vascular smooth muscle cells (HASMC and RASMC), human and rat endothelial cells (HUVEC and RAEC), and human and rat brain astrocytes. 6-h exposure of HASMC and HUVEC to 3 μM ouabain dramatically increased the intracellular [Na(+)]/[K(+)] ratio to the same extend as in RASMC and RAEC treated with 3000 μM ouabain. In 24, 3 μM ouabain triggered the death of all types of human cells used in this study. Unlike human cells, we did not detect any effect of 3000-5000 μM ouabain on the survival of rat cells, or smooth muscle cells from mouse aorta (MASMC). Unlike in the wild-type α1(R/R) mouse, ouabain triggered death of MASMC from α1(S/S) mouse expressing human α1-Na(+), K(+)-ATPase. Furthermore, transfection of HUVEC with rat α1R-Na(+), K(+)-ATPase protected them from the ouabain-induced death. In HUVEC, ouabain led to phosphorylation of p38 MAPK, whereas in RAEC it stimulated phosphorylation of ERK1/2. Overall, our results, demonstrate that the drastic differences in cytotoxic action of ouabain on human and rodent cells are caused by unique features of α1S/α1R-Na(+), K(+)-ATPase, rather than by any downstream CTS-sensitive/resistant components of the cell death machinery.
Collapse
|
18
|
Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS Biol 2015; 13:e1002319. [PMID: 26674618 PMCID: PMC4684409 DOI: 10.1371/journal.pbio.1002319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. An experimental and computational study reveals a novel mechanism for persistent activity of neurons in response to transient stimulation. Instead of involving feedback mechanisms, it relies on slow changes in intracellular sodium ion concentration, leading to prolonged calcium-dependent inward current. The accessory olfactory system is essential for chemical communication in animals during social interactions. During this process, the principle cells of the accessory olfactory bulb (AOB) may respond to transient stimulation with prolonged activity, sometimes lasting for minutes—a property known as persistent activity. This property, which has been observed in other brain areas, is usually attributed to positive feedback mechanisms either at the cellular or the network level. Here, we show how persistent activity can emerge without feedback, relying on slow changes in internal ionic concentrations, which keep a record of past neuronal activity for long periods of time. We used a combined computational and experimental approach to show that the complex interaction between various ions, their extrusion mechanisms, and the membrane potential leads to stimulus-dependent persistent activity in the AOB. The same mechanism may apply to other neuronal types in various brain regions.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- * E-mail:
| | - Anat Kahan
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L. Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 2015; 30:317-33. [PMID: 24744118 DOI: 10.1007/s11011-014-9536-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/24/2014] [Indexed: 12/18/2022]
Abstract
Until the demonstration little more than 20 years ago that glycogenolysis occurs during normal whisker stimulation glycogenolysis was regarded as a relatively uninteresting emergency procedure. Since then, a series of important astrocytic functions has been shown to be critically dependent on glycogenolytic activity to support the signaling mechanisms necessary for these functions to operate. This applies to glutamate formation and uptake and to release of ATP as a transmitter, stimulated by other transmitters or elevated K(+) concentrations and affecting not only other astrocytes but also most other brain cells. It is also relevant for astrocytic K(+) uptake both during the period when the extracellular K(+) concentration is still elevated after neuronal excitation, and capable of stimulating glycogenolytic activity, and during the subsequent undershoot after intense neuronal activity, when glycogenolysis may be stimulated by noradrenaline. Both elevated K(+) concentrations and several transmitters, including the β-adrenergic agonist isoproterenol and vasopressin increase free cytosolic Ca(2+) concentration in astrocytes, which stimulates phosphorylase kinase so that it activates the transformation of the inactive glycogen phosphorylase a to the active phosphorylase b. Contrary to common belief cyclic AMP plays at most a facilitatory role, and only when free cytosolic Ca(2+) concentration is also increased. Cyclic AMP is not increased during activation of glycogenolysis by either elevated K(+) concentrations or the stimulation of the serotonergic 5-HT(2B) receptor. Not all agents that stimulate glycogenolysis do so by directly activating phophorylase kinase--some do so by activating processes requiring glycogenolysis, e.g. for synthesis of glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University, No. 92 Beier Road, Heping District, 110001, Shenyang, Peoples' Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Hertz L, Song D, Xu J, Peng L, Gibbs ME. Role of the Astrocytic Na(+), K(+)-ATPase in K(+) Homeostasis in Brain: K(+) Uptake, Signaling Pathways and Substrate Utilization. Neurochem Res 2015; 40:2505-16. [PMID: 25555706 DOI: 10.1007/s11064-014-1505-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
This paper describes the roles of the astrocytic Na(+), K(+)-ATPase for K(+) homeostasis in brain. After neuronal excitation it alone mediates initial cellular re-accumulation of moderately increased extracellular K(+). At higher K(+) concentrations it is assisted by the Na(+), K(+), 2Cl(-) transporter NKCC1, which is Na(+), K(+)-ATPase-dependent, since it is driven by Na(+), K(+)-ATPase-created ion gradients. Besides stimulation by high K(+), NKCC1 is activated by extracellular hypertonicity. Intense excitation is followed by extracellular K(+) undershoot which is decreased by furosemide, an NKCC1 inhibitor. The powerful astrocytic Na(+), K(+)-ATPase accumulates excess extracellular K(+), since it is stimulated by above-normal extracellular K(+) concentrations. Subsequently K(+) is released via Kir4.1 channels (with no concomitant Na(+) transport) for re-uptake by the neuronal Na(+), K(+)-ATPase which is in-sensitive to increased extracellular K(+), but stimulated by intracellular Na(+) increase. Operation of the astrocytic Na(+), K(+)-ATPase depends upon Na(+), K(+)-ATPase/ouabain-mediated signaling and K(+)-stimulated glycogenolysis, needed in these non-excitable cells for passive uptake of extracellular Na(+), co-stimulating the intracellular Na(+)-sensitive site. A gradual, spatially dispersed release of astrocytically accumulated K(+) will therefore not re-activate the astrocytic Na(+), K(+)-ATPase. The extracellular K(+) undershoot is probably due to extracellular hypertonicity, created by a 3:2 ratio between Na(+), K(+)-ATPase-mediated Na(+) efflux and K(+) influx and subsequent NKCC1-mediated volume regulation. The astrocytic Na(+), K(+)-ATPase is also stimulated by β1-adrenergic signaling, which further stimulates hypertonicity-activation of NKCC1. Brain ischemia leads to massive extracellular K(+) increase and Ca(2+) decrease. A requirement of Na(+), K(+)-ATPase signaling for extracellular Ca(2+) makes K(+) uptake (and brain edema) selectively dependent upon β1-adrenergic signaling and inhibitable by its antagonists.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77 Puhe Road, Shenbei District, Shenyang, 110122, People's Republic of China
| | - Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77 Puhe Road, Shenbei District, Shenyang, 110122, People's Republic of China
| | - Junnan Xu
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77 Puhe Road, Shenbei District, Shenyang, 110122, People's Republic of China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77 Puhe Road, Shenbei District, Shenyang, 110122, People's Republic of China.
| | - Marie E Gibbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L. Roles of astrocytic Na+,K+-ATPase and glycogenolysis for K+homeostasis in mammalian brain. J Neurosci Res 2014; 93:1019-30. [DOI: 10.1002/jnr.23499] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/29/2014] [Accepted: 09/22/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang People's Republic of China
| | - Niklas J. Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Junnan Xu
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang People's Republic of China
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Dan Song
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang People's Republic of China
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang People's Republic of China
| |
Collapse
|
22
|
Yan X, Liang F, Li D, Zheng J. Ouabain elicits human glioblastoma cells apoptosis by generating reactive oxygen species in ERK-p66SHC-dependent pathway. Mol Cell Biochem 2014; 398:95-104. [PMID: 25217205 DOI: 10.1007/s11010-014-2208-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/30/2014] [Indexed: 01/26/2023]
Abstract
Excessive reactive oxygen species (ROS) generation has been implicated as one of main agents in ouabain-induced anticancer effect. Unfortunately, the signaling pathways under it are not very clarified. In the present study, we investigated the molecular mechanism involved in ouabain-induced ROS generation and cell apoptosis on human U373MG and U87MG glioma cells. Ouabain-induced glioblastoma cells apoptosis and increased ROS generation. Clearance ROS by three different ROS scavenger partly, but not totally, reversed ouabain's effect on cell apoptosis. Ouabain-induced ROS generation was not regulated by calcium overload, reduced nicotinamide adenine dinucleotide phosphate oxidation, but by p66Shc phosphorylation. Ouabain treatment increased p66Shc Ser36 phosphorylation. Knockdown of p66Shc by siRNA significantly inhibited ROS generations in response to ouabain. Ouabain-induced p66Shc phosphorylation through Src/Ras/extracellular signal-regulated kinase signal pathway. Our results uncovered a novel signaling pathway with p66Shc, ouabain-induced ROS generation, and glioblastoma cell apoptosis.
Collapse
Affiliation(s)
- Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China,
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Mordecai P Blaustein
- Departments of Physiology and Medicine and the Center for Heart, Hypertension and Kidney Disease, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Song H, Karashima E, Hamlyn JM, Blaustein MP. Ouabain-digoxin antagonism in rat arteries and neurones. J Physiol 2013; 592:941-69. [PMID: 24344167 DOI: 10.1113/jphysiol.2013.266866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
'Classic' cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+, K+ -ATPase (the Na+ pump) and, via Na+ / Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The 'classic' CTSs (0.3-10 nm) behaved as 'agonists': all increased MT70 (MT at 70 mmHg) and augmented glutamate-evoked Ca2+ (Fura-2) signals. We then tested one CTS in the presence of another. Most CTSs could be divided into ouabain-like (ouabagenin, dihydroouabain (DHO), strophanthidin) or digoxin-like CTS (digoxigenin, digitoxin, bufalin). Within each group, the CTSs were synergistic, but ouabain-like and digoxin-like CTSs antagonized one another in both assays: For example, the ouabain-evoked (3 nm) increases in MT70 and neuronal Ca2+ signals were both greatly attenuated by the addition of 10 nm digoxin or 10 nm bufalin, and vice versa. Rostafuroxin (PST2238), a digoxigenin derivative that displaces 3H-ouabain from Na+, K+ -ATPase, and attenuates some forms of hypertension, antagonized the effects of ouabain, but not digoxin. SEA0400, a Na+ / Ca2+ exchanger (NCX) blocker, antagonized the effects of both ouabain and digoxin. CTSs bind to the α subunit of pump αβ protomers. Analysis of potential models suggests that, in vivo, Na+ pumps function as tetraprotomers ((αβ)4) in which the binding of a single CTS to one protomer blocks all pumping activity. The paradoxical ability of digoxin-like CTSs to reactivate the ouabain-inhibited complex can be explained by de-oligomerization of the tetrameric state. The interactions between these common CTSs may be of considerable therapeutic relevance.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA. or
| | | | | | | |
Collapse
|
25
|
Alonso E, Cano-Abad MF, Moreno-Ortega AJ, Novalbos J, Milla J, García AG, Ruiz-Nuño A. Nanomolar ouabain elicits apoptosis through a direct action on HeLa cell mitochondria. Steroids 2013; 78:1110-8. [PMID: 23933121 DOI: 10.1016/j.steroids.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022]
Abstract
The steroid Na(+)/K(+) ATPase (NKA) blocker ouabain has been shown to exhibit pro-apoptotic effects in various cell systems; however, the mechanism involved in those effects is unclear. Here, we have demonstrated that incubation of HeLa cells during 24h with nanomolar concentrations of ouabain or digoxin causes apoptotic death of 30-50% of the cells. Ouabain caused the activation of caspases-3/7 and -9; however, caspase-8 was unaffected. The fact that compound Z-LEHD-FMK reduced both apoptosis and caspase-9 activation elicited by ouabain, suggest a mitochondrially-mediated pathway. This was strengthened by the fact that ouabain caused ATP depletion and the release of mitochondrial cytochrome c into the cytosol. Furthermore, upon ouabain treatment mitochondrial disruption and redistribution into the cytosol were observed. A mitochondrial site of action for ouabain was further corroborated by tight co-localisation of fluorescent ouabain with mitochondria. Finally, in ouabain-treated cells the histamine-elicited elevation of cytosolic Ca(2+) concentration ([Ca(2+)]c) suggests an additional effect on the endoplasmic reticulum (ER) leading to Ca(2+) store depletion. We conclude that fluorescent ouabain is taken up and tightly co-localises with mitochondria of HeLa cells. This indicates that apoptosis may be triggered by a direct action of ouabain on mitochondria.
Collapse
Affiliation(s)
- Elba Alonso
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Corrigenda. J Physiol 2013. [DOI: 10.1113/jphysiol.2013.263285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|