1
|
Covello C, Becherucci G, Di Vincenzo F, Del Gaudio A, Pizzoferrato M, Cammarota G, Gasbarrini A, Scaldaferri F, Mentella MC. Parenteral Nutrition, Inflammatory Bowel Disease, and Gut Barrier: An Intricate Plot. Nutrients 2024; 16:2288. [PMID: 39064731 PMCID: PMC11279609 DOI: 10.3390/nu16142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Malnutrition poses a critical challenge in inflammatory bowel disease, with the potential to detrimentally impact medical treatment, surgical outcomes, and general well-being. Parenteral nutrition is crucial in certain clinical scenarios, such as with patients suffering from short bowel syndrome, intestinal insufficiency, high-yielding gastrointestinal fistula, or complete small bowel obstruction, to effectively manage malnutrition. Nevertheless, research over the years has attempted to define the potential effects of parenteral nutrition on the intestinal barrier and the composition of the gut microbiota. In this narrative review, we have gathered and analyzed findings from both preclinical and clinical studies on this topic. Based on existing evidence, there is a clear correlation between short- and long-term parenteral nutrition and negative effects on the intestinal system. These include mucosal atrophic damage and immunological and neuroendocrine dysregulation, as well as alterations in gut barrier permeability and microbiota composition. However, the mechanistic role of these changes in inflammatory bowel disease remains unclear. Therefore, further research is necessary to effectively address the numerous gaps and unanswered questions pertaining to these issues.
Collapse
Affiliation(s)
- Carlo Covello
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Guia Becherucci
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
| | - Federica Di Vincenzo
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Angelo Del Gaudio
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Chiara Mentella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
3
|
Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care 2024; 28:179. [PMID: 38802959 PMCID: PMC11131229 DOI: 10.1186/s13054-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Yan J, Zhao Y, Jiang L, Wang Y, Cai W. Multi-Omics Unravels Metabolic Alterations in the Ileal Mucosa of Neonatal Piglets Receiving Total Parenteral Nutrition. Metabolites 2023; 13:metabo13040555. [PMID: 37110213 PMCID: PMC10144288 DOI: 10.3390/metabo13040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Total parenteral nutrition (TPN) is life-saving therapy for the pediatric patients with intestinal failure (IF) who cannot tolerate enteral nutrition (EN). However, TPN-induced metabolic alterations are also a critical issue for the maintenance of intestinal homeostasis, and thus the global metabolomic signatures need to be addressed. In this study, ileal mucosal biopsies were collected from 12 neonatal Bama piglets receiving either EN or TPN for 14 days, and changes in the intestinal metabolism were examined by multi-omics (HM350 Metabolomics + Tandem Mass Tag (TMT)-based proteomics). As a result, a total of 240 compounds were identified by metabolomics, including 56 down-regulated and 9 up-regulated metabolites. Notably, tissue levels of fatty acyl-carnitines (decreased by 35-85%) and succinate (decreased by 89%) dramatically decreased in the TPN group, suggestive of disrupted processes of fatty acid oxidation (FAO) and the citrate cycle, respectively. Interestingly, however, no differences were found in the production of adenosine 5'-triphosphate (ATP) between groups, suggesting that these dysregulated metabolites may have mainly led to the loss of bioactive compounds rather than energy deficit. Additionally, 4813 proteins were identified by proteomics in total, including 179 down-regulated and 329 up-regulated proteins. The analysis of protein-protein interactions (PPI) indicated that most of the differentially expressed proteins were clustered into "lipid metabolism" and "innate immune responses". In summary, this work provided new findings in TPN-induced intestinal metabolic alterations, which would be useful to the improvement of nutritional management for IF patients.
Collapse
Affiliation(s)
- Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lu Jiang
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
5
|
Saha K, Subramenium Ganapathy A, Wang A, Michael Morris N, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. Autophagy Reduces the Degradation and Promotes Membrane Localization of Occludin to Enhance the Intestinal Epithelial Tight Junction Barrier against Paracellular Macromolecule Flux. J Crohns Colitis 2023; 17:433-449. [PMID: 36219473 PMCID: PMC10069622 DOI: 10.1093/ecco-jcc/jjac148] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashwinkumar Subramenium Ganapathy
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Kovanda L, Park J, Park S, Kim K, Li X, Liu Y. Dietary butyrate and valerate glycerides impact diarrhea severity and immune response of weaned piglets under ETEC F4-ETEC F18 coinfection conditions. J Anim Sci 2023; 101:skad401. [PMID: 38044688 PMCID: PMC10721436 DOI: 10.1093/jas/skad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5 × 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (P = 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (P < 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (P = 0.061) to have lower neutrophils and had significantly (P < 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Jungjae Park
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Kakni P, Truckenmüller R, Habibović P, van Griensven M, Giselbrecht S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int J Mol Sci 2022; 23:15364. [PMID: 36499691 PMCID: PMC9736416 DOI: 10.3390/ijms232315364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Lima MSR, de Lima VCO, Piuvezam G, de Azevedo KPM, Maciel BLL, Morais AHDA. Mechanisms of action of anti-inflammatory proteins and peptides with anti-TNF-alpha activity and their effects on the intestinal barrier: A systematic review. PLoS One 2022; 17:e0270749. [PMID: 35939430 PMCID: PMC9359527 DOI: 10.1371/journal.pone.0270749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Several studies in animal models of intestinal inflammation have been performed with the aim of understanding the mechanisms of action of anti-inflammatory proteins and peptides that reduce TNF-α. In order to present the best targets, effects and strategies for the treatment of intestinal inflammation in experimental models, this systematic review (SR) aimed to answer the following question: what are the mechanisms of action of molecules with anti-TNF-α activity on the intestinal barrier? The SR protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO, number CRD42019131862) and guided by the methodological procedures used for the elaboration of the SR. Articles that were part of the SR were selected considering the eligibility criteria according to the PICO (Population, Intervention, Comparison/Control and Outcomes) and were searched in the PubMed, Scopus, Web of Science, Excerpta Medica Database (EMBASE) and ScienceDirect databases. Twenty-five articles reporting studies in rats and mice were selected and the risk of bias was assessed using the tool from the SYstematic Review Center for Laboratory Animal Experimentation (SYRCLE). A descriptive synthesis of the results obtained was carried out. Based on the results, the anti-inflammatory molecules that reduced TNF-α acted mainly on the TNF-TNFR1/TNFR2 and TLR4/MD2 complex signaling pathways, and consequently on the NF-κB pathway. This improved the aspects of the inflammatory diseases studied. In addition, these mechanisms also improved the macroscopic, histological and permeability aspects in the intestine of the animals. These findings point to the potential of protein and peptide molecules that act on inflammatory pathways for medical applications with specific and promising strategic targets, aiming to improve inflammatory diseases that affect the intestine. This systematic review also highlights the need for more details during the methodological description of preclinical studies, since this was a limitation found.
Collapse
Affiliation(s)
- Mayara Santa Rosa Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vanessa Cristina Oliveira de Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Public Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Kesley Pablo Morais de Azevedo
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
9
|
The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:nu14050949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
|
10
|
Jiang L, Wang Y, Xiao Y, Wang Y, Yan J, Schnabl B, Cai W. Role of the Gut Microbiota in Parenteral Nutrition-Associated Liver Disease: From Current Knowledge to Future Opportunities. J Nutr 2022; 152:377-385. [PMID: 34734271 DOI: 10.1093/jn/nxab380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral nutrition-associated liver disease (PNALD) refers to a spectrum of conditions that can develop cholestasis, steatosis, fibrosis, and cirrhosis in the setting of parenteral nutrition (PN) use. Patient risk factors include short bowel syndrome, bacterial overgrowth and translocation, disturbance of hepatobiliary circulation, and lack of enteral feeding. A growing body of evidence suggests an intricate linkage between the gut microbiota and the pathogenesis of PNALD. In this review, we highlight current knowledge on the taxonomic and functional changes in the gut microbiota that might serve as noninvasive biomarkers. We also discuss the function of microbial metabolites and associated signaling pathways in the pathogenesis of PNALD. By providing the perspectives of microbiota-host interactions in PNALD for basic and translational research and summarizing current limitations of microbiota-based approaches, this review paves the path for developing novel and precise microbiota-based therapies in PNALD.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
12
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
14
|
Green CH, Busch RA, Patel JJ. Fiber in the ICU: Should it Be a Regular Part of Feeding? Curr Gastroenterol Rep 2021; 23:14. [PMID: 34338900 DOI: 10.1007/s11894-021-00814-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To highlight the controversy of fiber use in the current critical care nutrition guidelines; review the effect of fiber on the gut microbiota in the critically ill; and examine the data on fiber and outcomes in the intensive care setting. RECENT FINDINGS Fiber is increasingly recognized as a necessary component of colonic health and nutrition support. In critical illness there is a shift toward gut dysbiosis and immune dysregulation. Through fermentation and the generation of short-chain fatty acids, fiber has a role in maintaining intestinal homeostasis, immune function, and supporting commensal bacteria. In contrast to fermentable fiber, recent animal models suggest that non-fermentable fiber can also favorably alter intestinal homeostasis in a mechanism distinct from short chain fatty acids. In the critically ill, RCTs and meta-analyses suggest that soluble and mixed fiber supplemented enteral nutrition can reduce diarrhea and is well tolerated. Based on limited data, there may be benefits in reducing length of hospital stay, certain infections, and glucose metabolism. Nonetheless, the role of fiber enriched nutrition in critically ill patients is controversial as evident in the conflicting guidelines. Despite shortcomings in the literature, soluble and mixed fiber supplemented enteral nutrition is safe and beneficial in most hemodynamically stable intensive care patients. More research is necessary to determine optimal fiber composition.
Collapse
Affiliation(s)
- Caitlin H Green
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Rebecca A Busch
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jayshil J Patel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Zhang Z, Zhang Q, Li F, Xin Y, Duan Z. Contributions of HO-1-Dependent MAPK to Regulating Intestinal Barrier Disruption. Biomol Ther (Seoul) 2021; 29:175-183. [PMID: 33093265 PMCID: PMC7921856 DOI: 10.4062/biomolther.2020.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.
Collapse
Affiliation(s)
- Zhenling Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Qiuping Zhang
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian 116044, China
| | - Yi Xin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Zhijun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| |
Collapse
|
16
|
Kunimura K, Miki S, Takashima M, Suzuki JI. S-1-propenylcysteine improves TNF-α-induced vascular endothelial barrier dysfunction by suppressing the GEF-H1/RhoA/Rac pathway. Cell Commun Signal 2021; 19:17. [PMID: 33588881 PMCID: PMC7883441 DOI: 10.1186/s12964-020-00692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vascular endothelial barrier function is maintained by cell-to-cell junctional proteins and contributes to vascular homeostasis. Various risk factors such as inflammation disrupt barrier function through down-regulation of these proteins and promote vascular diseases such as atherosclerosis. Previous studies have demonstrated that aged garlic extract (AGE) and its sulfur-containing constituents exert the protective effects against several vascular diseases such as atherosclerosis. In this study, we examined whether AGE and its sulfur-containing constituents improve the endothelial barrier dysfunction elicited by a pro-inflammatory cytokine, Tumor-necrosis factor-α (TNF-α), and explored their mode of action on TNF-α signaling pathway. Methods Human umbilical vein endothelial cells (HUVECs) were treated with test substances in the presence of TNF-α for various time periods. The endothelial permeability was measured by using a transwell permeability assay. The localization of cell-to-cell junctional proteins and actin cytoskeletons were visualized by immunostaining. RhoA and Rac activities were assessed by using GTP-binding protein pulldown assay. Gene and protein expression levels of signaling molecules were analyzed by real-time PCR and western blotting, respectively. Results We found that AGE and its major sulfur-containing constituent, S-1-propenylcysteine (S1PC), reduced hyperpermeability elicited by TNF-α in HUVECs. In addition, S1PC inhibited TNF-α-induced production of myosin light chain (MLC) kinase and inactivation of MLC phosphatase through the suppression of the Rac and RhoA signaling pathways, respectively, which resulted in the dephosphorylation of MLC2, a key factor of actin remodeling. Moreover, S1PC inhibited the phosphorylation and activation of guanine nucleotide exchange factor-H1 (GEF-H1), a common upstream key molecule and activator of Rac and RhoA. These effects of S1PC were accompanied by its ability to prevent the disruption of junctional proteins on the cell–cell contact regions and the increase of actin stress fibers induced by TNF-α. Conclusions The present study suggested that AGE and its major constituent, S1PC, improve endothelial barrier disruption through the protection of junctional proteins on plasma membrane.![]() Video abstract
Collapse
Affiliation(s)
- Kayo Kunimura
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Satomi Miki
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Miyuki Takashima
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Laboratory, Wakunaga Pharmaceutical Co., Ltd., 624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan.
| |
Collapse
|
17
|
Comparison of the Protective Effect of Different Mild Therapeutic Hypothermia Temperatures on Intestinal Injury After Cardiopulmonary Resuscitation in Rats. Shock 2021; 56:450-460. [PMID: 33555844 DOI: 10.1097/shk.0000000000001745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic temperature management (TTM) is the standard treatment protocol for unconscious post-resuscitation patients. However, there is still controversy about the ideal targeted temperature of mild hypothermia therapy. Additionally, studies about protective therapy for post-resuscitation intestinal injury are very limited. Therefore, this study was performed to explore: whether mild hypothermia therapy can exert a protective effect on post-resuscitation intestinal injury; the protective effect of different targeted temperatures on post-resuscitation intestinal injury and the ideal targeted temperature; the potential protective mechanism of mild hypothermia therapy for post-resuscitation intestinal injury. METHODS Ventricular fibrillation was electrically induced and untreated for 6 min while defibrillation was attempted after 8 min of cardiopulmonary resuscitation in 15 rats. After successful resuscitation, animals were randomized into three groups: control; TTM-35; TTM-33. In animals of the control group, temperature was maintained at 37 ± 0.2°C for 6 h. In animals of the two TTM groups, temperature was maintained at 33 ± 0.2°C or 35 ± 0.2°C for 6 h, respectively. During mild hypothermia therapy, intestinal microcirculation was measured at 60, 240, and 360 min after resuscitation. Animals were euthanized 6.5 h after resuscitation. The morphological changes in the intestinal tissue, systemic and local inflammatory factors, and intestinal injury markers were measured and analyzed. The tight junction proteins in the intestinal epithelium, cell-cell contact protein E-cadherin expression, myosin light chain (MLC) and myosin light chain kinase levels, and the NF-κB p65 signaling pathway were analyzed by western blotting. RESULTS Compared with results in the control group, mild hypothermia therapy (TTM-33 and TTM-35 groups) significantly improved post-resuscitation intestinal microcirculation and pathological scores, decreased systemic and local intestinal tissue inflammatory factor levels, inhibited the NF-κB signaling pathway and downstream MLC phosphorylation, and significantly decreased MLC phosphorylation-associated loss of intestinal tight junction proteins and E-cadherin (P < 0.05). A 33°C target temperature could exert more protective effects than 35°C on post-resuscitation intestinal injury, such as improving intestinal microcirculation, decreasing intestinal ischemia factor iFABP, and plasma endotoxin levels, inhibiting the NF-κB signaling pathway and downstream MLC phosphorylation, and suppressing the loss of intestinal tight junctions and E-cadherin (P < 0.05). CONCLUSIONS Mild hypothermia therapy can improve post-resuscitation intestinal injury, and a targeted temperature of 33°C may confer more benefit for mitigation of intestinal injury as compared with a targeted temperature of 35°C.
Collapse
|
18
|
Association between disease-related malnutrition and innate immunity gene expression in critically ill patients at intensive care unit admission. Cent Eur J Immunol 2021; 45:414-424. [PMID: 33658890 PMCID: PMC7882404 DOI: 10.5114/ceji.2020.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to analyse the relationship between nutritional disorders and the expression of innate antibacterial response genes in patients admitted to the intensive care unit (ICU). In 46 patients with severe malnutrition and life-threatening surgical complications, nutritional status tests were performed on the basis of the NRS 2002 (Nutritional Risk Screening) scale, cytokine, albumin, C-reactive protein concentrations, anthropometric tests, and body composition analysis. Concurrently, the expression of Toll-like receptor 2, NOD1, TRAF6, and HMGB1 genes was determined in peripheral blood leukocytes at the mRNA level using real-time polymerase chain reaction. It was found that both the nutritional status and the gene expression changed depending on the group of patients studied (including the group of survivors vs. non-survivors). Significant correlations were found between the results of routine tests used in the diagnostics of malnutrition (including NRS 2002, resistance, reactance, phase angle, excess of extracellular water) and the expression of the studied genes. Moreover, the expression of TRAF6 and HMGB1 genes correlated with the Acute Physiology and Chronic Health Evaluation II scale and the age of the patients. The results of the research suggest that the expression of innate antibacterial response genes may be a new diagnostic tool complementing the assessment of nutritional disorders in surgical patients admitted to the ICU. These tests may be helpful in providing more accurate diagnostics of the genetic effects of malnutrition and in the monitoring of patients for whom nutritional treatment is planned to support the functions of the immune system, thereby increasing the effectiveness of this type of treatment in the ICU.
Collapse
|
19
|
Hoffsten A, Markasz L, Lilja HE, Olsson KW, Sindelar R. Early Postnatal Comprehensive Biomarkers Cannot Identify Extremely Preterm Infants at Risk of Developing Necrotizing Enterocolitis. Front Pediatr 2021; 9:755437. [PMID: 34746064 PMCID: PMC8570110 DOI: 10.3389/fped.2021.755437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a fatal disease where current diagnostic tools are insufficient for preventing NEC. Early predictive biomarkers could be beneficial in identifying infants at high risk of developing NEC. Objective: To explore early biomarkers for predicting NEC in extremely preterm infants (EPIs). Methods: Blood samples were collected on day 2 (median 1.7; range 1.5-2.0) from 40 EPI (median 25 gestational weeks; range 22-27): 11 developed NEC and 29 did not (controls). In each infant, 189 inflammatory, oncological, and vascular proteomic biomarkers were quantified through Proximity Extension Assay. Biomarker expression and clinical data were compared between the NEC group and Controls. Based on biomarker differences, controls were sorted automatically into three subgroups (1, 2, and 3) by a two-dimensional hierarchical clustering analysis. Results: None of the biomarkers differed in expression between all controls and the NEC group. Two biomarkers were higher in Control 1, and 16 biomarkers were lower in Control group 2 compared with the NEC group. No biomarker distinguished Control 3 from the NEC group. Perinatal data were similar in the whole population. Conclusions: Early postnatal comprehensive biomarkers do not identify EPIs at risk of developing NEC in our study. Future studies of predictors of NEC should include sequential analysis of comprehensive proteomic markers in large cohorts.
Collapse
Affiliation(s)
- Alice Hoffsten
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| | - Helene Engstrand Lilja
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Section of Pediatric Surgery, University Children's Hospital, Uppsala, Sweden
| | - Karl Wilhelm Olsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| |
Collapse
|
20
|
Anti-TNF-α Therapy Exerts Intestinal Anti-inflammatory and Anti-apoptotic Effects After Massive Bowel Resection in a Rat. J Pediatr Gastroenterol Nutr 2021; 72:49-55. [PMID: 32740515 DOI: 10.1097/mpg.0000000000002876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of massive small bowel resection on proinflammatory cytokine intestinal expression and the effect of anti-TNF-α antibodies (ATA) on intestinal inflammation, epithelial cell turnover, and intestinal adaptation after bowel resection in rats. METHODS Male Sprague-Dawley rats were divided into 4 experimental groups: Sham-rats underwent bowel transection; Sham-ATA rats underwent bowel transection and were treated with ATA; SBS-animals underwent 75% bowel resection; and SBS-ATA rats underwent bowel resection and were treated with ATA similarly to Group B. Parameters of intestinal adaptation, enterocyte proliferation, and apoptosis were determined at sacrifice. TNF-α and apoptosis-related gene and protein levels were determined by Illumina's Digital Gene Expression (DGE) analysis, Real Time PCR, Western blotting, and immunohistochemistry. RESULTS From 25 genes related to TNF-α signalling that were investigated, 8 genes in the jejunum and 10 genes in the ileum were found to be up-regulated in resected versus sham animals. SBS rats demonstrated a significant increase in tissue and plasma TNF-α, IL-6 levels, intestinal mucosal TNF-α related gene expression, and microscopic parameters of inflammation. Treatment of resected animals with ATA resulted in a significant decrease in TNF-α levels, intestinal mucosal TNF-α-related gene expression, decreased number of intraepithelial lymphocytes and macrophages, and lower apoptotic index compared with SBS animals. CONCLUSIONS In a rat model of SBS, ATA decreased plasma and tissue TNF-α levels, diminished mucosal inflammation, and inhibited cell apoptosis. Anti-apoptotic effects of ATA appear to be associated with an inhibited extrinsic apoptotic pathway.
Collapse
|
21
|
Gough P, Myles IA. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front Immunol 2020; 11:585880. [PMID: 33324405 PMCID: PMC7723893 DOI: 10.3389/fimmu.2020.585880] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.
Collapse
Affiliation(s)
- Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Liu Y, Gong Z, Zhou J, Yan J, Cai W. Lin 28A/Occludin axis: An aberrantly activated pathway in intestinal epithelial cells leading to impaired barrier function under total parenteral nutrition. FASEB J 2020; 35:e21189. [PMID: 33200449 DOI: 10.1096/fj.202001819r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 11/11/2022]
Abstract
Disassembly of tight junctions is a major cause of intestinal barrier dysfunction under total parenteral nutrition (TPN), but the precise mechanisms have not been fully understood. Normally, RNA binding protein Lin 28A is highly restricted to embryonic stem cells and dramatically decreases as differentiation progresses; however, in our preliminary study it was found aberrantly increased in the intestinal epithelial cells of TPN rats, and thus its mechanism of action needs to be addressed. Herein, we report a pivotal role of Lin 28A in the regulation of tight junctions, which induces a sustained translational repression of Occludin, leading to disruption of intestinal barrier function under TPN. Using a rat model of TPN, we found time-dependent upregulation of Lin 28A, negatively correlated with Occludin. Using mouse intestinal organoids and human gut-derived Caco-2 cells as in vitro models, we found that expression of Occludin could be significantly suppressed by ectopic overexpression of Lin 28A. The underlying mechanisms may be partially attributed to translational repression, as the abundance of Occludin transcripts in polysomes was dramatically reduced by Lin 28A (polysomal profiling). Furthermore, Lin 28A was found to directly bind to Occludin mRNA 3' untranslated coding region (UTR), thereby repressing the translation of Occludin transcripts through decapping enzyme 1A (DCP1a). Taken together, our findings revealed that Lin 28A/Occludin axis may be a novel mechanism accounting for the development of barrier dysfunction under TPN.
Collapse
Affiliation(s)
- Yang Liu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Gong
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jiefei Zhou
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Junkai Yan
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
23
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:E8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
24
|
Xiao K, Xu Q, Liu C, He P, Qin Q, Zhu H, Zhang J, Gin A, Zhang G, Liu Y. Docosahexaenoic acid alleviates cell injury and improves barrier function by suppressing necroptosis signalling in TNF-α-challenged porcine intestinal epithelial cells. Innate Immun 2020; 26:653-665. [PMID: 33106070 PMCID: PMC7787556 DOI: 10.1177/1753425920966686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-α-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 µg/ml DHA, followed by exposure to 50 ng/ml TNF-α for indicated time periods. DHA restored cell viability and cell number triggered by TNF-α. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-α-challenged cells, as shown in the IncuCyte ZOOM™ live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-α-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.
Collapse
Affiliation(s)
- Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Congcong Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Pengwei He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Qin Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Ashley Gin
- Department of Animal and Food Sciences, Oklahoma State University, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| |
Collapse
|
25
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
26
|
Zhang T, Liu Y, Yan JK, Cai W. Early downregulation of P-glycoprotein facilitates bacterial attachment to intestinal epithelial cells and thereby triggers barrier dysfunction in a rodent model of total parenteral nutrition. FASEB J 2020; 34:4670-4683. [PMID: 32027421 DOI: 10.1096/fj.201902513r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Intestinal barrier dysfunction is a major complication of total parenteral nutrition (TPN). Our preliminary study revealed that intestinal P-glycoprotein (P-gp) was significantly downregulated under TPN treatment followed by disruption of barrier function, and thus the significance of early downregulation of P-gp needs to be addressed. Herein, we report a pivotal role of P-gp in the development of intestinal barrier dysfunction under TPN. Functional suppression of P-gp may facilitate bacterial attachment to intestinal epithelial cells (IECs) and thereby induce degradation of tight junctions to trigger barrier dysfunction. By using a rat model of TPN, we found early downregulation of P-gp function in ileum after 3-day TPN, followed by disruption of barrier function after 7-day TPN. By using Escherichia coli (E. coli) k88 and DH5α as type strains, we found significantly increased bacterial attachment to IECs in TPN group compared to sham. By using Caco-2 cells as an IEC model in vitro, we found that functional suppression of P-gp remarkably facilitated bacterial attachment to Caco-2 cells, leading to subsequent disruption of intestinal barrier function. Of note, Occludin was significantly downregulated by bacterial attachment when P-gp was functionally suppressed. Mechanistically, changes on Occludin were attributed to enhanced protein degradation instead of suppressed protein translation. Despite the half-life of Occludin protein being unchanged by DH5α treatment alone, it was decreased by about 40% when P-gp was simultaneously suppressed. Taken together, our findings revealed that early downregulation of intestinal P-gp under TPN may be a potential therapeutic target to prevent the development of barrier dysfunction.
Collapse
Affiliation(s)
- Tian Zhang
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Kai Yan
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
27
|
Herbs-partitioned moxibustion improves intestinal epithelial tight junctions by upregulating A20 expression in a mouse model of Crohn’s disease. Biomed Pharmacother 2019; 118:109149. [DOI: 10.1016/j.biopha.2019.109149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
|
28
|
He W, Wang Y, Wang P, Wang F. Intestinal barrier dysfunction in severe burn injury. BURNS & TRAUMA 2019; 7:24. [PMID: 31372365 PMCID: PMC6659221 DOI: 10.1186/s41038-019-0162-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Severe burn injury is often accompanied by intestinal barrier dysfunction, which is closely associated with post-burn shock, bacterial translocation, systemic inflammatory response syndrome, hypercatabolism, sepsis, multiple organ dysfunction syndrome, and other complications. The intestinal epithelium forms a physical barrier that separates the intestinal lumen from the internal milieu, in which the tight junction plays a principal role. It has been well documented that after severe burn injury, many factors such as stress, ischemia/hypoxia, proinflammatory cytokines, and endotoxins can induce intestinal barrier dysfunction via multiple signaling pathways. Recent advances have provided new insights into the mechanisms and the therapeutic strategies of intestinal epithelial barrier dysfunction associated with severe burn injury. In this review, we will describe the current knowledge of the mechanisms involved in intestinal barrier dysfunction in response to severe burn injury and the emerging therapies for treating intestinal barrier dysfunction following severe burn injury.
Collapse
Affiliation(s)
- Wen He
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
29
|
Mendes V, Galvão I, Vieira AT. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J Interferon Cytokine Res 2019; 39:393-409. [PMID: 31013453 DOI: 10.1089/jir.2019.0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.
Collapse
Affiliation(s)
- Viviani Mendes
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- 3 Department of Cellular Biology ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelica Thomaz Vieira
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Fan S, Weight CM, Luissint AC, Hilgarth RS, Brazil JC, Ettel M, Nusrat A, Parkos CA. Role of JAM-A tyrosine phosphorylation in epithelial barrier dysfunction during intestinal inflammation. Mol Biol Cell 2019; 30:566-578. [PMID: 30625033 PMCID: PMC6589701 DOI: 10.1091/mbc.e18-08-0531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | | | - Roland S Hilgarth
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jennifer C Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mark Ettel
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Su YB, Li TH, Huang CC, Tsai HC, Huang SF, Hsieh YC, Yang YY, Huang YH, Hou MC, Lin HC. Chronic calcitriol supplementation improves the inflammatory profiles of circulating monocytes and the associated intestinal/adipose tissue alteration in a diet-induced steatohepatitis rat model. PLoS One 2018; 13:e0194867. [PMID: 29684027 PMCID: PMC5912737 DOI: 10.1371/journal.pone.0194867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Vitamin D deficiency and up-regulated TNFα-related signals are reported to be involved in abnormalities including intestinal hyper-permeability, bacterial translocation, systemic/portal endotoxemia, intestinal/adipose tissue/hepatic inflammation, and hepatic steatosis in nonalcoholic steatohepatitis (NASH). This study aims to explore the molecular mechanisms and effects of chronic calcitriol [1,25-(OH)2D3, hormonal form of vitamin D] on gut-adipose tissue-liver axis abnormalities using a high-fat diet (HFD)-fed rat model of NASH. In HFD-fed obese rats on a 10-week calcitriol (0.3 μg/kg/TIW) or vehicle treatment (NASH-vit. D and NASH-V rats) reigme, various in vivo and in vitro experiments were undertaken. Through anti-TNFα-TNFR1-NFκB signaling effects, chronic calcitriol treatment significantly restored plasma calcitriol levels and significantly improved vitamin D receptor (VDR) expression in monocytes and the small intestine of NASH-vit. D rats. Significantly, plasma and portal endotoxin/TNFα levels, bacterial translocation to mesenteric lymph nodes, plasma DX-4000-FITC, fecal albumin-assessed intestinal hyper-permeability, over-expression of TNFα-related immune profiles in monocytes, inflammation of intestinal/mesenteric adipose tissue (MAT)/liver and hepatic steatosis were improved by chronic calcitriol treatment of NASH rats. Additionally, in vitro experiments with acute calcitriol co-incubation reversed NASH-V rat monocyte supernatant/TNFα-induced monolayer barrier dysfunction in caco-2 cells, cytokine release from MAT-derived adipocytes, and triglyceride synthesis by lean-V rat hepatocytes. Using in vivo and in vitro experiments, our study reported calcitriol signaling in the gut as well as in adipose tissue. Meanwhile, our study suggests that restoration of systemic and intestinal vitamin D deficiency using by chronic vitamin D treatment effectively reduces TNFα-mediated immunological abnormalities associated with the gut-adipose tissue-liver axis and hepatic steatosis in NASH rats.
Collapse
Affiliation(s)
- Yen-Bo Su
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Tzu-Hao Li
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Allergy and Immunology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Chia-Yi Branch of Taichung Veterans General Hospital, Chiayi, Taiwan
| | - Chia-Chang Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hung-Cheng Tsai
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shiang-Fen Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Infection, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (YYY); (HCL)
| | - Yi-Hsiang Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (YYY); (HCL)
| |
Collapse
|
32
|
Schörghuber M, Fruhwald S. Effects of enteral nutrition on gastrointestinal function in patients who are critically ill. Lancet Gastroenterol Hepatol 2018. [DOI: 10.1016/s2468-1253(18)30036-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Shang Q, Geng Q, Zhang X, Xu H, Guo C. The impact of early enteral nutrition on pediatric patients undergoing gastrointestinal anastomosis a propensity score matching analysis. Medicine (Baltimore) 2018; 97:e0045. [PMID: 29489656 PMCID: PMC5851715 DOI: 10.1097/md.0000000000010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/19/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to assess the clinical advantages of early enteral nutrition (EEN) in pediatric patients who underwent surgery with gastrointestinal (GI) anastomosis.EEN has been associated with clinical benefits in various aspect of surgical intervention, including GI function recovery and postoperative complications reduction. Evaluable data documenting clinical advantages with EEN for pediatric patients after surgery with GI anastomosis are limited.We retrospectively reviewed the medical records of 575 pediatric patients undergoing surgical intervention with GI anastomosis. Among them, 278 cases were managed with EEN and the remaining cases were set as late enteral nutrition (LEN) group. Propensity score (PS) matching was conducted to adjust biases in patient selection. Enteral feeding related complications were evaluated with symptoms, including serum electrolyte abnormalities, abdominal distention, abdominal cramps, and diarrhea. Clinical outcomes, including GI function recovery, postoperative complications, length of hospital stay, and postoperative follow-up, were assessed according to EEN or LEN.Following PS matching, the baseline variables of the 2 groups were more comparable. There were no differences in the incidence of enteral feeding-related complications. EEN was associated with postoperative GI function recovery, including time to first defecation (3.1 ± 1.4 days for EEN vs 3.8 ± 1.0 days for LEN, risk ratio [RR], 0.62; 95% confidence interval [CI] 0.43-1.08, P = .042). A lower total episodes of complication, including infectious complications and major complications were noted in patients with EEN than in patients with LEN (117 [45.9%] vs 137 [53.7%]; OR, 0.73, 95% CI 0.52-1.03, P = .046). Mean postoperative length of stay in the EEN group was 7.4 ± 1.8 days versus 9.2 ± 1.4 days in the LEN group (P = .007). Furthermore, the incidence of adhesive small bowel obstruction was lower for patients with laxative administration compared with control, but no significant difference was attained (P = .092)EEN was safe and associated with clinical benefits, including shorten hospital stay, and reduced overall postoperative complications on pediatric patients undergoing GI anastomosis.
Collapse
Affiliation(s)
- Qingjuan Shang
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong province
| | - Qiankun Geng
- Department of Pediatric General Surgery, Children's Hospital
| | - Xuebing Zhang
- Department of Pediatric General Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hongfang Xu
- Department of Pediatric General Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong province
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| |
Collapse
|
34
|
Abstract
The gastrointestinal (GI) tract is a highly efficient organ system with specialized structures to facilitate digestion and absorption of nutrients to meet the body's needs. The presence of nutrients in the GI tract supports optimal structure and function, stimulates regulatory hormones, and supports the microbiota, the population of microorganisms residing in the GI tract. A lack of enteral nutrition (EN) results in impaired GI integrity and serious patient complications, making EN a priority. Normal GI physiology is reviewed, and the regulatory impact of luminal nutrients on GI function is discussed.
Collapse
|
35
|
Zhou Z, Wang L, Feng P, Yin L, Wang C, Zhi S, Dong J, Wang J, Lin Y, Chen D, Xiong Y, Peng J. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis. Front Immunol 2017; 8:1468. [PMID: 29176974 PMCID: PMC5686092 DOI: 10.3389/fimmu.2017.01468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid. Expression of TNFR1 and TNFR2 was measured by quantitative RT-PCR and western blotting. The effect of PFB on colitis was evaluated by examining the inflammatory response and intestinal epithelial barrier function. Our results showed that both TNFR1 and TNFR2 expression were significantly increased in a colitis model, and the increase was significantly reversed by PFB. Colitis symptoms, including infiltration of inflammatory cells, cytokine profiles, epithelial cell apoptosis, and epithelial tight junction barrier dysfunction were significantly ameliorated by PFB. Compared with fruit bromelain and stem bromelain complex, the inhibition of TNFR2 induced by PFB was stronger than that exhibited on TNFR1. These results indicate that PFB showed a stronger selective inhibitory effect on TNFR2 than TNFR1. In other words, purification of fruit bromelain increases its selectivity on TNFR2 inhibition. High expression of epithelial TNFRs in colitis was significantly counteracted by PFB, and PFB-induced TNFR inhibition ameliorated colitis symptoms. These results supply novel insights into potential IBD treatment by PFB.
Collapse
Affiliation(s)
- Zijuan Zhou
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Panpan Feng
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Chen Wang
- Dalian Medical University, Dalian, China
| | | | - Jianyi Dong
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yuan Lin
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yongjian Xiong
- Central Laboratory, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Krautkramer KA, Dhillon RS, Denu JM, Carey HV. Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Transl Res 2017; 189:30-50. [PMID: 28919341 PMCID: PMC5659875 DOI: 10.1016/j.trsl.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
The mammalian gut microbiota has been linked to host developmental, immunologic, and metabolic outcomes. This collection of trillions of microbes inhabits the gut and produces a myriad of metabolites, which are measurable in host circulation and contribute to the pathogenesis of human diseases. The link between endogenous metabolite availability and chromatin regulation is a well-established and active area of investigation; however, whether microbial metabolites can elicit similar effects is less understood. In this review, we focus on seminal and recent research that establishes chromatin regulatory roles for both endogenous and microbial metabolites. We also highlight key physiologic and disease settings where microbial metabolite-host chromatin interactions have been established and/or may be pertinent.
Collapse
Affiliation(s)
- Kimberly A Krautkramer
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wis; Wisconsin Institute for Discovery, Madison, Wis.
| | - Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wis; Wisconsin Institute for Discovery, Madison, Wis
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wis; Wisconsin Institute for Discovery, Madison, Wis; Morgridge Institute for Research, Madison, Wis
| | - Hannah V Carey
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, Wis
| |
Collapse
|
37
|
Parenteral Nutrition-Associated Liver Disease: The Role of the Gut Microbiota. Nutrients 2017; 9:nu9090987. [PMID: 28880224 PMCID: PMC5622747 DOI: 10.3390/nu9090987] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
Parenteral nutrition (PN) provides life-saving nutritional support in situations where caloric supply via the enteral route cannot cover the necessary needs of the organism. However, it does have serious adverse effects, including parenteral nutrition-associated liver disease (PNALD). The development of liver injury associated with PN is multifactorial, including non-specific intestine inflammation, compromised intestinal permeability, and barrier function associated with increased bacterial translocation, primary and secondary cholangitis, cholelithiasis, short bowel syndrome, disturbance of hepatobiliary circulation, lack of enteral nutrition, shortage of some nutrients (proteins, essential fatty acids, choline, glycine, taurine, carnitine, etc.), and toxicity of components within the nutrition mixture itself (glucose, phytosterols, manganese, aluminium, etc.). Recently, an increasing number of studies have provided evidence that some of these factors are directly or indirectly associated with microbial dysbiosis in the intestine. In this review, we focus on PN-induced changes in the taxonomic and functional composition of the microbiome. We also discuss immune cell and microbial crosstalk during parenteral nutrition, and the implications for the onset and progression of PNALD. Finally, we provide an overview of recent advances in the therapeutic utilisation of pro- and prebiotics for the mitigation of PN-associated liver complications.
Collapse
|
38
|
Tumor Necrosis Factor-Alpha Inhibitor Etanercept Does Not Alter Methotrexate-Induced Gastrointestinal Mucositis in Rats. J Pediatr Gastroenterol Nutr 2017; 65:e28-e34. [PMID: 27861204 DOI: 10.1097/mpg.0000000000001469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Gastrointestinal (GI) mucositis is a severe adverse effect of chemotherapy and radiotherapy. Proinflammatory cytokines are thought to play an important role in the pathophysiology of GI mucositis. We aimed to determine the effect of the tumor necrosis factor-alpha (TNF-α) inhibitor etanercept on the severity of mucositis in a previously established methotrexate (MTX)-induced GI mucositis rat model. METHODS Male Wistar rats received 60 mg/kg MTX on day 0 intravenously. Rats were treated daily with either etanercept (TNF-α inhibitor) 5 mg/kg or NaCl 0.9% subcutaneously from day -3 till day 3. Control rats received NaCl 0.9% intravenously and etanercept subcutaneously. The severity of mucositis was determined by intake, bodyweight, plasma citrulline, and by a function test (absorption of an oral glucose bolus). On day 4 and day 10 rats were terminated. Villus length, crypt length, intestinal myeloperoxidase, and plasma etanercept levels were determined. RESULTS The administration of MTX induced mucositis in all rats. Etanercept did not cause a change in the degree of mucositis. Bodyweight, intake, and glucose levels were not altered by etanercept; villus length was comparable; and there was no difference in myeloperoxidase and citrulline level. Etanercept levels in plasma were significantly increased in the etanercept rats (P < 0.05). CONCLUSIONS TNF-α inhibitor etanercept did not alter the severity of mucositis in the rat, suggesting that targeting only the inflammatory pathway of TNF-α is not effective for decreasing the severity of GI mucositis induced by high-dose MTX. Etanercept alone is not useful for the treatment of MTX-induced GI mucositis.
Collapse
|
39
|
Greis C, Rasuly Z, Janosi RA, Kordelas L, Beelen DW, Liebregts T. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:70. [PMID: 28327177 PMCID: PMC5361812 DOI: 10.1186/s13054-017-1654-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Background Impaired gastric emptying is common in critically ill patients. Intestinal dysmotility, a major cause of feed intolerance, may foster infectious complications due to mucosal barrier disruption. However, little is known about gut-directed immune activation, intestinal barrier function and its association with impaired gastric emptying in critically ill patients at ICU admission. Methods We conducted a prospective observational study at two tertiary care medical ICUs. Fifty consecutive patients needing invasive mechanical ventilation were recruited within 24 h of ICU admission, prior to any nutritional support. The acute physiology and chronic health evaluation (APACHE) II score, the sequential organ failure assessment (SOFA) score and the multiple organ dysfunction score (MODS) were used to assess illness severity and multiple organ dysfunction. Gastric emptying was assessed by paracetamol absorption test. Peripheral blood mononuclear cells were freshly isolated and cultured for 24 h, and TNF-α, IL-1β and IL-10 measured in cell culture supernatants and in serum by ELISA. The intestinal epithelial barrier was assessed, quantifying serum concentrations of intestinal fatty acid binding protein (I-FABP), ileal bile-acid binding protein (I-BABP) and zonulin-1 by ELISA. Small bowel homing T lymphocytes (CD4+ α4β7 + CCR9+) were analyzed by flow cytometry. The Mann-Whitney test and Spearman correlation were used in statistical evaluation. Results CD4 + α4β7 + CCR9+ T lymphocytes were inversely correlated with gastric emptying. Patients with delayed gastric emptying at ICU admission (n = 35) had significantly higher serum and PBMC-induced TNF-α and IL-1β and increased intestinal barrier disruption reflected by higher I-FABP, I-BABP and zonulin-1. Patients who died in the ICU had significantly impaired gastric empting at admission compared to ICU survivors. No differences were observed in APACHE II, SOFA or MODS in patients with delayed gastric emptying compared to patients with normal gastric emptying. Conclusions Exaggerated CD4 + α4β7 + CCR9+ T lymphocyte homing with increased pro-inflammatory cytokine release and intestinal epithelial barrier disruption are associated with delayed gastric emptying. This is not simply due to differences in overall severity of illness at ICU admission and may represent a pathophysiological mechanism of gut-directed immune activation leading to impaired barrier function in the critically ill.
Collapse
Affiliation(s)
- Christian Greis
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Zohal Rasuly
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Rolf A Janosi
- Department of Cardiology, University Hospital Essen, Essen, Germany
| | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Tobias Liebregts
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany.
| |
Collapse
|
40
|
Ye X, Sun M. AGR2 ameliorates tumor necrosis factor-α-induced epithelial barrier dysfunction via suppression of NF-κB p65-mediated MLCK/p-MLC pathway activation. Int J Mol Med 2017; 39:1206-1214. [PMID: 28339048 PMCID: PMC5403182 DOI: 10.3892/ijmm.2017.2928] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial barrier dysfunction plays a critical role in the pathogenesis of inflammatory bowel disease (IBD). Anterior gradient protein 2 homologue (AGR2) assists in maintaining intestinal homeostasis in dextran sulphate sodium-induced mouse ileocolitis; however, it is unclear whether it modulates intestinal barrier function. Our study aimed to investigate the protective role of AGR2 in tumor necrosis factor (TNF)-α-induced intestinal epithelial barrier injury. Caco-2 cell monolayers were pre-transfected with an AGR2 plasmid and then exposed to TNF-α. Epithelial permeability was assessed by detecting transepithelial electrical resistance and fluorescein isothiocyanate-dextran (40 kDa) flux. The protein expression levels of zonula occludens-1 (ZO-1), occludin, claudin-1, myosin light chain kinase (MLCK)/p-MLC, and nuclear factor (NF)-κB p65 were determined by western blotting. In addition, the cellular distributions of ZO-1, occludin, F-actin, and NF-κB p65 were evaluated by immunofluorescence staining. The results showed that the AGR2 mRNA and protein expression levels were both decreased in the Caco-2 cell monolayers, while AGR2 overexpression significantly ameliorated TNF-α-induced epithelial barrier hyperpermeability, increased the expression of tight junction (TJ) proteins and stabilized the cytoskeletal structure. Furthermore, AGR2 inhibited the changes in MLCK, MLC and p-MLC expression in response to TNF-α stimulation. Collectively, our study suggests that AGR2 inhibits TNF-α-induced Caco-2 cell hyperpermeability by regulating TJ and that this protective mechanism may be promoted by inhibition of NF-κB p65-mediated activation of the MLCK/p-MLC signaling pathway.
Collapse
Affiliation(s)
- Xiaolin Ye
- Department of Paediatrics, China Medical University Affiliated with Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Mei Sun
- Department of Paediatrics, China Medical University Affiliated with Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
41
|
NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol 2017; 10:434-445. [PMID: 27353251 PMCID: PMC5199680 DOI: 10.1038/mi.2016.55] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
NLRP6 is a member of the Nod-like receptor family, whose members are involved in the recognition of microbes and/or tissue injury. NLRP6 was previously demonstrated to regulate the production of interleukin (IL)-18 and is important for protecting mice against chemically induced intestinal injury and colitis-associated colon cancer. However, the cellular mechanisms by which NLRP6 reduces susceptibility to colonic inflammation remain unclear. Here, we determined that NLRP6 expression is specifically upregulated in Ly6Chi inflammatory monocytes that infiltrate into the colon during dextran sulfate sodium (DSS)-induced inflammation. Adoptive transfer of wild-type (WT) Ly6Chi inflammatory monocytes into Nlrp6-/- mice was sufficient to protect them from mortality, significantly reducing intestinal permeability and damage. NLRP6-deficient inflammatory monocytes were defective in tumor necrosis factor α (TNFα) production, which was important for reducing DSS-induced mortality and was dependent on autocrine IL-18 signaling by inflammatory monocytes. Our data reveal a previously unappreciated role for NLRP6 in inflammatory monocytes, which are recruited after DSS-induced intestinal injury to promote barrier function and limit bacteria-driven inflammation. This study highlights the importance of early cytokine responses, particularly NLRP6-dependent and IL-18-dependent TNFα production, in preventing chronic dysregulated inflammation.
Collapse
|
42
|
Xiao YT, Yan WH, Cao Y, Yan JK, Cai W. P38 MAPK Pharmacological Inhibitor SB203580 Alleviates Total Parenteral Nutrition-Induced Loss of Intestinal Barrier Function but Promotes Hepatocyte Lipoapoptosis. Cell Physiol Biochem 2017; 41:623-634. [PMID: 28214831 DOI: 10.1159/000457933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND & AIMS Our previous studies have provided evidence that p38 mitogen-activated protein kinase (MAPK) is involved in total parenteral nutrition (TPN)-associated complications, but its exact effects and mechanisms have not been fully understood. This study aimed to evaluate the roles of p38 MAPK inhibitor SB203580 in the TPN-induced loss of intestinal barrier function and liver disease. METHODS A rodent model of TPN was used to analyze the roles of SB203580 in TPN-associated complications.Intestinal barrier function was evaluated by transepithelial electrical resistance (TER) and paracellular permeability in Caco-2 cells. The palmitic acid (PA) was used to induce hepatic lipoapoptosis in vitro. The lipoapoptosis was detected using Caspase-3/7 and lipid staining. RESULTS In the present study, we showed that SB203580 treatment significantly suppressed TPN-mediated intestinal permeability in rats. SB203580 treatment significantly inhibited IL-1β-induced an increase in tight junction permeability of Caco-2 cells via repressing the p38/ATF-2 signaling. Unexpectedly, SB203580 treatment enhanced hepatic lipoapoptosis in the model of TPN. Palmitic acid (PA)-induced hepatic lipoapoptosis in human liver cells was significantly augmented by the SB203580 treatment. CONCLUSIONS We demonstrate that the p38 MAPK inhibitor SB203508 ameliorates intestinal barrier function but promotes hepatic lipoapoptosis in model of TPN.
Collapse
|
43
|
Xiao K, Cao S, Jiao L, Song Z, Lu J, Hu C. TGF-β1 protects intestinal integrity and influences Smads and MAPK signal pathways in IPEC-J2 after TNF-α challenge. Innate Immun 2017; 23:276-284. [PMID: 28142299 DOI: 10.1177/1753425917690815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to investigate the protective effects of TGF-β1 on intestinal epithelial barrier, as well as canonical Smad and MAPK signal pathways involved in these protection processes by a IPEC-J2 model stimulated with TNF-α. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of TGF-β1. The results showed that TGF-β1 pretreatment ameliorated TNF-α-induced intestinal epithelial barrier disturbances as indicated by decrease of transepithelial electrical resistance (TER) and increase of paracellular permeability. TGF-β1 also dramatically alleviated TNF-α-induced alteration of TJ proteins ZO-1 and occludin. Moreover, TGF-β1 pretreatment increased TβRII protein expression in IPEC-J2 monolayers challenged with TNF-α. In addition, a significant increase of Smad4 and Smad7 mRNA was also observed in the TGF-β1 pretreatment after TNF-α challenge compared with the control group. Furthermore, TGF-β1 pretreatment enhanced smad2 protein activation. These results indicated that the canonical Smad signaling pathway was activated by TGF-β1 pretreatment. Finally, TGF-β1 pretreatment decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38) and increased the ratio of ERK (p-ERK/ERK). Anti-TGF-β1 Abs reduced these TGF-β1 effects. These results indicated that TGF-β1 protects intestinal integrity and influences Smad and MAPK signal pathways in IPEC-J2 after TNF-α challenge.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Shuting Cao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Zehe Song
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jianjun Lu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
44
|
Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition. Cell Mol Gastroenterol Hepatol 2017; 3:447-468. [PMID: 28462383 PMCID: PMC5403977 DOI: 10.1016/j.jcmgh.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal epithelial cell (IEC) responses and attenuate mucosal atrophy in several TPN models. However, it remains unclear whether these 2 factors use distinct or overlapping signaling pathways to improve IEC responses. We investigated the interaction of GLP-2 and EGF signaling in a mouse TPN model and in patients deprived of enteral nutrition. METHODS Adult C57BL/6J, IEC-Egfrknock out (KO) and IEC-pik3r1KO mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC responses were assessed by histologic, gene, and protein expression analyses. In patients undergoing planned looped ileostomies, fed and unfed ileum was analyzed. RESULTS Enteral nutrient deprivation reduced endogenous EGF and GLP-2 signaling in mice and human beings. In the mouse TPN model, exogenous EGF or GLP-2 attenuated mucosal atrophy and restored IEC proliferation. The beneficial effects of EGF and GLP-2 were decreased upon Gefitinib treatment and in TPN-treated IEC-EgfrKO mice, showing epidermal growth factor-receptor dependency for these IEC responses. By contrast, in TPN-treated IEC-pi3kr1KO mice, the beneficial actions of EGF were lost, although GLP-2 still attenuated mucosal atrophy. CONCLUSIONS Upon enteral nutrient deprivation, exogenous GLP-2 and EGF show strong interdependency for improving IEC responses. Understanding the differential requirements for phosphatidylinositol 3-kinase/phosphoAKT (Ser473) signaling may help improve future therapies to prevent mucosal atrophy.
Collapse
Key Words
- EGF
- EGF, epidermal growth factor
- EGFR
- EGFR, epidermal growth factor receptor
- GLP-2
- GLP-2 (3-33), glucagon-like peptide 2 antagonist
- GLP-2, glucagon-like peptide 2
- GLP2R, glucagon-like peptide 2 receptor
- IEC, intestinal epithelial cell
- IGF-1, insulin-like growth factor 1
- ISC, intestinal stem cell
- IV, intravenous
- KO, knock out
- Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5
- Mucosal Atrophy
- PCNA, proliferating cell nuclear antigen
- PCR, polymerase chain reaction
- PI3K
- PI3K, phosphatidylinositol 3-kinase
- PI3KR1, phosphatidylinositol 3-kinase p85a
- SBS, short-bowel syndrome
- TNF, tumor necrosis factor
- TPN, total parenteral nutrition
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- Total Parenteral Nutrition
- WT, wild-type
- bp, base pair
- mRNA, messenger RNA
Collapse
|
45
|
A Promoter Variant Within the Aryl Hydrocarbon Receptor Gene Is Associated with an Epithelial Barrier Defect in Smokers with Crohn's Disease. Inflamm Bowel Dis 2016; 22:2356-68. [PMID: 27598741 DOI: 10.1097/mib.0000000000000910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Smoking worsens Crohn's disease (CD). The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates the toxicity of dioxinlike chemicals. We hypothesized that AHR variants and smoking influence CD. METHODS Exon-intron boundaries and coding and promoter regions of AHR gene were sequenced (28 patients with inflammatory bowel disease; 4 healthy controls). Two identified variants (rs7796976 and rs2066853) were studied for an association with intestinal permeability (IP, oral sugar test) in patients with inflammatory bowel disease (stratified according to the smoking status). AHR expression was analyzed by quantitative real-time polymerase chain reaction in colonic biopsies from patients with CD (n = 53). Case-control analysis including a genotype-phenotype correlation was performed for both variants (n = 767 patients with inflammatory bowel disease; n = 466 healthy controls). RESULTS Sequencing identified a putative promoter variant (rs7796976) and a nonsynonymous variant (rs2066853; Arg554Lys) in AHR, both predicted to be functionally relevant. The major G-allele of rs7796976 increased the risk for disturbed IP (odds ratio 1.9, 95% confidence interval [CI], 1.1-3.2) in CD but not ulcerative colitis. We observed an additive effect of the rs7796976 genotype and smoking on IP (P = 0.005), which was also shown for rs2066853 (P = 0.004; variants not linked). Both variants showed a genotype-dependent AHR expression in colonic biopsies of patients with CD. No overall association with either CD or ulcerative colitis was observed; however, the rs7796976 genotype and smoking increased the risk for the L4 phenotype in CD. CONCLUSION Smoking and functionally relevant AHR variants increase IP in CD. Because AhR is known to mediate between smoking and inflammation, these variants might be involved in the deleterious effect of smoking on CD.
Collapse
|
46
|
Ralls MW, Demehri FR, Feng Y, Raskind S, Ruan C, Schintlmeister A, Loy A, Hanson B, Berry D, Burant CF, Teitelbaum DH. Bacterial nutrient foraging in a mouse model of enteral nutrient deprivation: insight into the gut origin of sepsis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G734-G743. [PMID: 27586649 PMCID: PMC5142194 DOI: 10.1152/ajpgi.00088.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 01/31/2023]
Abstract
Total parenteral nutrition (TPN) leads to a shift in small intestinal microbiota with a characteristic dominance of Proteobacteria This study examined how metabolomic changes within the small bowel support an altered microbial community in enterally deprived mice. C57BL/6 mice were given TPN or enteral chow. Metabolomic analysis of jejunal contents was performed by liquid chromatography/mass spectrometry (LC/MS). In some experiments, leucine in TPN was partly substituted with [13C]leucine. Additionally, jejunal contents from TPN-dependent and enterally fed mice were gavaged into germ-free mice to reveal whether the TPN phenotype was transferrable. Small bowel contents of TPN mice maintained an amino acid composition similar to that of the TPN solution. Mass spectrometry analysis of small bowel contents of TPN-dependent mice showed increased concentration of 13C compared with fed mice receiving saline enriched with [13C]leucine. [13C]leucine added to the serosal side of Ussing chambers showed rapid permeation across TPN-dependent jejunum, suggesting increased transmucosal passage. Single-cell analysis by fluorescence in situ hybridization (FISH)-NanoSIMS demonstrated uptake of [13C]leucine by TPN-associated bacteria, with preferential uptake by Enterobacteriaceae Gavage of small bowel effluent from TPN mice into germ-free, fed mice resulted in a trend toward the proinflammatory TPN phenotype with loss of epithelial barrier function. TPN dependence leads to increased permeation of TPN-derived nutrients into the small intestinal lumen, where they are predominately utilized by Enterobacteriaceae The altered metabolomic composition of the intestinal lumen during TPN promotes dysbiosis.
Collapse
Affiliation(s)
- Matthew W. Ralls
- 1Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, Michigan;
| | - Farokh R. Demehri
- 1Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, Michigan;
| | - Yongjia Feng
- 1Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, Michigan;
| | - Sasha Raskind
- 2Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan;
| | - Chunhai Ruan
- 2Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan;
| | - Arno Schintlmeister
- 3Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria; ,4Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria; and
| | - Alexander Loy
- 3Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria;
| | - Buck Hanson
- 3Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria;
| | - David Berry
- 3Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria;
| | - Charles F. Burant
- 2Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan; ,5Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Daniel H. Teitelbaum
- 1Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
47
|
Up-regulation of Tight-Junction Proteins by p38 Mitogen-Activated Protein Kinase/p53 Inhibition Leads to a Reduction of Injury to the Intestinal Mucosal Barrier in Severe Acute Pancreatitis. Pancreas 2016; 45:1136-44. [PMID: 27171513 DOI: 10.1097/mpa.0000000000000656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The aim of this study was to explore the role of the p38 mitogen-activated protein kinase (p38MAPK)/p53 signaling pathway in injury to the intestinal mucosal barrier during severe acute pancreatitis (SAP). METHODS Both sham operation and SAP groups had 3 subgroups analyzed 3, 6, or 12 hours after the SAP induction. The concentrations of amylase, endotoxin, diamine oxidase, tumor necrosis factor α, and phospho-p38MAPK, p53, and caspase-3 and the messenger RNA levels of zonula occludens protein-1 and occludin in the intestine were measured. Immunohistochemical staining was used to determine the expression of zonula occludens protein-1 and occludin. Pathological changes of the pancreas and intestine were also assessed. Then, rats were randomly assigned to 5 groups-sham operation group, SAP group, 3 groups treated with different concentrations of p38MAPK-inhibitor SB203580-and the abovementioned experiment was repeated and analyzed 6 hours after the SAP induction. RESULTS The phospho-p38MAPK reached a peak value at 6 hours after the SAP induction with obvious pathological injury to the pancreas and intestine. Treatment with SB203580 led to a less damage to the pancreatic and intestinal tissues. CONCLUSIONS These results suggest that SAP activates the p38MAPK/p53 signaling pathway and induces injury to the intestinal mucosal barrier, which can be alleviated by inhibiting the p38MAPK/p53 pathway.
Collapse
|
48
|
Demehri FR, Krug SM, Feng Y, Lee IFM, Schulzke JD, Teitelbaum DH. Tight Junction Ultrastructure Alterations in a Mouse Model of Enteral Nutrient Deprivation. Dig Dis Sci 2016; 61:1524-33. [PMID: 26685910 DOI: 10.1007/s10620-015-3991-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Total parenteral nutrition (TPN), a necessary treatment for patients who cannot receive enteral nutrition, is associated with infectious complications due in part to a loss of intestinal epithelial barrier function (EBF). Using a mouse model of TPN, with enteral nutrient deprivation, we previously demonstrated an increase in mucosal interferon-γ and tumor necrosis factor-α; these cytokine changes are a major mediator driving a reduction in epithelial tight junction (TJ) protein expression. However, the exact ultrastructural changes to the intestinal epithelial barrier have not been previously described. AIM We hypothesized that TPN dependence results in ultrastructural changes in the intestinal epithelial TJ meshwork. METHODS C57BL/6 mice underwent internal jugular venous cannulation and were given enteral nutrition or TPN with enteral nutrient deprivation for 7 days. Freeze-fracture electron microscopy was performed on ileal tissue to characterize changes in TJ ultrastructure. EBF was measured using transepithelial resistance and tracer permeability, while TJ expression was measured via Western immunoblotting and immunofluorescence staining. RESULTS While strand density, linearity, and appearance were unchanged, TPN dependence led to a mean reduction in one horizontal strand out of the TJ compact meshwork to a more basal region, resulting in a reduction in meshwork depth. These findings were correlated with the loss of TJ localization of claudin-4 and tricellulin, reduced expression of claudin-5 and claudin-8, and reduced ex vivo EBF. CONCLUSION Tight junction ultrastructural changes may contribute to reduced EBF in the setting of TPN dependence.
Collapse
Affiliation(s)
- Farokh R Demehri
- Section of Pediatric Surgery, Department of Surgery, Mott Children's Hospital, University of Michigan Health System, 1540 E. Hospital Dr., SPC 4211, Ann Arbor, MI, 48109-4211, USA.
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Yongjia Feng
- Section of Pediatric Surgery, Department of Surgery, Mott Children's Hospital, University of Michigan Health System, 1540 E. Hospital Dr., SPC 4211, Ann Arbor, MI, 48109-4211, USA
| | - In-Fah M Lee
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Joerg D Schulzke
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Daniel H Teitelbaum
- Section of Pediatric Surgery, Department of Surgery, Mott Children's Hospital, University of Michigan Health System, 1540 E. Hospital Dr., SPC 4211, Ann Arbor, MI, 48109-4211, USA
| |
Collapse
|
49
|
Al-Sadi R, Guo S, Ye D, Rawat M, Ma TY. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1151-65. [PMID: 26948423 DOI: 10.1016/j.ajpath.2015.12.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α-induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of in vitro and in vivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB-inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-β. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α-induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α-induced activation of MLCK gene and increase in intestinal TJ permeability.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico.
| |
Collapse
|
50
|
Feng Y, Barrett M, Hou Y, Yoon HK, Ochi T, Teitelbaum DH. Homeostasis alteration within small intestinal mucosa after acute enteral refeeding in total parenteral nutrition mouse model. Am J Physiol Gastrointest Liver Physiol 2016; 310:G273-84. [PMID: 26635320 PMCID: PMC4754738 DOI: 10.1152/ajpgi.00335.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/24/2015] [Indexed: 01/31/2023]
Abstract
Feeding strategies to care for patients who transition from enteral nutrient deprivation while on total parenteral nutrition (TPN) to enteral feedings generally proceed to full enteral nutrition once the gastrointestinal tract recovers; however, an increasing body of literature suggests that a subgroup of patients may actually develop an increased incidence of adverse events, including death. To examine this further, we studied the effects of acute refeeding in a mouse model of TPN. Interestingly, refeeding led to some beneficial effects, including prevention in the decline in intestinal epithelial cell (IEC) proliferation. However, refeeding led to a significant increase in mucosal expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), as well as an upregulation in Toll-like receptor 4 (TLR-4). Refeeding also failed to prevent TPN-associated increases in IEC apoptosis, loss of epithelial barrier function, and failure of the leucine-rich repeat-containing G protein-coupled receptor 5-positive stem cell expression. Transitioning from TPN to enteral feedings led to a partial restoration of the small bowel microbial population. In conclusion, while acute refeeding led to some restoration of normal gastrointestinal physiology, enteral refeeding led to a significant increase in mucosal inflammatory markers and may suggest alternative strategies to enteral refeeding should be considered.
Collapse
Affiliation(s)
- Yongjia Feng
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan;
| | - Meredith Barrett
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan; ,2General Surgery, Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan;
| | - Yue Hou
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan; ,3University of Michigan, Ann Arbor, Michigan; and
| | - Hong Keun Yoon
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan; ,3University of Michigan, Ann Arbor, Michigan; and
| | - Takanori Ochi
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan; ,4Department of Pediatric Surgery, Juntendo Hospital, Juntendo University, Tokyo, Japan
| | - Daniel H. Teitelbaum
- 1Section of Pediatric Surgery, Department of Surgery, the University of Michigan Medical School and the C. S. Mott Children's Hospital, Ann Arbor, Michigan;
| |
Collapse
|