1
|
Hartung J, Schroeder A, Péréz Vázquez RA, Poorthuis RB, Letzkus JJ. Layer 1 NDNF interneurons are specialized top-down master regulators of cortical circuits. Cell Rep 2024; 43:114212. [PMID: 38743567 DOI: 10.1016/j.celrep.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.
Collapse
Affiliation(s)
- Jan Hartung
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany.
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | | | - Rogier B Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Johannes J Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
2
|
Theyel BB, Stevenson RJ, Connors BW. Activity-Dependent Ectopic Spiking in Parvalbumin-Expressing Interneurons of the Neocortex. eNeuro 2024; 11:ENEURO.0314-23.2024. [PMID: 38637152 PMCID: PMC11069434 DOI: 10.1523/eneuro.0314-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/20/2024] Open
Abstract
Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.
Collapse
Affiliation(s)
- Brian B Theyel
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Care New England Medical Group, Providence, Rhode Island 02906
| | - Rachel J Stevenson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
3
|
Zhang YZ, Sapantzi S, Lin A, Doelfel SR, Connors BW, Theyel BB. Activity-dependent ectopic action potentials in regular-spiking neurons of the neocortex. Front Cell Neurosci 2023; 17:1267687. [PMID: 38034593 PMCID: PMC10685889 DOI: 10.3389/fncel.2023.1267687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Action potentials usually travel orthodromically along a neuron's axon, from the axon initial segment (AIS) toward the presynaptic terminals. Under some circumstances action potentials also travel in the opposite direction, antidromically, after being initiated at a distal location. Given their initiation at an atypical site, we refer to these events as "ectopic action potentials." Ectopic action potentials (EAPs) were initially observed in pathological conditions including seizures and nerve injury. Several studies have described regular-spiking (RS) pyramidal neurons firing EAPs in seizure models. Under nonpathological conditions, EAPs were reported in a few populations of neurons, and our group has found that EAPs can be induced in a large proportion of parvalbumin-expressing interneurons in the neocortex. Nevertheless, to our knowledge there have been no prior reports of ectopic firing in the largest population of neurons in the neocortex, pyramidal neurons, under nonpathological conditions. Methods We performed in vitro recordings utilizing the whole-cell patch clamp technique. To elicit EAPs, we triggered orthodromic action potentialswith either long, progressively increasing current steps, or with trains of brief pulses at 30, 60, or 100 Hz delivered in 3 different ways, varying in stimulus and resting period duration. Results We found that a large proportion (72.7%) of neocortical RS cells from mice can fire EAPs after a specific stimulus in vitro, and that most RS cells (56.1%) are capable of firing EAPs across a broad range of stimulus conditions. Of the 37 RS neurons in which we were able to elicit EAPs, it took an average of 863.8 orthodromic action potentials delivered over the course of an average of ~81.4 s before the first EAP was seen. We observed that some cells responded to specific stimulus frequencies while less selective, suggesting frequency tuning in a subset of the cells. Discussion Our findings suggest that pyramidal cells can integrate information over long time-scales before briefly entering a mode of self-generated firing that originates in distal axons. The surprising ubiquity of EAP generation in RS cells raises interesting questions about the potential roles of ectopic spiking in information processing, cortical oscillations, and seizure susceptibility.
Collapse
Affiliation(s)
- Yizhen Z. Zhang
- Department of Neuroscience, Brown University, Providence, RI, United States
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Stella Sapantzi
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alice Lin
- Department of Neuroscience, Brown University, Providence, RI, United States
| | | | - Barry W. Connors
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Brian B. Theyel
- Department of Neuroscience, Brown University, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Rózsa M, Tóth M, Oláh G, Baka J, Lákovics R, Barzó P, Tamás G. Temporal disparity of action potentials triggered in axon initial segments and distal axons in the neocortex. SCIENCE ADVANCES 2023; 9:eade4511. [PMID: 37824608 PMCID: PMC10569705 DOI: 10.1126/sciadv.ade4511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/11/2023] [Indexed: 10/14/2023]
Abstract
Neural population activity determines the timing of synaptic inputs, which arrive to dendrites, cell bodies, and axon initial segments (AISs) of cortical neurons. Action potential initiation in the AIS (AIS-APs) is driven by input integration, and the phase preference of AIS-APs during network oscillations is characteristic to cell classes. Distal regions of cortical axons do not receive synaptic inputs, yet experimental induction protocols can trigger retroaxonal action potentials (RA-APs) in axons distal from the soma. We report spontaneously occurring RA-APs in human and rodent cortical interneurons that appear uncorrelated to inputs and population activity. Network-linked triggering of AIS-APs versus input-independent timing of RA-APs of the same interneurons results in disparate temporal contribution of a single cell to in vivo network operation through perisomatic and distal axonal firing.
Collapse
Affiliation(s)
- Márton Rózsa
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Martin Tóth
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Gáspár Oláh
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Judith Baka
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Rajmund Lákovics
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- ELKH-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022; 13:812905. [PMID: 35153712 PMCID: PMC8825374 DOI: 10.3389/fnsyn.2021.812905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.
Collapse
Affiliation(s)
- Iris A. Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Iris A. Speigel
| | - Hugh C. Hemmings Jr.
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Chittajallu R, Auville K, Mahadevan V, Lai M, Hunt S, Calvigioni D, Pelkey KA, Zaghloul KA, McBain CJ. Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells. eLife 2020; 9:57571. [PMID: 32496194 PMCID: PMC7299336 DOI: 10.7554/elife.57571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.
Collapse
Affiliation(s)
- Ramesh Chittajallu
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Kurt Auville
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Vivek Mahadevan
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mandy Lai
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Steven Hunt
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Daniela Calvigioni
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Kenneth A Pelkey
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Chris J McBain
- Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
7
|
Daur N, Zhang Y, Nadim F, Bucher D. Mutual Suppression of Proximal and Distal Axonal Spike Initiation Determines the Output Patterns of a Motor Neuron. Front Cell Neurosci 2019; 13:477. [PMID: 31708748 PMCID: PMC6819512 DOI: 10.3389/fncel.2019.00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal spike initiation at sites far from somatodendritic integration occurs in a range of systems, but its contribution to neuronal output activity is not well understood. We studied the interactions of distal and proximal spike initiation in an unmyelinated motor axon of the stomatogastric nervous system in the lobster, Homarus americanus. The peripheral axons of the pyloric dilator (PD) neurons generate tonic spiking in response to dopamine application. Centrally generated bursting activity and peripheral spike initiation had mutually suppressive effects. The two PD neurons and the electrically coupled oscillatory anterior burster (AB) neuron form the pacemaker ensemble of the pyloric central pattern generator, and antidromic invasion of central compartments by peripherally generated spikes caused spikelets in AB. Antidromic spikes suppressed burst generation in an activity-dependent manner: slower rhythms were diminished or completely disrupted, while fast rhythmic activity remained robust. Suppression of bursting was based on interference with the underlying slow wave oscillations in AB and PD, rather than a direct effect on spike initiation. A simplified multi-compartment circuit model of the pacemaker ensemble replicated this behavior. Antidromic activity disrupted slow wave oscillations by resetting the inward and outward current trajectories in each spike interval. Centrally generated bursting activity in turn suppressed peripheral spike initiation in an activity-dependent manner. Fast bursting eliminated peripheral spike initiation, while slower bursting allowed peripheral spike initiation to continue during the intervals between bursts. The suppression of peripheral spike initiation was associated with a small after-hyperpolarization in the sub-millivolt range. A realistic model of the PD axon replicated this behavior and showed that a sub-millivolt cumulative after-hyperpolarization across bursts was sufficient to eliminate peripheral spike initiation. This effect was based on the dynamic interaction between slow activity-dependent hyperpolarization caused by the Na+/K+-pump and inward rectification through the hyperpolarization-activated inward current, I h . These results demonstrate that interactions between different spike initiation sites based on spike propagation can shift the relative contributions of different types of activity in an activity-dependent manner. Therefore, distal axonal spike initiation can play an important role in shaping neural output, conditional on the relative level of centrally generated activity.
Collapse
Affiliation(s)
- Nelly Daur
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| | - Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
8
|
Christenson Wick Z, Tetzlaff MR, Krook-Magnuson E. Novel long-range inhibitory nNOS-expressing hippocampal cells. eLife 2019; 8:46816. [PMID: 31609204 PMCID: PMC6839902 DOI: 10.7554/elife.46816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
The hippocampus, a brain region that is important for spatial navigation and episodic memory, benefits from a rich diversity of neuronal cell-types. Through the use of an intersectional genetic viral vector approach in mice, we report novel hippocampal neurons which we refer to as LINCs, as they are long-range inhibitory neuronal nitric oxide synthase (nNOS)-expressing cells. LINCs project to several extrahippocampal regions including the tenia tecta, diagonal band, and retromammillary nucleus, but also broadly target local CA1 cells. LINCs are thus both interneurons and projection neurons. LINCs display regular spiking non-pyramidal firing patterns, are primarily located in the stratum oriens or pyramidale, have sparsely spiny dendrites, and do not typically express somatostatin, VIP, or the muscarinic acetylcholine receptor M2. We further demonstrate that LINCs can strongly influence hippocampal function and oscillations, including interregional coherence. The identification and characterization of these novel cells advances our basic understanding of both hippocampal circuitry and neuronal diversity.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, United States
| | - Madison R Tetzlaff
- Neuroscience Department, University of Minnesota, Minneapolis, United States
| | | |
Collapse
|
9
|
Abstract
Analog signaling describes the use of graded voltage changes as signals in the axonal compartment. Analog signaling has been described originally in invertebrates but more recent work has established its presence in the mammalian brain (Alle and Geiger, 2006; Shu et al., 2006). In recent years, many different groups have contributed to the understanding of the physiological significance of analog signaling from a cellular perspective (for a recent review the reader may take a look at the work by Zbili and Debanne, 2019 in this Frontiers in Neuroscience Special Issue). The great majority of the experimental work related to analog signaling, however, concerns the propagation of subthreshold voltage changes from the soma to the axon. Much less attention has been paid to the propagation of subthreshold voltage changes in the opposite direction, from the axon to the soma, or to the propagation of local signals within the axon. In this mini review we will describe these other variants of analog signaling that we call here “antidromic” coupling and “local” coupling.
Collapse
Affiliation(s)
- Federico F Trigo
- CNRS UMR8003, SPPIN Laboratory, Cerebellar Neurophysiology Group, Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, Paris, France.,Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
10
|
Interplay of Entorhinal Input and Local Inhibitory Network in the Hippocampus at the Origin of Slow Inhibition in Granule Cells. J Neurosci 2019; 39:6399-6413. [PMID: 31182636 DOI: 10.1523/jneurosci.2976-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity from the entorhinal cortex propagates through the perforant path (PP) to the molecular layer of the dentate gyrus (DG) where information is filtered and converted into sparse hippocampal code. Nearly simultaneous signaling to both granule cells (GC) and local interneurons (INs) engages network interactions that will modulate input integration and output generation. When triggered, GABA release from interneurons counteracts the glutamatergic signals of PP terminals, scaling down the overall DG activation. Inhibition occurs at fast or slow timescales depending on the activation of ionotropic GABAA-R or metabotropic GABAB-R. Although postsynaptic GABAA and GABAB-R differ in their location at the synapse, mixed GABAA/B-R IPSPs can also occur. Here we describe a slow inhibition mechanism in mouse GCs recorded from either sex, mediated by GABAA/B-R in combination with metabotropic glutamate receptors. Short burst PP stimulation in the gamma frequency range lead to a long-lasting hyperpolarization (LLH) of the GCs with a duration that exceeds GABAB-R IPSPs. As a result, LLH alters GC firing patterns and the responses to concomitant excitatory signals are also affected. Synaptic recruitment of feedforward inhibition and subsequent GABA release from interneurons, also successfully trigger mixed GABA responses in GCs. Together these results suggest that slow inhibition through LLH leads to reduced excitability of GCs during entorhinal input integration. The implication of LLH in regulation of neuronal excitability suggests it also contributes to the sparse population coding in DG.SIGNIFICANCE STATEMENT Our study describes a long-lasting hyperpolarization (LLH) in hippocampal granule cells. We used whole-cell patch-clamp recordings and an optogenetic approach to characterize this event. LLH is a slow inhibitory mechanism that occurs following the stimulation of the perforant pathway in the molecular layer of the dentate gyrus. We found that it is mediated via postsynaptic ionotropic and metabotropic GABA and metabotropic glutamate receptors. The duration of LLH exceeds previously described IPSPs mediated by any of these receptors. The activation of LLH requires presynaptic gamma frequency bursts and recruitment of the local feedforward inhibition. LLH defines prolonged periods of low excitability of GCs and a restrained neuronal discharge. Our results suggest that LLH can contribute to sparse activation of GCs.
Collapse
|
11
|
Deemyad T, Lüthi J, Spruston N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat Commun 2018; 9:4336. [PMID: 30337521 PMCID: PMC6194108 DOI: 10.1038/s41467-018-06338-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022] Open
Abstract
Many brain functions depend on the ability of neural networks to temporally integrate transient inputs to produce sustained discharges. This can occur through cell-autonomous mechanisms in individual neurons and through reverberating activity in recurrently connected neural networks. We report a third mechanism involving temporal integration of neural activity by a network of astrocytes. Previously, we showed that some types of interneurons can generate long-lasting trains of action potentials (barrage firing) following repeated depolarizing stimuli. Here we show that calcium signaling in an astrocytic network correlates with barrage firing; that active depolarization of astrocyte networks by chemical or optogenetic stimulation enhances; and that chelating internal calcium, inhibiting release from internal stores, or inhibiting GABA transporters or metabotropic glutamate receptors inhibits barrage firing. Thus, networks of astrocytes influence the spatiotemporal dynamics of neural networks by directly integrating neural activity and driving barrages of action potentials in some populations of inhibitory interneurons. Specific types of inhibitory neurons exhibit prolonged, high-frequency barrages of action potentials. Here, the authors show that astrocytes might mediate such barrage firing.
Collapse
Affiliation(s)
- Tara Deemyad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Joel Lüthi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| |
Collapse
|
12
|
Thome C, Roth FC, Obermayer J, Yanez A, Draguhn A, Egorov AV. Synaptic entrainment of ectopic action potential generation in hippocampal pyramidal neurons. J Physiol 2018; 596:5237-5249. [PMID: 30144079 DOI: 10.1113/jp276720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/15/2018] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Ectopic action potentials (EAPs) arise at distal locations in axonal fibres and are often associated with neuronal pathologies such as epilepsy or nerve injury, but they also occur during physiological network conditions. This study investigates whether initiation of such EAPs is modulated by subthreshold synaptic activity. Somatic subthreshold potentials invade the axonal compartment to considerable distances (>350 μm), whereas spread of axonal subthreshold potentials to the soma is inefficient. Ectopic spike generation is entrained by conventional synaptic signalling mechanisms. Excitatory synaptic potentials promote EAPs, whereas inhibitory synaptic potentials block EAPs. The modulation of ectopic excitability depends on propagation of somatic voltage deflections to the axonal EAP initiation site. Synaptic modulation of EAP initiation challenges the view of the distal axon being independent of synaptic activity and may contribute to mechanisms underlying fast network oscillations and pathological network activity. ABSTRACT While most action potentials are generated at the axon initial segment, they can also be triggered at more distal sites along the axon. Such ectopic action potentials (EAPs) occur during several neuronal pathologies such as epilepsy, nerve injuries and inflammation but have also been observed during physiological network activity. EAPs propagate antidromically towards the somato-dendritic compartment where they modulate synaptic plasticity. Here we investigate the converse signal direction: do somato-dendritic synaptic potentials affect the generation of ectopic spikes? We measured anti- and orthodromic spikes in the soma and axon of mouse hippocampal CA1 pyramidal cells. We found that synaptic potentials propagate reliably through the axon, causing significant voltage transients at distances >350 μm. At these sites, excitatory input efficiently facilitated EAP initiation in distal axons and, conversely, inhibitory input suppressed EAP initiation. Our data reveal a new mechanism by which ectopically generated spikes can be entrained by conventional synaptic signalling during normal and pathological network activity.
Collapse
Affiliation(s)
- Christian Thome
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Fabian C Roth
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Joshua Obermayer
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Antonio Yanez
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
14
|
Moreno CM, Dixon RE, Tajada S, Yuan C, Opitz-Araya X, Binder MD, Santana LF. Ca(2+) entry into neurons is facilitated by cooperative gating of clustered CaV1.3 channels. eLife 2016; 5. [PMID: 27187148 PMCID: PMC4869912 DOI: 10.7554/elife.15744] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/09/2016] [Indexed: 11/13/2022] Open
Abstract
CaV1.3 channels regulate excitability in many neurons. As is the case for all voltage-gated channels, it is widely assumed that individual CaV1.3 channels behave independently with respect to voltage-activation, open probability, and facilitation. Here, we report the results of super-resolution imaging, optogenetic, and electrophysiological measurements that refute this long-held view. We found that the short channel isoform (CaV1.3S), but not the long (CaV1.3L), associates in functional clusters of two or more channels that open cooperatively, facilitating Ca(2+) influx. CaV1.3S channels are coupled via a C-terminus-to-C-terminus interaction that requires binding of the incoming Ca(2+) to calmodulin (CaM) and subsequent binding of CaM to the pre-IQ domain of the channels. Physically-coupled channels facilitate Ca(2+) currents as a consequence of their higher open probabilities, leading to increased firing rates in rat hippocampal neurons. We propose that cooperative gating of CaV1.3S channels represents a mechanism for the regulation of Ca(2+) signaling and electrical activity.
Collapse
Affiliation(s)
- Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California, Davis, United States
| | - Rose E Dixon
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Sendoa Tajada
- Department of Physiology and Membrane Biology, University of California, Davis, United States
| | - Can Yuan
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Ximena Opitz-Araya
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Luis F Santana
- Department of Physiology and Membrane Biology, University of California, Davis, United States
| |
Collapse
|
15
|
Abstract
Recent research into local-circuit GABAergic inhibitory interneurons of the mammalian central nervous system has provided unprecedented insight into the mechanics of neuronal circuitry and its dysfunction. Inhibitory interneurons consist of a broad array of anatomically and neurochemically diverse cell types, and this suggests that each occupies an equally diverse functional role. Although neurogliaform cells were observed by Cajal over a century ago, our understanding of the functional role of this class of interneurons is in its infancy. However, it is rapidly becoming clear that this cell type operates under a distinct repertoire of rules to provide novel forms of inhibitory control of numerous afferent pathways.
Collapse
|
16
|
Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation. J Neurosci 2015; 35:4131-9. [PMID: 25762660 DOI: 10.1523/jneurosci.3671-14.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parvalbumin (PV)-expressing perisoma-inhibiting interneurons (PIIs) of the dentate gyrus integrate rapidly correlated synaptic inputs and generate short-duration action potentials that propagate along the axon to their output synapses, supporting fast inhibitory signaling onto their target cells. Here we show that PV-PIIs in rat and mouse dentate gyrus (DG) integrate their intrinsic activity over time and can turn into a persistent firing mode characterized by the ability to generate long-lasting trains of action potentials at ∼50 Hz in the absence of additional inputs. Persistent firing emerges in the axons remote from the axon initial segment and markedly depends on hyperpolarization-activated cyclic nucleotide-gated channel (HCNC) activation. Persistent firing properties are modulated by intracellular Ca(2+) levels and somatic membrane potential. Detailed computational single-cell PIIs models reveal that HCNC-mediated conductances can contribute to persistent firing during conditions of a shift in their voltage activation curve to more depolarized potentials. Paired recordings from PIIs and their target granule cells show that persistent firing supports strong inhibitory output signaling. Thus, persistent firing may emerge during conditions of intense activation of the network, thereby providing silencing to the circuitry and the maintenance of sparse activity in the dentate gyrus.
Collapse
|
17
|
Physiological properties of supragranular cortical inhibitory interneurons expressing retrograde persistent firing. Neural Plast 2015; 2015:608141. [PMID: 25763283 PMCID: PMC4339824 DOI: 10.1155/2015/608141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Neurons are polarized functional units. The somatodendritic compartment receives and integrates synaptic inputs while the axon relays relevant synaptic information in form of action potentials (APs) across long distance. Despite this well accepted notion, recent research has shown that, under certain circumstances, the axon can also generate APs independent of synaptic inputs at axonal sites distal from the soma. These ectopic APs travel both toward synaptic terminals and antidromically toward the soma. This unusual form of neuronal communication seems to preferentially occur in cortical inhibitory interneurons following a period of intense neuronal activity and might have profound implications for neuronal information processing. Here we show that trains of ectopically generated APs can be induced in a large portion of neocortical layer 2/3 GABAergic interneurons following a somatic depolarization inducing hundreds of APs. Sparsely occurring ectopic spikes were also observed in a large portion of layer 1 interneurons even in absence of prior somatic depolarization. Remarkably, we found that interneurons which produce ectopic APs display specific membrane and morphological properties significantly different from the remaining GABAergic cells and may therefore represent a functionally unique interneuronal subpopulation.
Collapse
|
18
|
Szczurowska E, Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res Bull 2015; 111:1-8. [DOI: 10.1016/j.brainresbull.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
|
19
|
Lu W, Wen B, Zhang F, Wang JH. Voltage-independent sodium channels emerge for an expression of activity-induced spontaneous spikes in GABAergic neurons. Mol Brain 2014; 7:38. [PMID: 24886791 PMCID: PMC4039334 DOI: 10.1186/1756-6606-7-38] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cerebral overexcitation needs inhibitory neurons be functionally upregulated to rebalance excitation vs. inhibition. For example, the intensive activities of GABAergic neurons induce spontaneous spikes, i.e., activity-induced spontaneous spikes (AISS). The mechanisms underlying AISS onset remain unclear. We investigated the roles of sodium channels in AISS induction and expression at hippocampal GABAergic neurons by electrophysiological approach. RESULTS AISS expression includes additional spike capability above evoked spikes, and the full spikes in AISS comprise early phase (spikelets) and late phase, implying the emergence of new spikelet component. Compared with the late phase, the early phase is characterized as voltage-independent onset, less voltage-dependent upstroke and sensitivity to TTX. AISS expression and induction are independent of membrane potential changes. Therefore, AISS's spikelets express based on voltage-independent sodium channels. In terms of AISS induction, the facilitation of voltage-gated sodium channel (VGSC) activation accelerates AISS onset, or vice versa. CONCLUSION AISS expression in GABAergic neurons is triggered by the spikelets based on the functional emergence of voltage-independent sodium channels, which is driven by intensive VGSCs' activities.
Collapse
Affiliation(s)
- Wei Lu
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wen
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Zhang
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Jin-Hui Wang
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- Qingdao University, Medical College, 38, Dengzhou, Shandong 266021, China
| |
Collapse
|
20
|
Suzuki N, Tang CSM, Bekkers JM. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity. Front Cell Neurosci 2014; 8:76. [PMID: 24659955 PMCID: PMC3952511 DOI: 10.3389/fncel.2014.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting over-excitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing (BF), is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform (NG) cells and fast-spiking (FS) cells, are unique in exhibiting BF in acute slices (~85 and ~23% success rate for induction, respectively). BF can also be induced in vivo, although the success rate for induction is lower (~60% in NG cells). In slices, BF could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K(+), blockade of GABAA receptors). Using pair recordings in slices, we confirmed that barrage-firing NG cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of NG and FS cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - Clara S-M Tang
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|