1
|
He Z, Xu X, Zhao Q, Ding H, Wang DW. Vasospastic angina: Past, present, and future. Pharmacol Ther 2023; 249:108500. [PMID: 37482097 DOI: 10.1016/j.pharmthera.2023.108500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Vasospastic angina (VSA) is characterized by episodes of rest angina that are responsive to short-acting nitrates and are attributable to coronary artery vasospasm. The condition is underdiagnosed as the provocation test is rarely performed. VSA, the most important component of non-obstructive coronary artery disease, can present with angina, be asymptomatic, or can even present with fatal arrhythmias and cardiac arrest. Although most patients with VSA respond well to vasodilating medications, prognosis does not improve as expected in most patients, suggesting the existence elusive prognostic factors and pathogenesis that warrant further exploration. Moreover, patients with either severe or refractory VSA barely respond to conventional treatment and may develop life-threatening arrhythmias or suffer sudden cardiac death during ischemic attacks, which are associated with immune-inflammatory responses and have been shown to achieve remission following glucocorticoid and immunoglobulin treatments. Our recent work revealed that inflammation plays a key role in the initiation and development of coronary spasms, and that inflammatory cytokines have predictive value for diagnosis. In contrast to the existing literature, this review both summarizes the theoretical and clinical aspects of VSA, and also discusses the relationship between inflammation, especially myocarditis and VSA, in order to provide novel insights into the etiology, diagnosis, and treatment of VSA.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xin Xu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qu Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
2
|
Diao M, Zhou J, Tao Y, Hu Z, Lin X. Rac1 is involved in uterine myometrium contraction in the inflammation associated preterm birth. Reproduction 2022; 164:169-181. [PMID: 36018772 PMCID: PMC9513643 DOI: 10.1530/rep-21-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Preterm birth (PTB) is a public health issue. The WHO has recommended the use of tocolytic treatment to inhibit preterm labour and improve pregnancy outcomes. Intrauterine inflammation is associated with preterm birth. Rac1 can modulate inflammation in different experimental settings. In the current study, we explored whether Rac1 can modulate spontaneous uterine myometrium contraction in a mouse model of lipopolysaccharide (LPS)-induced intrauterine inflammation. Subsequently, we recorded uterine myometrium contraction and examined uterine Rac1 expression in a mouse model of preterm birth and case in pregnant women by western blotting analysis. We also measured progesterone levels in the blood serum from mice. Murine myometrium was obtained 12 h post LPS treatment. Human myometrium was obtained at the time of caesarean section. We found that in the LPS-treated group of mice, uterine myometrium contraction was enhanced, protein levels and activation of Rac1 were increased and serum progesterone levels were decreased. The protein levels of Rac1 were also increased in preterm birth or case in pregnant women. NSC23766, a Rac1 inhibitor, attenuated uterine myometrium contraction and diminished Rac1 activation and COX-2 expression. Furthermore, silencing of Rac1 suppressed cell contraction and COX-2 expression in vitro. In conclusion, our results suggested that Rac1 may play an important role in modulating uterine myometrium contraction. Consequently, intervening with Rac1 represents a novel strategy for the treatment of preterm birth.
Collapse
Affiliation(s)
- Min Diao
- M Diao, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin Zhou
- J Zhou, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yunkai Tao
- Y Tao, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Zhaoyang Hu
- Z Hu, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan University West China Hospital, Chengdu, China
| | - Xuemei Lin
- X Lin, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| |
Collapse
|
3
|
Erdogan BR, Liu G, Arioglu-Inan E, Michel MC. Established and emerging treatments for diabetes-associated lower urinary tract dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:887-906. [PMID: 35545721 PMCID: PMC9276575 DOI: 10.1007/s00210-022-02249-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction of the lower urinary tract (LUT) including urinary bladder and urethra (and prostate in men) is one of the most frequent complications of diabetes and can manifest as overactive bladder, underactive bladder, urinary incontinence, and as aggravated symptoms of benign prostate hyperplasia. We have performed a selective literature search to review existing evidence on efficacy of classic medications for the treatment of LUT dysfunction in diabetic patients and animals, i.e., α1-adrenoceptor and muscarinic receptor antagonists, β3-adrenoceptor agonists, and phosphodiesterase type 5 inhibitors. Generally, these agents appear to have comparable efficacy in patients and/or animals with and without diabetes. We also review effects of antidiabetic medications on LUT function. Such studies have largely been performed in animal models. In the streptozotocin-induced models of type 1 diabetes, insulin can prevent and reverse alterations of morphology, function, and gene expression patterns in bladder and prostate. Typical medications for the treatment of type 2 diabetes have been studied less often, and the reported findings are not yet sufficient to derive robust conclusions. Thereafter, we review animal studies with emerging medications perhaps targeting diabetes-associated LUT dysfunction. Data with myoinositol, daidzein, and with compounds that target oxidative stress, inflammation, Rac1, nerve growth factor, angiotensin II receptor, serotonin receptor, adenosine receptor, and soluble guanylyl cyclase are not conclusive yet, but some hold promise as potential treatments. Finally, we review nonpharmacological interventions in diabetic bladder dysfunction. These approaches are relatively new and give promising results in preclinical studies. In conclusion, the insulin data in rodent models of type 1 diabetes suggest that diabetes-associated LUT function can be mostly or partially reversed. However, we propose that considerable additional experimental and clinical studies are needed to target diabetes itself or pathophysiological changes induced by chronic hyperglycemia for the treatment of diabetic uropathy.
Collapse
Affiliation(s)
- Betül R Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Biomedicines 2022; 10:biomedicines10061357. [PMID: 35740379 PMCID: PMC9219850 DOI: 10.3390/biomedicines10061357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches.
Collapse
|
5
|
Neagoe RAI, Gardiner EE, Stegner D, Nieswandt B, Watson SP, Poulter NS. Rac Inhibition Causes Impaired GPVI Signalling in Human Platelets through GPVI Shedding and Reduction in PLCγ2 Phosphorylation. Int J Mol Sci 2022; 23:3746. [PMID: 35409124 PMCID: PMC8998833 DOI: 10.3390/ijms23073746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1's mode of action differs between the two species.
Collapse
Affiliation(s)
- Raluca A. I. Neagoe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - David Stegner
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Bernhard Nieswandt
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| |
Collapse
|
6
|
Dilasser F, Rio M, Rose L, Tesse A, Guignabert C, Loirand G, Sauzeau V. Smooth muscle Rac1 contributes to pulmonary hypertension. Br J Pharmacol 2022; 179:3418-3429. [PMID: 35064565 PMCID: PMC9305120 DOI: 10.1111/bph.15805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Pulmonary hypertension (PH) is a multifactorial chronic disease characterized by an increase in pulmonary artery (PA) resistance leading to right ventricle (RV) failure. Endothelial dysfunction and alteration of NO/cGMP signalling in PA plays a major role in PH. We recently described the involvement of the Rho protein Rac1 in the control of systemic blood pressure through its involvement in NO‐mediated relaxation of arterial smooth muscle cell (SMC). The aim of this study was to analyse the role of SMC Rac1 in PH. Experimental Approach PH is induced by exposure of control and SMC Rac1‐deficient (SM‐Rac1‐KO) mice to chronic hypoxia (10% O2, 4 weeks). PH is assessed by the measurement of RV systolic pressure and hypertrophy. PA reactivity is analysed by isometric tension measurements. PA remodelling is quantified by immunofluorescence in lung sections and ROS are detected using the dihydroethidium probe and electronic paramagnetic resonance analysis. Rac1 activity is determined by immunofluorescence. Key Results Rac1 activation in PA of hypoxic mice and patients with idiopathic PH. Hypoxia‐induced rise in RV systolic pressure, RV hypertrophy and loss of endothelium‐dependent relaxation were significantly decreased in SM‐Rac1‐KO mice compared to control mice. SMC Rac1 deletion also limited hypoxia‐induced PA remodelling and ROS production in pulmonary artery smooth muscle cells (PASMCs). Conclusion and Implications Our results provide evidence for a protective effect of SM Rac1 deletion against hypoxic PH. Rac1 activity in PASMCs plays a causal role in PH by favouring ROS‐dependent PA remodelling and endothelial dysfunction induced by chronic hypoxia.
Collapse
Affiliation(s)
- Florian Dilasser
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| | - Marc Rio
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| | - Lindsay Rose
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| | - Angela Tesse
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| | - Christophe Guignabert
- Inserm UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue Le Plessis‐Robinson France
- Faculté de Médecine Université Paris‐Saclay Le Kremlin‐Bicêtre France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’institut du thorax Nantes France
| |
Collapse
|
7
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
8
|
Novel computational analysis of large transcriptome datasets identifies sets of genes distinguishing chronic obstructive pulmonary disease from healthy lung samples. Sci Rep 2021; 11:10258. [PMID: 33986404 PMCID: PMC8119951 DOI: 10.1038/s41598-021-89762-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) kills over three million people worldwide every year. Despite its high global impact, the knowledge about the underlying molecular mechanisms is still limited. In this study, we aimed to extend the available knowledge by identifying a small set of COPD-associated genes. We analysed different publicly available gene expression datasets containing whole lung tissue (WLT) and airway epithelium (AE) samples from over 400 human subjects for differentially expressed genes (DEGs). We reduced the resulting sets of 436 and 663 DEGs using a novel computational approach that utilises a random depth-first search to identify genes which improve the distinction between COPD patients and controls along the first principle component of the data. Our method identified small sets of 10 and 15 genes in the WLT and AE, respectively. These sets of genes significantly (p < 10–20) distinguish COPD patients from controls with high fidelity. The final sets revealed novel genes like cysteine rich protein 1 (CRIP1) or secretoglobin family 3A member 2 (SCGB3A2) that may underlie fundamental molecular mechanisms of COPD in these tissues.
Collapse
|
9
|
Wei X, Lan T, Zhou Y, Cheng J, Li P, Zeng X, Yang Y. Mechanism of α1-Adrenergic Receptor-Induced Increased Contraction of Rat Mesenteric Artery in Aging Hypertension Rats. Gerontology 2021; 67:323-337. [PMID: 33752204 DOI: 10.1159/000511911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Vasoconstriction is triggered by an increase in intracellular-free calcium concentration. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC), and so on. In this study, we studied the changes of vascular reactivity as well as the underlying signaling pathways in aging spontaneously hypertensive rats (SHRs). METHODS The artery tension induced by α1-adrenergic receptor activator (α1-AR) phenylephrine (PE) was measured in the absence or presence of myosin light chain kinase (MLCK), PKC, and ROCK inhibitors. The α1-AR, PKC, ROCK, phosphorylation of myosin light chain (MLC), and PKC-potentiated phosphatase inhibitors of 17 kDa (CPI-17) of rat mesenteric arteries were analyzed at the mRNA level or protein level. RESULTS The vascular tension measurements showed that there was a significant increase in the mesenteric artery contraction induced by PE in old SHR. MLCK inhibitor ML-7 can similarly inhibit PE-induced vasoconstriction. PKC inhibitor GF109203X has the weakest inhibitory effect on PE-induced contraction in old SHR. At the presence of ROCK inhibitor H1152, PE-induced contraction was significantly reduced in young Wistar-Kyoto (WKY) rats, but this phenomenon disappeared in other rats. Furthermore, in old SHR the protein expression of α1-AR decreased and phosphorylation of MLC and CPI-17 were upregulated and MLC phosphatase (MLCP) activity was significantly lower. The expressions of PKC were upregulated in SHR and old rats. In addition, the expression of ROCK-1 was decreased and ROCK-2 was significantly upregulated with age in SHR. CONCLUSION In aging hypertension, the expression/activity of PKC or ROCK-2/CPI-17 excessively increased, MLCP activity decreased and MLC phosphorylation enhanced, leading to increased α1-AR-induced vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ting Lan
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuanqun Zhou
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaorong Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,
| |
Collapse
|
10
|
Rac1 silencing, NSC23766 and EHT1864 reduce growth and actin organization of bladder smooth muscle cells. Life Sci 2020; 261:118468. [PMID: 32961232 DOI: 10.1016/j.lfs.2020.118468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
AIMS RacGTPase-mediated proliferation and smooth muscle contraction in the lower urinary tract has been recently suggested and may offer putative targets for treamtment of lower urinary tract symptoms. However, RacGTPase function for proliferation of detrusor smooth muscle cells is unknown and the specificity of Rac inhibitors has been questioned. Here, we examined effects of Rac1 knockdown and of the Rac inhibitors NSC23766 and EHT1864 in human bladder smooth muscle cells (hBSMCs). MAIN METHODS Rac1 expression was silenced by shRNA expression. Effects of silencing and Rac inhibitors were assessed by CCK-8 assay, EdU staining, RT-PCR, colony formation assay, flow cytometry, and phalloidin staining. KEY FINDINGS Silencing of Rac1 expression reduced the viability (up to 83% compared to scramble shRNA) and proliferation (virtually completely in proliferation assay), increased apoptosis (124%) and the number of dead cells (51%), and caused breakdown of actin organization (56% reduction of polymerized actin compared to scramble shRNA). Effects on proliferation, viability, and actin organization were mimicked by NSC23766 and EHT1864, while both compounds showed divergent effects on cell death (32-fold increase of dead cells by EHT1864, but not NSC23766). Effects of NSC23766 and EHT1864 on viability of hBSMCs were not altered by Rac1 knockdown. SIGNIFICANCE Rac1 promotes proliferation, viability, and cytoskeletal organization, and suppresses apoptosis in bladder smooth muscle cells, which may be relevant in overactive bladder or diabetes-related bladder dysfunction. NSC23766 and EHT1864 mimick these effects, but may act Rac1-independently, by shared and divergent effects.
Collapse
|
11
|
Li B, Wang R, Wang Y, Stief CG, Hennenberg M. Regulation of smooth muscle contraction by monomeric non-RhoA GTPases. Br J Pharmacol 2020; 177:3865-3877. [PMID: 32579705 PMCID: PMC7429483 DOI: 10.1111/bph.15172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle contraction in the cardiovascular system, airways, prostate and lower urinary tract is involved in the pathophysiology of many diseases, including cardiovascular and obstructive lung disease plus lower urinary tract symptoms, which are associated with high prevalence of morbidity and mortality. This prominent clinical role of smooth muscle tone has led to the molecular mechanisms involved being subjected to extensive research. In general smooth muscle contraction is promoted by three major signalling pathways, including the monomeric GTPase RhoA pathway. However, emerging evidence suggests that monomeric GTPases other than RhoA may be involved in signal transduction in smooth muscle contraction, including Rac GTPases, cell division control protein 42 homologue, adenosine ribosylation factor 6, Ras, Rap1b and Rab GTPases. Here, we review these emerging functions of non-RhoA GTPases in smooth muscle contraction, which has now become increasingly more evident and constitutes an emerging and innovative research area of high clinical relevance.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yiming Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Li B, Yu Q, Wang R, Gratzke C, Wang X, Spek A, Herlemann A, Tamalunas A, Strittmatter F, Waidelich R, Stief CG, Hennenberg M. Inhibition of Female and Male Human Detrusor Smooth Muscle Contraction by the Rac Inhibitors EHT1864 and NSC23766. Front Pharmacol 2020; 11:409. [PMID: 32317972 PMCID: PMC7154109 DOI: 10.3389/fphar.2020.00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Lower urinary tract symptoms (LUTS) due to overactive bladder (OAB) are caused by spontaneous detrusor contractions. Medical treatment with muscarinic receptor antagonists or β3-adrenoceptor agonists aims to inhibit detrusor contractions, but overall results are unsatisfactory. Consequently, improved understanding of bladder smooth muscle contraction and identification of novel compounds for its inhibition are needed to develop alternative options. A role of the GTPase Rac1 for smooth muscle contraction has been reported from the prostate, but is unknown in the human detrusor. Here, we examined effects of the Rac inhibitors NSC23766, which may also antagonize muscarinic receptors, and EHT1864 on contraction of human detrusor tissues. Methods Female and male human detrusor tissues were obtained from radical cystectomy. Effects of NSC23766 (100 µM) and EHT1864 (100 µM) on detrusor contractions were studied in an organ bath. Results Electric field stimulation induced frequency-dependent contractions of detrusor tissues, which were inhibited by NSC23766 and EHT1864. Carbachol induced concentration-dependent contractions. Concentration response curves for carbachol were shifted to the right by NSC23766, reflected by increased EC50 values, but unchanged Emax values. EHT1864 reduced carbachol-induced contractions, resulting in reduced Emax values for carbachol. The thromboxane analog U46619 induced concentration-dependent contractions, which remained unchanged by NSC23766, but were reduced by EHT1864. Conclusions NSC23766 and EHT1864 inhibit female and male human detrusor contractions. NSC23766, but not EHT1864 competitively antagonizes muscarinic receptors. In addition to neurogenic and cholinergic contractions, EHT1864 inhibits thromboxane A2-induced detrusor contractions. The latter may be promising, as the origin of spontaneous detrusor contractions in OAB is noncholinergic. In vivo, both compounds may improve OAB-related LUTS.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Qingfeng Yu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Gratzke
- Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University of Freiburg, Freiburg, Germany
| | - Xiaolong Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Annabel Spek
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Annika Herlemann
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res 2020; 215:17-30. [PMID: 31491372 DOI: 10.1016/j.trsl.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
The administration of geranylgeranyl pyrophosphate (GGPP) (or its precursor, geranylgeraniol [GGOH]) has been shown by several in vitro studies to be capable of abrogating statin-induced myotoxicity. Nonetheless, the potential of GGPP repletion to prevent statin-associated muscle symptoms (SAMS) in vivo is yet to be investigated. Therefore, this study aimed to evaluate the ability of GGOH to prevent SAMS in rodents. Female Wistar rats (12 weeks of age) were randomised to 1 of 4 treatment groups: control, control with GGOH, simvastatin or simvastatin with GGOH. Ex vivo assessment of force production was conducted in skeletal muscles of varying fiber composition. Ex vivo left ventricular performance and blood vessel function was also assessed to determine if the administration of GGOH caused adverse changes in these parameters. Statin administration was associated with reduced force production in fast-twitch glycolytic muscle, but coadministration with GGOH completely abrogated this effect. Additionally, GGOH improved the performance of muscles not adversely affected by simvastatin (ie, those with a greater proportion of slow-twitch oxidative fibers), and increased force production in the control animals. Neither control nor statin-treated rodents given GGOH exhibited adverse changes in cardiac function. Vascular relaxation was also maintained following treatment with GGOH. The findings of this study demonstrate that GGOH can prevent statin-induced skeletal muscle fatigue in rodents without causing adverse changes in cardiovascular function. Further studies to elucidate the exact mechanisms underlying the effects observed in this investigation are warranted.
Collapse
Affiliation(s)
- Jordon C Irwin
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia.
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
14
|
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2019; 114:529-539. [PMID: 29394331 PMCID: PMC5852517 DOI: 10.1093/cvr/cvy023] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Livia L Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Augusto C Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
15
|
Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The Small GTPase Rac1 Increases Cell Surface Stiffness and Enhances 3D Migration Into Extracellular Matrices. Sci Rep 2019; 9:7675. [PMID: 31118438 PMCID: PMC6531482 DOI: 10.1038/s41598-019-43975-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Membrane ruffling and lamellipodia formation promote the motility of adherent cells in two-dimensional motility assays by mechano-sensing of the microenvironment and initiation of focal adhesions towards their surroundings. Lamellipodium formation is stimulated by small Rho GTPases of the Rac subfamily, since genetic removal of these GTPases abolishes lamellipodium assembly. The relevance of lamellipodial or invadopodial structures for facilitating cellular mechanics and 3D cell motility is still unclear. Here, we hypothesized that Rac1 affects cell mechanics and facilitates 3D invasion. Thus, we explored whether fibroblasts that are genetically deficient for Rac1 (lacking Rac2 and Rac3) harbor altered mechanical properties, such as cellular deformability, intercellular adhesion forces and force exertion, and exhibit alterations in 3D motility. Rac1 knockout and control cells were analyzed for changes in deformability by applying an external force using an optical stretcher. Five Rac1 knockout cell lines were pronouncedly more deformable than Rac1 control cells upon stress application. Using AFM, we found that cell-cell adhesion forces are increased in Rac1 knockout compared to Rac1-expressing fibroblasts. Since mechanical deformability, cell-cell adhesion strength and 3D motility may be functionally connected, we investigated whether increased deformability of Rac1 knockout cells correlates with changes in 3D motility. All five Rac1 knockout clones displayed much lower 3D motility than Rac1-expressing controls. Moreover, force exertion was reduced in Rac1 knockout cells, as assessed by 3D fiber displacement analysis. Interference with cellular stiffness through blocking of actin polymerization by Latrunculin A could not further reduce invasion of Rac1 knockout cells. In contrast, Rac1-expressing controls treated with Latrunculin A were again more deformable and less invasive, suggesting actin polymerization is a major determinant of observed Rac1-dependent effects. Together, we propose that regulation of 3D motility by Rac1 partly involves cellular mechanics such as deformability and exertion of forces.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
Kai Y, Motegi M, Suzuki Y, Takeuchi H, Harada Y, Sato F, Chiba Y, Kamei J, Sakai H. Up-regulation of Rac1 in the bronchial smooth muscle of murine experimental asthma. Basic Clin Pharmacol Toxicol 2019; 125:8-15. [PMID: 30697954 DOI: 10.1111/bcpt.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
There has been considerable research on the involvement of RhoA/Rho kinase signalling in smooth muscle contractions. However, only a few reports have addressed the specific role of Rac1, which is a member of the Rho GTPase superfamily. Therefore, this study investigated the role of Rac1-related pathways in bronchial smooth muscle (BSM) contractions. Bronchial rings isolated from mice were suspended in an organ bath, and the isometric contractions of circular smooth muscles were monitored. The phosphorylation of myosin light chains (MLCs) was analysed by immunoblotting. The Rac1 inhibitor EHT1864 inhibited carbachol (CCh)-induced BSM contractions, although high K+ depolarization-induced BSM contractions were not significantly attenuated by EHT1864. Moreover, high K+ - and phorbol 12,13-dibutyrate (PDBu; PKC activator)-induced contractions were not attenuated by Rac1 inhibition, whereas sodium fluoride (NaF)-induced force development was inhibited by EHT1864. The gene and protein expression of Rac1 was increased in the BSM of a murine model with antigen-induced airway hyper-responsiveness (AHR). In addition, an increased force of the BSM contractions in AHR was suppressed by EHT1864 treatment, suggesting that the up-regulation of Rac1 is involved in AHR. These findings suggest that an increase in Rac1-mediated signalling is involved in the augmented contractions of BSMs in antigen-induced AHR mice.
Collapse
Affiliation(s)
- Yuki Kai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Momoko Motegi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Hiroto Takeuchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yui Harada
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| |
Collapse
|
17
|
B Ramachandra A, Humphrey JD. Biomechanical characterization of murine pulmonary arteries. J Biomech 2019; 84:18-26. [PMID: 30598195 PMCID: PMC6361676 DOI: 10.1016/j.jbiomech.2018.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
The biomechanical properties of the major pulmonary arteries play critical roles in normal physiology as well as in diverse pathophysiologies and clinical interventions. Importantly, advances in medical imaging enable simulations of pulmonary hemodynamics, but such models cannot reach their full potential until they are informed with region-specific material properties. In this paper, we present passive and active biaxial biomechanical data for the right and left main pulmonary arteries from wild-type mice. We also evaluate the suitability of a four-fiber family constitutive model as a descriptor of the passive behavior. Despite regional differences in size, the biaxial mechanical properties, including passive stiffness and elastic energy storage, the biaxial wall stresses at in vivo pressures, and the overall contractile capacity in response to smooth muscle cell stimulation under in vivo conditions are remarkably similar between the right and left branches. The proposed methods and results can serve as baseline protocols and measurements for future biaxial experiments on murine models of pulmonary pathologies, and the constitutive model can inform computational models of normal pulmonary growth and remodeling. Our use of consistent experimental protocols and data analyses can also facilitate comparative studies in health and disease across the systemic and pulmonary circulations as well as studies seeking to understand remodeling in surgeries such as the Fontan procedure, which involves different types of vessels.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
18
|
Baidwan S, Chekuri A, Hynds DL, Kowluru A. Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin. Apoptosis 2018; 22:1380-1393. [PMID: 28828705 DOI: 10.1007/s10495-017-1409-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.
Collapse
Affiliation(s)
- Sartaj Baidwan
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Anil Chekuri
- Shiley Eye Institute, University of California, La Jolla, CA, 92093, USA
| | - DiAnna L Hynds
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Anjaneyulu Kowluru
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, USA. .,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA. .,B-4237 Research Service, John D. Dingell VA Medical Center, 4646 John R Street, Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction. Eur J Pharmacol 2018; 818:74-83. [DOI: 10.1016/j.ejphar.2017.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
|
20
|
André-Grégoire G, Dilasser F, Chesné J, Braza F, Magnan A, Loirand G, Sauzeau V. Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness. J Allergy Clin Immunol 2017; 142:824-833.e3. [PMID: 29155102 DOI: 10.1016/j.jaci.2017.09.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. OBJECTIVE The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C β2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. CONCLUSIONS Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Julie Chesné
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Faouzi Braza
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Antoine Magnan
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Gervaise Loirand
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France
| | - Vincent Sauzeau
- NSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France; CHU Nantes, Nantes, France.
| |
Collapse
|
21
|
Lin S, Brozovich FV. MYPT1 isoforms expressed in HEK293T cells are differentially phosphorylated after GTPγS treatment. J Smooth Muscle Res 2017; 52:66-77. [PMID: 27725371 PMCID: PMC5321854 DOI: 10.1540/jsmr.52.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agonist stimulation of smooth muscle is known to activate RhoA/Rho kinase signaling, and
Rho kinase phosphorylates the myosin targeting subunit (MYPT1) of myosin light chain (MLC)
phosphatase at Thr696 and Thr853, which inhibits the activity of MLC phosphatase to
produce a Ca2+ independent increase in MLC phosphorylation and force (Ca2+ sensitization).
Alternative mRNA splicing produces four MYPT1 isoforms, which differ by the presence or
absence of a central insert (CI) and leucine zipper (LZ). This study was designed to
determine if Rho kinase differentially phosphorylates MYPT1 isoforms. In HEK293T cells
expressing each of the four MYPT1 isoforms, we could not detect a change in Thr853 MYPT1
phosphorylation following GTPγS treatment. However, there is differential phosphorylation
of MYPT1 isoforms at Thr696; GTPγS treatment increases MYPT1 phosphorylation for the
CI+LZ- and CI-LZ- MYPT1 isoforms, but not the CI+LZ+ or CI-LZ+ MYPT1 isoforms. These data
could suggest that in smooth muscle Rho kinase differentially phosphorylates MYPT1
isoforms.
Collapse
Affiliation(s)
- Simon Lin
- Mayo Medical School, Department of Cardiovascular Disease, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors. Sci Rep 2017; 7:41875. [PMID: 28157227 PMCID: PMC5291103 DOI: 10.1038/srep41875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage.
Collapse
|
23
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
24
|
Wang Y, Kunit T, Ciotkowska A, Rutz B, Schreiber A, Strittmatter F, Waidelich R, Liu C, Stief CG, Gratzke C, Hennenberg M. Inhibition of prostate smooth muscle contraction and prostate stromal cell growth by the inhibitors of Rac, NSC23766 and EHT1864. Br J Pharmacol 2015; 172:2905-17. [PMID: 25631101 PMCID: PMC4439884 DOI: 10.1111/bph.13099] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, or prostate growth. However, current therapeutic options are insufficient. Here, we investigated the role of Rac in the control of smooth muscle tone in human prostates and growth of prostate stromal cells. EXPERIMENTAL APPROACH Experiments were performed using human prostate tissues from radical prostatectomy and cultured stromal cells (WPMY-1). Expression of Rac was examined by Western blot and fluorescence staining. Effects of Rac inhibitors (NSC23766 and EHT1864) on contractility were assessed in the organ bath. The effects of Rac inhibitors were assessed by pull-down, cytotoxicity using a cell counting kit, cytoskeletal organization by phalloidin staining and cell growth using an 5-ethynyl-2'-deoxyuridine assay. KEY RESULTS Expression of Rac1-3 was observed in prostate samples from each patient. Immunoreactivity for Rac1-3 was observed in the stroma, where it colocalized with the smooth muscle marker, calponin. NSC23766 and EHT1864 significantly reduced contractions of prostate strips induced by noradrenaline, phenylephrine or electrical field stimulation. NSC23766 and EHT1864 inhibited Rac activity in WPMY-1 cells. Survival of WPMY-1 cells ranged between 64 and 81% after incubation with NSC23766 (50 or 100 μM) or EHT1864 (25 μM) for 24 h. NSC23766 and EHT1864 induced cytoskeletal disorganization in WPMY-1 cells. Both inhibitors impaired the growth of WPMY-1 cells. CONCLUSIONS AND IMPLICATIONS Rac may be a link connecting the control of prostate smooth muscle tone with proliferation of smooth muscle cells. Improvements in LUTS suggestive of BPH by Rac inhibitors appears possible.
Collapse
Affiliation(s)
- Y Wang
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - T Kunit
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
- University Hospital for Urology and AndrologySalzburg, Austria
| | - A Ciotkowska
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - B Rutz
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - A Schreiber
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - F Strittmatter
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - R Waidelich
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - C Liu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - C G Stief
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - C Gratzke
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - M Hennenberg
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| |
Collapse
|
25
|
Shibata K, Sakai H, Huang Q, Kamata H, Chiba Y, Misawa M, Ikebe R, Ikebe M. Rac1 regulates myosin II phosphorylation through regulation of myosin light chain phosphatase. J Cell Physiol 2015; 230:1352-64. [PMID: 25502873 DOI: 10.1002/jcp.24878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
Phosphorylation of regulatory light chain (MLC) activates myosin II, which enables it to promote contractile and motile activities of cells. We report here a novel signaling mechanism that activates MLC phosphorylation and smooth muscle contraction. Contractile agonists activated Rac1, and Rac1 inhibition diminished agonist-induced MLC phosphorylation, thus inhibiting smooth muscle contraction. Rac1 inhibits the activity of MLC phosphatase (MLCP) but not that of MLC kinase, through a phosphatase that targets MYPT1 (a regulatory subunit of MLCP) and CPI-17 (a MLCP specific inhibitor) rather than through the RhoA-Rho dependent kinase (ROCK) pathway. Rac1 inhibition decreased the activity of protein kinase C (PKC), which also contributes to the change in CPI-17 phosphorylation. We propose that activation of Rac1 increases the activity of PKC, which increases the phosphorylation of CPI-17 and MYPT1 by inhibiting the phosphatase that targets these proteins, thereby decreasing the activity of MLCP and increasing phosphorylation of MLC. Our results suggest that Rac1 coordinates with RhoA to increase MLC phosphorylation by inactivation of CPI-17/MYPT1 phosphatase, which decreases MLCP activity thus promoting MLC phosphorylation and cell contraction.
Collapse
Affiliation(s)
- Keita Shibata
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dütting S, Heidenreich J, Cherpokova D, Amin E, Zhang SC, Ahmadian MR, Brakebusch C, Nieswandt B. Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. J Thromb Haemost 2015; 13:827-38. [PMID: 25628054 DOI: 10.1111/jth.12861] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/10/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Platelet aggregation at sites of vascular injury is essential for normal hemostasis, but may also cause pathologic vessel occlusion. Rho GTPases are molecular switches that regulate essential cellular processes, and they have pivotal functions in the cardiovascular system. Rac1 is an important regulator of platelet cytoskeletal reorganization, and contributes to platelet activation. Rac1 inhibitors are thought to be beneficial in a wide range of therapeutic settings, and have therefore been tested in vivo for a variety of disorders. Two small-molecule inhibitors, NSC23766 and EHT1864, have been characterized in different cell types, demonstrating high specificity for Rac1 and Rac, respectively. OBJECTIVES To analyze the specificity of NSC23766 and EHT1864. METHODS Platelet function was assessed in mouse wild-type and Rac1-deficient platelets by the use of flow cytometric analysis of cellular activation and aggregometry. Platelet spreading was analyzed with differential interference contrast microscopy, and activation of effector molecules was analyzed with biochemical approaches. RESULTS NSC23766 and EHT1864 showed strong and distinct Rac1-independent effects at 100 μm in platelet function tests. Both inhibitors induced Rac1-specific inhibition of platelet spreading, but also markedly impaired agonist-induced activation of Rac1(-/-) platelets. Furthermore, glycoprotein Ib-mediated signaling was dramatically inhibited by NSC23766 in both wild-type and Rac1-deficient platelets. Importantly, these inhibitors directly affected the activation of the Rac1 effectors p21-activated kinase (PAK)1 and PAK2. CONCLUSIONS Our results reveal critical off-target effects of NSC23766 and EHT1864 at 100 μm in mammalian cells, raising questions about their utility as specific Rac1/Rac inhibitors in biochemical studies at these concentrations and possibly as therapeutic agents.
Collapse
Affiliation(s)
- S Dütting
- Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 2015; 133:767-79. [PMID: 25818528 DOI: 10.1111/jnc.13100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
The small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in cells. Formation of extensions at the surface of the cell is required for migration and even for cell invasion and metastases. Because an elevated level and hyperactivation of this protein has been associated with metastasis in cancer, direct regulators of Rac1 are currently envisioned as a potential strategy to treat certain cancers. Less research, however, has been done regarding the role of this small GTP-binding protein in brain development, where it has an important role in dendritic spine morphogenesis through the regulation of actin. Alteration of dendritic development and spinogenesis has been often associated with mental disorders. Rac1 is associated with and required for learning and the formation of memories in the brain. Rac1 appears to be dysregulated in certain neurodevelopmental disorders that present all these three alterations: mental retardation, atypical synaptic plasticity and aberrant spine morphology. Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be to target this protein, Rac1, which plays a pivotal role in directing signals that regulate actin dynamics, which in turn might have an effect in spine cytoarchitecture and synaptic function. It is possible that novel drugs that regulate Rac1 activation and function could modulate actin cytoskeleton and spine dynamics, representing potential candidates to repair intellectual disability in disorders associated with spine abnormalities. Herein, we present a list of the current Rac1 inhibitors that might fulfill this role together with a summary of the latest findings concerning their function as they relate to neuronal studies. While the small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in different type of cells, it appears to be also required for learning and the formation of memories in the brain. Abnormal regulation of this protein has been associated with cognitive disabilities, atypical synaptic plasticity and abnormal morphology of dendritic spines in certain neurodevelopmental disorders. Thus, modulation of Rac1 activity using novel inhibitors might be a strategy to reestablish cognitive function.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.,Department of Biology, University of Houston, Houston, Texas, USA.,Department of Psychology, University of Houston, Houston, Texas, USA.,Biology of Behavior Institute (BoBI), University of Houston, Houston, Texas, USA
| |
Collapse
|
28
|
Evcim AS, Micili SC, Karaman M, Erbil G, Guneli E, Gidener S, Gumustekin M. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats. Basic Clin Pharmacol Toxicol 2014; 116:476-84. [DOI: 10.1111/bcpt.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Atiye Sinem Evcim
- Department of Pharmacology; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Serap Cilaker Micili
- Department of Histology Embryology; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Meral Karaman
- Department of Laboratory Animal Science; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Guven Erbil
- Department of Histology Embryology; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Ensari Guneli
- Department of Laboratory Animal Science; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Sedef Gidener
- Department of Pharmacology; School of Medicine; Dokuz Eylul University; Izmir Turkey
| | - Mukaddes Gumustekin
- Department of Pharmacology; School of Medicine; Dokuz Eylul University; Izmir Turkey
| |
Collapse
|
29
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
30
|
Genetic dissection of the vav2-rac1 signaling axis in vascular smooth muscle cells. Mol Cell Biol 2014; 34:4404-19. [PMID: 25288640 DOI: 10.1128/mcb.01066-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) are key in the regulation of blood pressure and the engagement of vascular pathologies, such as hypertension, arterial remodeling, and neointima formation. The role of the Rac1 GTPase in these cells remains poorly characterized. To clarify this issue, we have utilized genetically engineered mice to manipulate the signaling output of Rac1 in these cells at will using inducible, Cre-loxP-mediated DNA recombination techniques. Here, we show that the expression of an active version of the Rac1 activator Vav2 exclusively in vSMCs leads to hypotension as well as the elimination of the hypertension induced by the systemic loss of wild-type Vav2. Conversely, the specific depletion of Rac1 in vSMCs causes defective nitric oxide vasodilation responses and hypertension. Rac1, but not Vav2, also is important for neointima formation but not for hypertension-driven vascular remodeling. These animals also have allowed us to dismiss etiological connections between hypertension and metabolic disease and, most importantly, identify pathophysiological programs that cooperate in the development and consolidation of hypertensive states caused by local vascular tone dysfunctions. Finally, our results suggest that the therapeutic inhibition of Rac1 will be associated with extensive cardiovascular system-related side effects and identify pharmacological avenues to circumvent them.
Collapse
|
31
|
André G, Sandoval JE, Retailleau K, Loufrani L, Toumaniantz G, Offermanns S, Rolli-Derkinderen M, Loirand G, Sauzeau V. Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition. J Am Heart Assoc 2014; 3:e000852. [PMID: 24938713 PMCID: PMC4309079 DOI: 10.1161/jaha.114.000852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. Methods and Results To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)‐specific Rac1 knockout mice (SM‐Rac1‐KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM‐Rac1‐KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM‐Rac1‐KO mice are characterized by a defective NO‐dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion‐induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1‐mediated control of type 5 PDE activity. Consequently, cGMP‐dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase‐RhoA interacting protein (p116RIP3), are decreased. Conclusions Our data reveal that the depletion of Rac1 in SMC decreases cGMP‐dependent p116RIP3/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116RIP3 that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure.
Collapse
Affiliation(s)
- Gwennan André
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Juan E Sandoval
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Kevin Retailleau
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Laurent Loufrani
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Gilles Toumaniantz
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Malvyne Rolli-Derkinderen
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Gervaise Loirand
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| | - Vincent Sauzeau
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| |
Collapse
|