1
|
Faulkner IE, Pajak RZ, Harte MK, Glazier JD, Hager R. Voltage-gated potassium channels as a potential therapeutic target for the treatment of neurological and psychiatric disorders. Front Cell Neurosci 2024; 18:1449151. [PMID: 39411003 PMCID: PMC11473391 DOI: 10.3389/fncel.2024.1449151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Voltage-gated potassium channels are a widely distributed subgroup of potassium channels responsible for the efflux of potassium in the repolarisation of the cell membrane, and hence contribute to the latency and propagation of action potentials. As they are causal to synaptic transmission, alterations to the structure of these channels can lead to a variety of neurological and psychiatric diseases. The Kv3 subfamily of voltage-gated potassium channels are found on many neurons in the brain, including inhibitory interneurons where they contribute to fast-frequency firing. Changes to the firing ability of these interneurons can lead to an imbalance of inhibitory and excitatory neurotransmission. To date, we have little understanding of the mechanism by which excitatory and inhibitory inputs become imbalanced. This imbalance is associated with cognitive deficits seen across neurological and neuropsychiatric disorders, which are currently difficult to treat. In this review, we collate evidence supporting the hypothesis that voltage-gated potassium channels, specifically the Kv3 subfamily, are central to many neurological and psychiatric disorders, and may thus be considered as an effective drug target. The collective evidence provided by the studies reviewed here demonstrates that Kv3 channels may be amenable to novel treatments that modulate the activity of these channels, with the prospect of improved patient outcome.
Collapse
Affiliation(s)
- Isabel E. Faulkner
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachael Z. Pajak
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael K. Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Lyu H, Boßelmann CM, Johannesen KM, Koko M, Ortigoza-Escobar JD, Aguilera-Albesa S, Garcia-Navas Núñez D, Linnankivi T, Gaily E, van Ruiten HJA, Richardson R, Betzler C, Horvath G, Brilstra E, Geerdink N, Orsucci D, Tessa A, Gardella E, Fleszar Z, Schöls L, Lerche H, Møller RS, Liu Y. Clinical and electrophysiological features of SCN8A variants causing episodic or chronic ataxia. EBioMedicine 2023; 98:104855. [PMID: 38251463 PMCID: PMC10628346 DOI: 10.1016/j.ebiom.2023.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.
Collapse
Affiliation(s)
- Hang Lyu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Christian M Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Katrine M Johannesen
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, Pamplona, Spain; Navarrabiomed-Fundación Miguel Servet, Pamplona, Spain
| | | | - Tarja Linnankivi
- Department of Pediatric Neurology, New Children's Hospital and Pediatric Research Center, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eija Gaily
- Department of Pediatric Neurology, New Children's Hospital and Pediatric Research Center, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Henriette J A van Ruiten
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Ruth Richardson
- Northern Genetics Service, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Cornelia Betzler
- Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Salzburg, Austria; Specialist Center for Paediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Germany
| | - Gabriella Horvath
- Adult Metabolic Diseases Clinic, BC Children's Hospital, Vancouver, Canada
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Geerdink
- Department of Pediatrics, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Zofia Fleszar
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
4
|
Li S, Shang D, Du Y, Li Y, Liu R. Epilepsy as the symptom of a spinocerebellar ataxia 13 in a patient presenting with a mutation in the KCNC3 gene. BMC Neurol 2023; 23:246. [PMID: 37365508 DOI: 10.1186/s12883-023-03304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The spinocerebellar ataxias (SCAs) refer to a diverse group of neurodegenerative illnesses that vary clinically and genetically. One of the rare subtypes within this group is SCA13, caused by mutations in the KCNC3 gene. Currently, the prevalence of SCA13 remains uncertain, with only a couple of cases being documented in the Chinese population. This study presented a case study of SCA13, where the patient exhibited clinical symptoms of epilepsy and ataxia. The confirmation of the diagnosis was done through Whole Exome Sequncing. CASE PRESENTATION Since childhood, the seventeen-year-old patient has not been capable of participating in numerous sporting activities and has experienced multiple episodes of unconsciousness within the last two years. The neurological evaluation showed a lack of coordination in the lower limbs. Cerebellar atrophy was detected through brain magnetic resonance imaging (MRI). The patient's gene detection results showed that they exhibit a heterozygous c.1268G > A mutation in the KCNC3 gene located at chr19:50826942. Antiepileptic treatment was promptly administered to the patient, and as a result, her epileptic seizures were resolved quickly. She has since remained free of seizures. After a one-year follow-up, there was no apparent improvement in the patient's health status except seizure free, which may have worsened. CONCLUSION The case study highlights the importance of actively combining cranial MRI with genetic detection in patients with ataxia of no known cause, particularly in children and young patients, to establish an possibly obvious detection. Patients who are young and have ataxia that is first accompanied by extrapyramidal and epilepsy syndromes should be aware of the potential of having SCA13.
Collapse
Affiliation(s)
- Shao Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China.
| | - Dandan Shang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Yanjiao Du
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Yan Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Ruihua Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| |
Collapse
|
5
|
Martin HGS, Kullmann DM. Basket to Purkinje Cell Inhibitory Ephaptic Coupling Is Abolished in Episodic Ataxia Type 1. Cells 2023; 12:1382. [PMID: 37408217 PMCID: PMC10216961 DOI: 10.3390/cells12101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Dominantly inherited missense mutations of the KCNA1 gene, which encodes the KV1.1 potassium channel subunit, cause Episodic Ataxia type 1 (EA1). Although the cerebellar incoordination is thought to arise from abnormal Purkinje cell output, the underlying functional deficit remains unclear. Here we examine synaptic and non-synaptic inhibition of Purkinje cells by cerebellar basket cells in an adult mouse model of EA1. The synaptic function of basket cell terminals was unaffected, despite their intense enrichment for KV1.1-containing channels. In turn, the phase response curve quantifying the influence of basket cell input on Purkine cell output was maintained. However, ultra-fast non-synaptic ephaptic coupling, which occurs in the cerebellar 'pinceau' formation surrounding the axon initial segment of Purkinje cells, was profoundly reduced in EA1 mice in comparison with their wild type littermates. The altered temporal profile of basket cell inhibition of Purkinje cells underlines the importance of Kv1.1 channels for this form of signalling, and may contribute to the clinical phenotype of EA1.
Collapse
Affiliation(s)
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| |
Collapse
|
6
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
7
|
Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses. PLoS Comput Biol 2021; 17:e1009609. [PMID: 34882680 PMCID: PMC8691604 DOI: 10.1371/journal.pcbi.1009609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/21/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia. Transcranial direct current stimulation (tDCS) of the cerebellum is gaining momentum as a neuromodulation tool for the treatment of neurological diseases like movement disorders. Nonetheless, the response of cells in the cerebellum to tDCS is unclear and hardly generalizes from our understanding of tDCS of the cerebral cortex. We use computational models to investigate the response of several types of cerebellar neurons to the electric field induced by tDCS and show that, differently from the cerebral cortex, tDCS has significant acute effects on the cerebellar cortex. These effects (i) primarily alter the way Purkinje cells encode synaptic stimuli from the molecular layer and (ii) can help hyperactive cells regain postsynaptic spiking precision. Since the spatiotemporal precision of the Purkinje cell spiking is critical to learning and coordination, the study shows how tDCS can operate at the cellular level to treat movement disorders like tremor and ataxia.
Collapse
|
8
|
Zhang Y, Quraishi IH, McClure H, Williams LA, Cheng Y, Kale S, Dempsey GT, Agrawal S, Gerber DJ, McManus OB, Kaczmarek LK. Suppression of Kv3.3 channels by antisense oligonucleotides reverses biochemical effects and motor impairment in spinocerebellar ataxia type 13 mice. FASEB J 2021; 35:e22053. [PMID: 34820911 DOI: 10.1096/fj.202101356r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather McClure
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Benarroch E. What Is the Role of Potassium Channels in Ataxia? Neurology 2021; 97:938-941. [PMID: 34782409 DOI: 10.1212/wnl.0000000000012870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
|
10
|
Li X, Zheng Y, Li S, Nair U, Sun C, Zhao C, Lu J, Zhang VW, Maljevic S, Petrou S, Lin J. Kv3.1 channelopathy: a novel loss-of-function variant and the mechanistic basis of its clinical phenotypes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1397. [PMID: 34733949 PMCID: PMC8506712 DOI: 10.21037/atm-21-1885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Background KCNC1 encodes Kv3.1, a subunit of the Kv3 voltage-gated potassium channels. It is predominantly expressed in inhibitory GABAergic interneurons and cerebellar neurons. Kv3.1 channelopathy has been linked to a variety of human diseases including epilepsy, developmental delay, and ataxia. Characterization of structural and functional disturbances of this channel, and its relationship to a heterogenous group of clinical phenotypes, is a current topic of research. We herein characterize the clinical phenotype as well as the functional and structural consequences of the novel KCNC1 p.R317S variant. We further set out to explore the mechanistic basis for the spectrum of KCNC1 related channelopathies. Methods Variant was identified via whole-exome sequencing and its functional impact was determined using two-electrode voltage clamp recordings in Xenopus laevis oocytes. Homolog modeling and in silico structural analysis were performed on the p.R317S variant and other KCNC1 related variants. Results We identified a novel loss-of-function KCNC1 variant c.949C>A (p.R317S) presenting with symptoms similar to myoclonic epilepsy and ataxia due to potassium channel (MEAK), but with distinct radiological features. Functional analysis in the Xenopus laevis oocyte’s expression system revealed that the current amplitudes were significantly decreased in the p.R317S variant compared to the wild type, indicating a dominant-negative effect. Atomic structural analysis of the KCNC1 related variants provided a possible mechanistic explanation for the heterogeneity in the clinical spectrum. Conclusions We have identified the p.R317S loss-of-function variant in the KCNC1 gene, expanded the spectrum of potassium channelopathy and provided mechanistic insights into KCNC1 related disorders.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, University of North Carolina, Chapel Hill, USA
| | - Yongsheng Zheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Umesh Nair
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ohta T, Morikawa Y, Sato M, Konno A, Hirai H, Kurauchi Y, Hisatsune A, Katsuki H, Seki T. Therapeutic potential of d-cysteine against in vitro and in vivo models of spinocerebellar ataxia. Exp Neurol 2021; 343:113791. [PMID: 34157318 DOI: 10.1016/j.expneurol.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/22/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia (SCA) is a group of autosomal-dominantly inherited ataxia and is classified into SCA1-48 by the difference of causal genes. Several SCA-causing proteins commonly impair dendritic development in primary cultured Purkinje cells (PCs). We assume that primary cultured PCs expressing SCA-causing proteins are available as in vitro SCA models and that chemicals that improve the impaired dendritic development would be effective for various SCAs. We have recently revealed that D-cysteine enhances the dendritic growth of primary cultured PCs via hydrogen sulfide production. In the present study, we first investigated whether D-cysteine is effective for in vitro SCA models. We expressed SCA1-, SCA3-, and SCA21-causing mutant proteins to primary cultured PCs using adeno-associated viral serotype 9 (AAV9) vectors. D-Cysteine (0.2 mM) significantly ameliorated the impaired dendritic development commonly observed in primary cultured PCs expressing these three SCA-causing proteins. Next, we investigated the therapeutic effect of long-term treatment with D-cysteine on an in vivo SCA model. SCA1 model mice were established by the cerebellar injection of AAV9 vectors, which express SCA1-causing mutant ataxin-1, to ICR mice. Long-term treatment with D-cysteine (100 mg/kg/day) significantly inhibited the progression of motor dysfunction in SCA1 model mice. Immunostaining experiments revealed that D-cysteine prevented the reduction of mGluR1 and glial activation at the early stage after the onset of motor dysfunction in SCA1 model mice. These findings strongly suggest that D-cysteine has therapeutic potential against in vitro and in vivo SCA models and may be a novel therapeutic agent for various SCAs.
Collapse
Affiliation(s)
- Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuri Morikawa
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masahiro Sato
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
12
|
Carpenter JC, Männikkö R, Heffner C, Heneine J, Sampedro‐Castañeda M, Lignani G, Schorge S. Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy. Epilepsia 2021; 62:1256-1267. [PMID: 33735526 PMCID: PMC8436768 DOI: 10.1111/epi.16867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.
Collapse
Affiliation(s)
- Jenna C. Carpenter
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Roope Männikkö
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Catherine Heffner
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Jana Heneine
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Marisol Sampedro‐Castañeda
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Gabriele Lignani
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Stephanie Schorge
- Department of PharmacologyUniversity College London School of PharmacyLondonUK
| |
Collapse
|
13
|
Mueller CE, Richter-Bastian K, Bernhard F, Stuck BA, Birk R. [Obvious case of Morbus Menière?]. Laryngorhinootologie 2021; 100:472-476. [PMID: 33836548 DOI: 10.1055/a-1463-3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cornelia Emika Mueller
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| | - Katrin Richter-Bastian
- Zentrum für unerkannte und seltene Erkrankungen, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| | - Felix Bernhard
- Klinik für Neurologie, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| | - Boris A Stuck
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| | - Richard Birk
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Gießen und Marburg - Standort Marburg, Germany
| |
Collapse
|
14
|
Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nat Commun 2021; 12:1731. [PMID: 33741962 PMCID: PMC7979925 DOI: 10.1038/s41467-021-22003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in KCNC3, which encodes the Kv3.3 potassium channel, cause degeneration of the cerebellum, but exactly how the activity of an ion channel is linked to the survival of cerebellar neurons is not understood. Here, we report that Kv3.3 channels bind and stimulate Tank Binding Kinase 1 (TBK1), an enzyme that controls trafficking of membrane proteins into multivesicular bodies, and that this stimulation is greatly increased by a disease-causing Kv3.3 mutation. TBK1 activity is required for the binding of Kv3.3 to its auxiliary subunit Hax-1, which prevents channel inactivation with depolarization. Hax-1 is also an anti-apoptotic protein required for survival of cerebellar neurons. Overactivation of TBK1 by the mutant channel leads to the loss of Hax-1 by its accumulation in multivesicular bodies and lysosomes, and also stimulates exosome release from neurons. This process is coupled to activation of caspases and increased cell death. Our studies indicate that Kv3.3 channels are directly coupled to TBK1-dependent biochemical pathways that determine the trafficking of cellular constituents and neuronal survival. How the activity of the neuronal Kv3.3 voltage-dependent channel is regulated is unclear. Here, the authors show that the known Kv3.3 channel complex with Hax1, which affects spinal cerebellar ataxia, regulates the enzyme Tank Binding Kinase 1, modulating survival of cerebellar neurons.
Collapse
|
15
|
Sato M, Ohta T, Morikawa Y, Konno A, Hirai H, Kurauchi Y, Hisatsune A, Katsuki H, Seki T. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol 2021; 47:198-209. [PMID: 32722888 DOI: 10.1111/nan.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
AIMS Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Japan
| | - Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuri Morikawa
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Kohara K, Inoue A, Nakano Y, Hirai H, Kobayashi T, Maruyama M, Baba R, Kawashima C. BATTLE: Genetically Engineered Strategies for Split-Tunable Allocation of Multiple Transgenes in the Nervous System. iScience 2020; 23:101248. [PMID: 32629613 PMCID: PMC7322263 DOI: 10.1016/j.isci.2020.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
Elucidating fine architectures and functions of cellular and synaptic connections requires development of new flexible methods. Here, we created a concept called the “battle of transgenes,” based on which we generated strategies using genetically engineered battles of multiple recombinases. The strategies enabled split-tunable allocation of multiple transgenes. We demonstrated the versatility of these strategies and technologies in inducing strong and multi-sparse allocations of multiple transgenes. Furthermore, the combination of our transgenic strategy and expansion microscopy enabled three-dimensional high-resolution imaging of whole synaptic structures in the hippocampus with simultaneous visualizations of endogenous synaptic proteins. These strategies and technologies based on the battle of genes may accelerate the analysis of whole synaptic and cellular connections in diverse life science fields. Generation of BATTLE-recombinase systems for allocation of multiple transgenes Split-tunable allocation in BATTLE-1 and multi-sparse allocation in BATTLE-2 Clear and strong labeling of dendrites and axons using BATTLE-2 3D high-resolution imaging of whole synapses in hippocampus in BATTLE-1EX
Collapse
Affiliation(s)
- Keigo Kohara
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| | - Akitoshi Inoue
- Department of Medical Chemistry, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan
| | - Yousuke Nakano
- Department of Anatomy, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8512, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Masato Maruyama
- Department of Anatomy, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan; Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Ryosuke Baba
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Chiho Kawashima
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; Department of Bioscience, Osaka College of High Technology, Osaka 532-003, Japan
| |
Collapse
|
18
|
Choudhury N, Linley D, Richardson A, Anderson M, Robinson SW, Marra V, Ciampani V, Walter SM, Kopp‐Scheinpflug C, Steinert JR, Forsythe ID. Kv3.1 and Kv3.3 subunits differentially contribute to Kv3 channels and action potential repolarization in principal neurons of the auditory brainstem. J Physiol 2020; 598:2199-2222. [DOI: 10.1113/jp279668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nasreen Choudhury
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Deborah Linley
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Amy Richardson
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Michelle Anderson
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Susan W. Robinson
- Neurotoxicity at the Synaptic Interface MRC Toxicology Unit University of Leicester, UK
| | - Vincenzo Marra
- Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Victoria Ciampani
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Sophie M. Walter
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Conny Kopp‐Scheinpflug
- Division of Neurobiology Department Biology II Ludwig‐Maximilians‐University Munich Großhaderner Strasse 2 Planegg‐Martinsried D‐82152 Germany
| | - Joern R. Steinert
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| | - Ian D. Forsythe
- Auditory Neurophysiology Laboratory, Department of Neuroscience Psychology & Behaviour College of Life Sciences University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
19
|
Binda F, Pernaci C, Saxena S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front Neurosci 2020; 14:293. [PMID: 32300292 PMCID: PMC7145357 DOI: 10.3389/fnins.2020.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.
Collapse
Affiliation(s)
- Francesca Binda
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carla Pernaci
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A 2020; 117:6023-6034. [PMID: 32132200 DOI: 10.1073/pnas.1920008117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
Collapse
|
21
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
22
|
Seki T. [Exploration of preventive drugs for spinocerebellar ataxia using cultured cerebellar Purkinje cells]. Nihon Yakurigaku Zasshi 2019; 154:310-314. [PMID: 31787682 DOI: 10.1254/fpj.154.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neurodegenerative diseases are caused by progressive degeneration of specific neurons. To overcome neurodegenerative diseases, the exploitation of preventive drugs is strongly expected, since impaired neurons are not regenerated by drugs. Spinocerebellar ataxia (SCA) is a group of dominantly inherited neurodegenerative diseases and is characterized by the progressive cerebellar ataxia. To date, SCA is classified into SCA1-48 by the variance of causal genes. Since SCA patients are commonly characterized by cerebellar ataxia and atrophy of cerebellum, it is possible that there are common pathogenic mechanisms in SCAs. However, there are not any shared functions among SCA-causing proteins. Cerebellar Purkinje cells (PCs) are sole output neurons from cerebellar cortexes, crucial for cerebellar functions and characterized highly branched dendrites. During the exploration of the molecular pathogenesis of several SCA-causing proteins, we found that several SCA-causing proteins commonly trigger the impairment of dendritic development of primary cultured cerebellar PCs. Dendritic shrinkage of cerebellar PCs has been observed and is considered to be related to the motor dysfunction in several SCA model mice. Therefore, we assume that impaired dendritic development of cultured cerebellar Purkinje cells is one of the common phenotypes of SCA in vitro and that cultured PCs expressing SCA-causing proteins could be in vitro SCA models. This SCA model would be useful for the efficient exploration of novel preventive drugs against various types of SCAs.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Chemico-Pharmacological Science, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
23
|
Namikawa K, Dorigo A, Köster RW. Neurological Disease Modelling for Spinocerebellar Ataxia Using Zebrafish. J Exp Neurosci 2019; 13:1179069519880515. [PMID: 31666796 PMCID: PMC6798160 DOI: 10.1177/1179069519880515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/02/2023] Open
Abstract
The cerebellum integrates sensory information and motor actions. Increasing
experimental evidence has revealed that these functions as well as the
cerebellar cytoarchitecture are highly conserved in zebrafish compared with
mammals. However, the potential of zebrafish for modelling human cerebellar
diseases remains to be addressed. Spinocerebellar ataxias (SCAs) represent a
group of genetically inherited cerebellar diseases leading to motor
discoordination that is most often caused by affected cerebellar Purkinje cells
(PCs). Towards modelling SCAs in zebrafish we identified a small-sized
PC-specific regulatory element that was used to develop coexpression vectors
with tunable expression strength. These vectors allow for in vivo imaging of
SCA-affected PCs by high-resolution fluorescence imaging. Next, zebrafish with
SCA type 13 (SCA13) transgene expression were established, revealing that
SCA13-induced cell-autonomous PC degeneration results in eye movement deficits.
Thus, SCA13 zebrafish mimic the neuropathology of an SCA-affected brain as well
as the involved loss of motor control and hence provide a powerful approach to
unravel SCA13-induced cell biological pathogenic and cytotoxic mechanisms.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alessandro Dorigo
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
24
|
The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019; 71:247-257. [PMID: 31476531 DOI: 10.1016/j.seizure.2019.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Progressive Myoclonus Epilepsies (PMEs) are a group of uncommon clinically and genetically heterogeneous disorders characterised by myoclonus, generalized epilepsy, and neurological deterioration, including dementia and ataxia. PMEs may have infancy, childhood, juvenile or adult onset, but usually present in late childhood or adolescence, at variance from epileptic encephalopathies, which start with polymorphic seizures in early infancy. Neurophysiologic recordings are suited to describe faithfully the time course of the shock-like muscle contractions which characterize myoclonus. A combination of positive and negative myoclonus is typical of PMEs. The gene defects for most PMEs (Unverricht-Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. PMEs are uncommon disorders, difficult to diagnose in the absence of extensive experience. Thus, aetiology is undetermined in many patients, despite the advance in molecular medicine. Treatment of PMEs remains essentially symptomaticof seizures and myoclonus, together with palliative, supportive, and rehabilitative measures. The response to therapy may initially be relatively favourable, afterwards however, seizures may become more frequent, and progressive neurologic decline occurs. The prognosis of a PME depends on the specific disease. The history of PMEs revealed that the international collaboration and sharing experience is the right way to proceed. This emerging picture and biological insights will allow us to find ways to provide the patients with meaningful treatment.
Collapse
|
25
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
26
|
Khare S, Galeano K, Zhang Y, Nick JA, Nick HS, Subramony SH, Sampson J, Kaczmarek LK, Waters MF. C-terminal proline deletions in KCNC3 cause delayed channel inactivation and an adult-onset progressive SCA13 with spasticity. CEREBELLUM (LONDON, ENGLAND) 2018; 17:692-697. [PMID: 29949095 PMCID: PMC8299775 DOI: 10.1007/s12311-018-0950-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the potassium channel gene KCNC3 (Kv3.3) cause the autosomal dominant neurological disease, spinocerebellar ataxia 13 (SCA13). In this study, we expand the genotype-phenotype repertoire of SCA13 by describing the novel KCNC3 deletion p.Pro583_Pro585del highlighting the allelic heterogeneity observed in SCA13 patients. We characterize adult-onset, progressive clinical symptoms of two afflicted kindred and introduce the symptom of profound spasticity not previously associated with the SCA13 phenotype. We also present molecular and electrophysiological characterizations of the mutant protein in mammalian cell culture. Mechanistically, the p.Pro583_Pro585del protein showed normal membrane trafficking with an altered electrophysiological profile, including slower inactivation and decreased sensitivity to the inactivation-accelerating effects of the actin depolymerizer latrunculin B. Taken together, our results highlight the clinical importance of the intracellular C-terminal portion of Kv3.3 and its association with ion channel function.
Collapse
Affiliation(s)
- Swati Khare
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Kira Galeano
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jerelyn A Nick
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Harry S Nick
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - S H Subramony
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Jacinda Sampson
- Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Michael F Waters
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
27
|
Hoxha E, Balbo I, Miniaci MC, Tempia F. Purkinje Cell Signaling Deficits in Animal Models of Ataxia. Front Synaptic Neurosci 2018; 10:6. [PMID: 29760657 PMCID: PMC5937225 DOI: 10.3389/fnsyn.2018.00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Purkinje cell (PC) dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1) reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF)-PC synapse, mutations of glutamate delta-2 (GluD2) or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD) and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1) receptors is necessary to avoid ataxia. Failure of climbing fiber (CF) maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming synaptic signals or the way they are processed by the repertoire of ionic channels responsible for intrinsic membrane properties. Although the PC is a final common pathway of ataxia, the link between specific firing alterations and neurologic symptoms has not yet been systematically studied and the alterations of the cerebellar contribution to motor signals are still unknown.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
28
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, Rayaprolu S, Hathorn T, Ranum LPW, Smithson L, Golde TE, Paucar M, Morse R, Raff M, Simon J, Nordenskjöld M, Wirdefeldt K, Rincon-Limas DE, Lewis J, Kaczmarek LK, Fernandez-Funez P, Nick HS, Waters MF. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One 2017; 12:e0173565. [PMID: 28467418 PMCID: PMC5414954 DOI: 10.1371/journal.pone.0173565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3). We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT) protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr) results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR). Together, these results indicate that the neurodevelopmental consequences of KCNC3R423H may be mediated through indirect effects on EGFR signaling in the developing cerebellum. Our results therefore confirm the KCNC3R423H allele as causative for SCA13, through a dominant negative effect on KCNC3WT and links with EGFR that account for dominant inheritance, congenital onset, and disease pathology.
Collapse
Affiliation(s)
- Swati Khare
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Jerelyn A. Nick
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Kira Galeano
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Brittany Butler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Sruti Rayaprolu
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Tyisha Hathorn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Laura P. W. Ranum
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Lisa Smithson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Todd E. Golde
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Richard Morse
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Michael Raff
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Julie Simon
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Magnus Nordenskjöld
- Department of Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Diego E. Rincon-Limas
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Jada Lewis
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Pedro Fernandez-Funez
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Harry S. Nick
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Michael F. Waters
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
31
|
Perkins E, Suminaite D, Jackson M. Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways. J Physiol 2016; 594:4661-76. [PMID: 26821241 PMCID: PMC4983618 DOI: 10.1113/jp271195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β‐III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin‐R, cell adhesion molecules, metabotropic glutamate receptor‐1 (mGluR1), voltage‐gated sodium channels (Nav) and glutamate transporters. This scaffold of interactions connects β‐III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β‐III spectrin (SPTBN2) underlie SCA type‐5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type‐1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss‐of β‐III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss‐of‐function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing.
![]()
Collapse
Affiliation(s)
- Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Daumante Suminaite
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
32
|
Zhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, Hyland C, Jenkins DP, Desai R, Brown MR, Gazula VR, Waters MF, Large CH, Horvath TL, Navaratnam D, Vaccarino FM, Forscher P, Kaczmarek LK. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell 2016; 165:434-448. [PMID: 26997484 PMCID: PMC4826296 DOI: 10.1016/j.cell.2016.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/13/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Xiao-Feng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Matthew R. Fleming
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Anahita Amiri
- Department of Child Study Center and Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Lynda El-Hassar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Alexei A. Surguchev
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Callen Hyland
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - David P. Jenkins
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Rooma Desai
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Maile R. Brown
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Valeswara-Rao Gazula
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Michael F. Waters
- Department of Neurology, University of Florida College of Medicine, HSC Box 100236, Gainesville, FL 32610-0236
| | - Charles H. Large
- Autifony Therapeutics Limited, Imperial College Incubator, Level 1 Bessemer Building, London, SW7 2AZ UK
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Dhasakumar Navaratnam
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Flora M. Vaccarino
- Department of Child Study Center and Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
33
|
Dar MS. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. THE CEREBELLUM 2016; 14:447-65. [PMID: 25578036 DOI: 10.1007/s12311-014-0638-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA,
| |
Collapse
|
34
|
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion Channels in Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:97-136. [DOI: 10.1016/bs.apcsb.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Zhang Y, Kaczmarek LK. Kv3.3 potassium channels and spinocerebellar ataxia. J Physiol 2015; 594:4677-84. [PMID: 26442672 DOI: 10.1113/jp271343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/29/2015] [Indexed: 01/22/2023] Open
Abstract
The voltage-dependent potassium channel subunit Kv3.3 is expressed at high levels in cerebellar Purkinje cells, in auditory brainstem nuclei and in many other neurons capable of firing at high rates. In the cerebellum, it helps to shape the very characteristic complex spike of Purkinje cells. Kv3.3 differs from other closely related channels in that human mutations in the gene encoding Kv3.3 (KCNC3) result in a unique neurodegenerative disease termed spinocerebellar ataxia type 13 (SCA13). This primarily affects the cerebellum, but also results in extracerebellar symptoms. Different mutations produce either early onset SCA13, associated with delayed motor and impaired cognitive skill acquisition, or late onset SCA13, which typically produces cerebellar degeneration in middle age. This review covers the localization and physiological function of Kv3.3 in the central nervous system and how the normal function of the channel is altered by the disease-causing mutations. It also describes experimental approaches that are being used to understand how Kv3.3 mutations are linked to neuronal survival, and to develop strategies for treatment.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
36
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
37
|
Duarri A, Lin MCA, Fokkens MR, Meijer M, Smeets CJLM, Nibbeling EAR, Boddeke E, Sinke RJ, Kampinga HH, Papazian DM, Verbeek DS. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci 2015; 72:3387-99. [PMID: 25854634 PMCID: PMC4531139 DOI: 10.1007/s00018-015-1894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duarri A, Nibbeling EAR, Fokkens MR, Meijer M, Boerrigter M, Verschuuren-Bemelmans CC, Kremer BPH, van de Warrenburg BP, Dooijes D, Boddeke E, Sinke RJ, Verbeek DS. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases. PLoS One 2015; 10:e0116599. [PMID: 25756792 PMCID: PMC4355074 DOI: 10.1371/journal.pone.0116599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/12/2014] [Indexed: 12/03/2022] Open
Abstract
Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther A. R. Nibbeling
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel R. Fokkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel Meijer
- Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melissa Boerrigter
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Berry P. H. Kremer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard J. Sinke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Irie T, Kikura-Hanajiri R, Usami M, Uchiyama N, Goda Y, Sekino Y. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors. Neuropharmacology 2015; 95:479-91. [PMID: 25747605 DOI: 10.1016/j.neuropharm.2015.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/18/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
Abstract
Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Dronabinol/pharmacology
- Glutamic Acid/metabolism
- Humans
- Illicit Drugs/chemistry
- Illicit Drugs/pharmacology
- Indoles/chemistry
- Indoles/pharmacology
- Interneurons/drug effects
- Interneurons/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Patch-Clamp Techniques
- Psychotropic Drugs/chemistry
- Psychotropic Drugs/pharmacology
- Purkinje Cells/drug effects
- Purkinje Cells/physiology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Presynaptic/agonists
- Receptors, Presynaptic/genetics
- Receptors, Presynaptic/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Tissue Culture Techniques
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan.
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry, and Narcotics, National Institute of Health Sciences, Tokyo, Japan
| | - Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Nahoko Uchiyama
- Division of Pharmacognosy, Phytochemistry, and Narcotics, National Institute of Health Sciences, Tokyo, Japan
| | - Yukihiro Goda
- Division of Drugs, National Institute of Health Sciences, Tokyo, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan.
| |
Collapse
|
40
|
Roselli F, Caroni P. From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. Neuron 2015; 85:901-10. [DOI: 10.1016/j.neuron.2014.12.063] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 2014; 47:39-46. [PMID: 25401298 DOI: 10.1038/ng.3144] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures and ataxia. We sequenced the exomes of 84 unrelated individuals with PME of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation, c.959G>A (p.Arg320His), in KCNC1 was identified as a new major cause for PME. Eleven unrelated exome-sequenced (13%) and two affected individuals in a secondary cohort (7%) had this mutation. KCNC1 encodes KV3.1, a subunit of the KV3 voltage-gated potassium ion channels, which are major determinants of high-frequency neuronal firing. Functional analysis of the Arg320His mutant channel showed a dominant-negative loss-of-function effect. Ten cases had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6 and SERPINI1). Identification of mutations in PRNP, SACS and TBC1D24 expand their phenotypic spectra to PME. These findings provide insights into the molecular genetic basis of PME and show the role of de novo mutations in this disease entity.
Collapse
Affiliation(s)
- Mikko Muona
- 1] Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. [2] Folkhälsan Institute of Genetics, Helsinki, Finland. [3] Neuroscience Center, University of Helsinki, Helsinki, Finland. [4] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Samuel F Berkovic
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Leanne M Dibbens
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Karen L Oliver
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Snezana Maljevic
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marta A Bayly
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tarja Joensuu
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Laura Canafoglia
- Department of Neurophysiopathology, C. Besta Foundation Neurological Institute, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Silvana Franceschetti
- Department of Neurophysiopathology, C. Besta Foundation Neurological Institute, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Roberto Michelucci
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Salla Markkinen
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Sarah E Heron
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael S Hildebrand
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Eva Andermann
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Frederick Andermann
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Paolo Tinuper
- 1] Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy. [2] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Licchetta
- 1] Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy. [2] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ingrid E Scheffer
- 1] Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia. [2] Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia. [3] Department of Pediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Edoardo Ferlazzo
- 1] Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. [2] Regional Epilepsy Center, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Jamil Ahmad
- Department of Biotechnology and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Adeel Ahmad
- Department of Medicine, Mayo Hospital, Lahore, Pakistan
| | - Betul Baykan
- 1] Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. [2] Epilepsy Center (EPIMER), Istanbul University, Istanbul, Turkey
| | - Edith Said
- 1] Department of Anatomy and Cell Biology, University of Malta, Msida, Malta. [2] Section of Medical Genetics, Mater dei Hospital, Msida, Malta
| | - Meral Topcu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Patrizia Riguzzi
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Mary D King
- 1] Department of Neurology, Temple Street Children's University Hospital, Dublin, Ireland. [2] Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Cigdem Ozkara
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Danielle M Andrade
- Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, Krembil Neurosciences Program, Toronto, Ontario, Canada
| | - Bernt A Engelsen
- 1] Department of Clinical Medicine, University of Bergen, Bergen, Norway. [2] Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Matthias Lindenau
- Department of Neurology and Epileptology, Epilepsy Center Hamburg-Alsterdorf, Hamburg, Germany
| | - Ebba Lohmann
- 1] Department of Neurology and Epileptology, Epilepsy Center Hamburg-Alsterdorf, Hamburg, Germany. [2] Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. [3] German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Veronica Saletti
- Developmental Neurology Unit, C. Besta Foundation Neurological Institute, IRCCS, Milan, Italy
| | - João Massano
- 1] Department of Neurology, Centro Hospitalar São João, Porto, Portugal. [2] Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Michael Privitera
- Epilepsy Center, University of Cincinnati Neuroscience Institute, Cincinnati, Ohio, USA
| | - Alberto J Espay
- Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Michael Duchowny
- 1] Brain Institute, Miami Children's Hospital, Miami, Florida, USA. [2] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rikke S Møller
- 1] Danish Epilepsy Centre, Dianalund, Denmark. [2] Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Rachel Straussberg
- 1] Neurogenetic Clinic, Child Neurology Institute, Schneider Children's Medical Center of Israel, Petah Tiqvah, Israel. [2] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Zaid Afawi
- 1] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel. [2] Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Bruria Ben-Zeev
- 1] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel. [2] Pediatric Neurology Unit, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Kaitlin E Samocha
- 1] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Program in Genetics and Genomics, Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark J Daly
- 1] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Steven Petrou
- 1] Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia. [2] Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Aarno Palotie
- 1] Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. [2] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [5] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK. [6] Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. [7] Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anna-Elina Lehesjoki
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|