1
|
Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Annu Rev Biomed Eng 2024; 26:25-47. [PMID: 38166186 DOI: 10.1146/annurev-bioeng-073123-120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Meng Y, Li XJ, Li Y, Zhang TY, Liu D, Wu YQ, Hou FF, Ye L, Wu CJ, Feng XD, Ju XJ, Jiang L. Novel Double-Layer Dissolving Microneedles for Transmucosal Sequential Delivery of Multiple Drugs in the Treatment of Oral Mucosa Diseases. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892578 DOI: 10.1021/acsami.2c19913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of transmucosal drug delivery systems is a practical requirement in oral clinical practice, and controlled sequential delivery of multiple drugs is usually required. On the basis of the previous successful construction of monolayer microneedles (MNs) for transmucosal drug delivery, we designed transmucosal double-layer sequential dissolving MNs using hyaluronic acid methacryloyl (HAMA), hyaluronic acid (HA), and polyvinyl pyrrolidone (PVP). MNs have the advantages of small size, easy operation, good strength, rapid dissolution, and one-time delivery of two drugs. Morphological test results showed that the HAMA-HA-PVP MNs were small and intact in structure. The mechanical strength and mucosal insertion test results indicated the HAMA-HA-PVP MNs had appropriate strength and could penetrate the mucosal cuticle quickly to achieve transmucosal drug delivery. The in vitro and in vivo experiment results of the double-layer fluorescent dyes simulating drug release revealed that MNs had good solubility and achieved stratified release of the model drugs. The results of the in vivo and in vitro biosafety tests also indicated that the HAMA-HA-PVP MNs were biosafe materials. The therapeutic effect of drug-loaded HAMA-HA-PVP MNs in the rat oral mucosal ulcer model demonstrated that these novel HAMA-HA-PVP MNs quickly penetrated the mucosa, dissolved and effectively released the drug, and achieved sequential drug delivery. Compared to monolayer MNs, these HAMA-HA-PVP MNs can be used as double-layer drug reservoirs for controlled release, effectively releasing the drug in the MN stratification by dissolution in the presence of moisture. The need for secondary or multiple injections can be avoided, thus improving patient compliance. This drug delivery system can serve as an efficient, multipermeable, mucosal, and needle-free alternative for biomedical applications.
Collapse
Affiliation(s)
- Yang Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Jiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Tian Yu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Qi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Fei Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lu Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Ji Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Dong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Domżalski M, Migliore A. A Review of the Clinical Effectiveness and Safety of Hybrid Cooperative Complexes in Intra-articular Viscosupplementation. Rheumatol Ther 2022; 9:957-974. [PMID: 35501596 PMCID: PMC9314521 DOI: 10.1007/s40744-022-00450-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 10/28/2022] Open
Abstract
Viscosupplementation by intra-articular (i.a.) injection of the non-sulfated glycosaminoglycan (GAG) hyaluronic acid (HA) is a conservative therapy widely accepted in clinical practice for the management of osteoarthritis (OA) and joint diseases. The aim of viscosupplementation is to restore the rheological properties of the synovial fluid to relieve joint inflammation and pain and improve joint function through a chondroprotective effect. However, there is a range of hyaluronic acid products for OA that differ in preparation, molecular weight, rheological characteristics and concentration, and different i.a. formulations are more suited to particular patient populations and clinical situations, in part because of anatomical differences between joints. This paper focuses on innovative hybrid cooperative complexes of high and low molecular weight hyaluronic acid (HA-HL) and hyaluronic acid plus sodium chondroitin (HA-SC) that have been developed. Both products are formulated with pharmaceutical-grade, highly purified hyaluronic acid obtained with a multi-step biofermentation process, with properties that make them suitable across a range of degenerative joint diseases. They represent progress in building on the symptomatic and functional benefits of viscosupplementation in joint disease, with the additional beneficial effect of treating the patient with a high concentration of GAGs by a low number of injections. Here, we review the clinical evidence for the efficacy of a hybrid cooperative compound of HA-HL in various degenerative joint diseases, which suggests a synergistic effect of the different molecular weight hyaluronans that together more closely mimic the physiological composition of synovial fluid. Similarly, the evidence shows that HA-SC is safe, effective, and well tolerated in hip OA, with rapid and clinically significant improvements in pain symptoms and functionality. Such innovations in viscosupplementation expand the usefulness of the modality in the management of OA and other joint diseases, complemented by a lack of systemic or local side effects that allow the concurrent use of other drugs if needed.
Collapse
Affiliation(s)
- Marcin Domżalski
- Department of Orthopaedics and Trauma, Veteran's Memorial Hospital, Medical University of Lodz, Lodz, Poland
| | - Alberto Migliore
- Unit of Rheumatology, S. Pietro Fatebenefratelli Hospital, Via Cassia 600, 00189, Rome, Italy.
| |
Collapse
|
4
|
Crimaldi S, Liguori S, Tamburrino P, Moretti A, Paoletta M, Toro G, Iolascon G. The Role of Hyaluronic Acid in Sport-Related Tendinopathies: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57101088. [PMID: 34684125 PMCID: PMC8537182 DOI: 10.3390/medicina57101088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Tendinopathy is a complex clinical condition with a rising incidence and prevalence, particularly during sports practice. For the return to play in affected patients, adequate functional and structural recovery of the tendon is the ultimate goal, avoiding the high risk of recurrence. In this perspective, local therapies alongside exercise are showing promising results. Despite evidence suggesting hyaluronic acid (HA) injections as effective in the treatment of tendinopathy, current recommendations about the management of this condition do not include this intervention. HA seems to be an effective therapeutic option for the management of sport-related tendinopathies, but further studies with a larger sample size are needed to confirm available findings. In this narrative review, we analyzed available literature about the rationale of the use of HA in the management of tendon injury and, particularly, in sport-related tendinopathies.
Collapse
Affiliation(s)
- Sergio Crimaldi
- Humanitas Clinical and Research Center—IRCCS, 20900 Milan, Italy;
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
- Correspondence: ; Tel.: +39-081-566-5537
| | - Pasquale Tamburrino
- Azienda USL Frosinone—UOC Ortopedia e Traumatologia, 03100 Frosinone, Italy;
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| |
Collapse
|
5
|
Ferreira GF, Sevilla D, Oliveira CN, Junior LCN, Arliani GG, Oliveira VO, Pereira Filho MV. Comparison of the effect of hyaluronic acid injection versus extracorporeal shockwave therapy on chronic plantar fasciitis: Protocol for a randomized controlled trial. PLoS One 2021; 16:e0250768. [PMID: 34166373 PMCID: PMC8224905 DOI: 10.1371/journal.pone.0250768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plantar fasciitis is the most common cause of pain in the plantar region of the heel, and extracorporeal shockwave therapy (ESWT) is an option used in cases where conservative treatment fails. Hyaluronic acid (HA), initially used for osteoarthrosis, is a treatment option because it has been applied to extra-articular regions, such as tendons, ligaments, and fascia. The aim of the present study will be to evaluate the outcomes of pain, function, and personal satisfaction after a single injection of HA and to compare the results with those of ESWT in patients with chronic plantar fasciitis. METHODS The study will include 80 patients who will be randomized to receive three sessions of ESWT (n = 40) or a single ultrasound-guided HA injection in the plantar fascia (n = 40). The outcomes will include the visual analog pain scale score, American Orthopaedic Foot and Ankle Society (AOFAS) score, and Foot and Ankle Outcome Score (FAOS). All of the assessments will be performed at baseline and 3, 6, and 12 months after treatment. Statistical analysis will be performed using the repeated measures ANOVA (analysis of variance test) for primary and secondary outcomes and also Fisher's Least Significant Difference, a Post-Hoc test. We will use R software for statistical analysis, randomization, and sample size calculation. RESULTS Recruitment and data collection will begin in November 2020, with completion scheduled for November 2022 and final publication available in March 2023. CONCLUSION This trial will evaluate the effects of a single ultrasound-guided HA injection for the treatment of chronic plantar fasciitis. TRIAL REGISTRATION Brazilian Clinical Trials Registry (Register Number: RBR-97vkx4) http://www.ensaiosclinicos.gov.br/rg/RBR-97vkx4/.
Collapse
Affiliation(s)
- Gabriel Ferraz Ferreira
- Foot and Ankle Surgery Group, Orthopaedics and Traumatology Unit, Prevent Senior, São Paulo, Brazil
- * E-mail:
| | - Davy Sevilla
- Department of Orthopaedics and Traumatology, Prevent Senior, São Paulo, Brazil
| | | | | | | | - Victor Otávio Oliveira
- Head of Department, Orthopaedics and Traumatology Unit, Prevent Senior, São Paulo, Brazil
| | - Miguel Viana Pereira Filho
- Head of Foot and Ankle Surgery Group, Orthopaedics and Traumatology Unit, Prevent Senior, São Paulo, Brazil
| |
Collapse
|
6
|
Garnica-Galvez S, Korntner SH, Skoufos I, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Hyaluronic Acid as Macromolecular Crowder in Equine Adipose-Derived Stem Cell Cultures. Cells 2021; 10:859. [PMID: 33918830 PMCID: PMC8070604 DOI: 10.3390/cells10040859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The use of macromolecular crowding in the development of extracellular matrix-rich cell-assembled tissue equivalents is continuously gaining pace in regenerative engineering. Despite the significant advancements in the field, the optimal macromolecular crowder still remains elusive. Herein, the physicochemical properties of different concentrations of different molecular weights hyaluronic acid (HA) and their influence on equine adipose-derived stem cell cultures were assessed. Within the different concentrations and molecular weight HAs, the 10 mg/mL 100 kDa and 500 kDa HAs exhibited the highest negative charge and hydrodynamic radius, and the 10 mg/mL 100 kDa HA exhibited the lowest polydispersity index and the highest % fraction volume occupancy. Although HA had the potential to act as a macromolecular crowding agent, it did not outperform carrageenan and Ficoll®, the most widely used macromolecular crowding molecules, in enhanced and accelerated collagen I, collagen III and collagen IV deposition.
Collapse
Affiliation(s)
- Sergio Garnica-Galvez
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
| | - Stefanie H. Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (S.G.-G.); (I.S.); (A.T.)
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), H92 W2TY Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6904 Lugano, Switzerland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes. Biomedicines 2021; 9:biomedicines9020141. [PMID: 33535611 PMCID: PMC7912830 DOI: 10.3390/biomedicines9020141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compounds 2 and 7 are the most promising of the series in counteracting oxidative stress-induced cytotoxicity and display a better profile in terms of enhanced viability, decreased LDH release, and augmented tenocyte proliferation compared to Meloxicam. Moreover, compound 7, as a potent superoxide scavenger, exerts its action inhibiting NF-ĸB translocation and downregulating iNOS, whereas compound 2 is more effective in increasing collagen I deposition. Taken together, our data highlight a potential role of CA in RCTs and RCD and the prospective effectiveness of compounds acting as CAI-CORM during inflammation.
Collapse
|
8
|
Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model. Int J Mol Sci 2020; 21:ijms21217956. [PMID: 33114764 PMCID: PMC7662253 DOI: 10.3390/ijms21217956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur® hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur® HA, MSM, and Artrosulfur® MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expression of metalloproteinases 2 (MMP2) and 14 (MMP14) and collagen types I and III were also examined. Results demonstrate that Artrosulfur® MSM + HA improves cell escape from oxidative stress by decreasing cytotoxicity and by reducing iNOS and PGE2 secretion. Furthermore, it differentially modulates MMP2 and MMP14 levels and enhances collagen III expression after 24 h, proteins globally related to rapid acceleration of the extracellular matrix (ECM) remodelling and thus tendon healing. By improving the anti-cytotoxic effect of HA, the supplementation of MSM may represent a feasible strategy to ameliorate cuff tendinopathies.
Collapse
|
9
|
Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10081536. [PMID: 32764377 PMCID: PMC7466595 DOI: 10.3390/nano10081536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Cancer like melanoma is a complex disease, for which standard therapies have significant adverse side effects that in most cases are ineffective and highly unspecific. Thus, a new paradigm has come with the need of achieving alternative (less invasive) and effective therapies. In this work, biocompatible gold nanoparticles (GNPs) coated with hyaluronic acid and oleic acid were prepared and characterized in terms of size, morphology and cytotoxicity in the presence of Saccharomyces cerevisiae, and two cell lines, the keratinocytes (healthy skin cells, HaCat) and the melanoma cells (B16F10). Results showed that these GNPs absorb within the near-infrared region (750–1400 nm), in the optical therapeutic window (from 650 to 1300 nm), in contrast to other commercial gold nanoparticles, which enables light to penetrate into deep skin layers. A laser emitting in this region was applied and its effect also analyzed. The coated GNPs showed a spherical morphology with a mean size of 297 nm without cytotoxic effects towards yeast and tested cell lines. Nevertheless, after laser irradiation, a reduction of 20% in B16F10 cell line viability was observed. In summary, this work appears to be a promising strategy for the treatment of non-metastatic melanoma or other superficial tumors.
Collapse
|
10
|
Nakamichi R, Kataoka K, Asahara H. Essential role of Mohawk for tenogenic tissue homeostasis including spinal disc and periodontal ligament. Mod Rheumatol 2018; 28:933-940. [PMID: 29667905 PMCID: PMC6511339 DOI: 10.1080/14397595.2018.1466644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments play essential roles in connecting muscle and bone and stabilizing the connections between bones. The damage to tendons and ligaments caused by aging, injury, and arthritis induces the dysfunction of the musculoskeletal system and reduces the quality of life. Current therapy for damaged tendons and ligaments depends on self-repair; however, it is difficult to reconstruct normal tissue. Regeneration therapy for tendons and ligaments has not been achieved, partly because the mechanism, cell biology, and pathophysiology of tendon and ligament development remain unclear. This review summarizes the role of the transcription factor, Mohawk, which controls tendon and ligament cell differentiation, in the maintenance of cell homeostasis, as well as its function in disease and the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Kensuke Kataoka
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
11
|
Harper EI, Sheedy EF, Stack MS. With Great Age Comes Great Metastatic Ability: Ovarian Cancer and the Appeal of the Aging Peritoneal Microenvironment. Cancers (Basel) 2018; 10:E230. [PMID: 29996539 PMCID: PMC6070816 DOI: 10.3390/cancers10070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Age is one of the biggest risk factors for ovarian cancer. Older women have higher rates of diagnosis and death associated with the disease. In mouse models, it was shown that aged mice had greater tumor burden than their younger counterparts when intraperitoneally injected with ovarian tumor cells. While very few papers have been published looking at the direct link between ovarian cancer metastasis and age, there is a wealth of information on how age affects metastatic microenvironments. Mesothelial cells, the peritoneal extracellular matrix (ECM), fibroblasts, adipocytes and immune cells all exhibit distinct changes with age. The aged peritoneum hosts a higher number of senescent cells than its younger counterpart, in both the mesothelium and the stroma. These senescent cells promote an inflammatory profile and overexpress Matrix Metalloproteinases (MMPs), which remodel the ECM. The aged ECM is also modified by dysregulated collagen and laminin synthesis, increases in age-related crosslinking and increasing ovarian cancer invasion into the matrix. These changes contribute to a vastly different microenvironment in young and aged models for circulating ovarian cancer cells, creating a more welcoming “soil”.
Collapse
Affiliation(s)
- Elizabeth I Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, IN 46617, USA.
| | - Emma F Sheedy
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Department of Mathematics, University of Notre Dame, South Bend, IN 46617, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| |
Collapse
|