1
|
Kurachi T, Ishimaru H, Tadakuma R, Okaue M, Koda A, Ueda Y, Doi T. Mucopolysaccharide polysulfate increases local skin blood volume through nitric oxide production. J Dermatol Sci 2024; 114:133-140. [PMID: 38834380 DOI: 10.1016/j.jdermsci.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Mucopolysaccharide polysulfate (MPS) is widely used as an active ingredient in topical preparations for the treatment of asteatosis and blood flow disorders. Although topical MPS products can increase cutaneous blood flow (CBF), the underlying mechanism remains unclear. OBJECTIVE In this study, we aimed to elucidate how MPS increases CBF. We investigated the association of nitric oxide (NO), a powerful mediator associated with increased local blood volume, with the blood flow-accelerating action of MPS in mice. In addition, we verified the effects of MPS on NO production in different skin cell types, such as keratinocytes (KCs), endothelial cells (ECs), and dermal fibroblasts (DFs). METHODS We used raster-scanning optoacoustic imaging mesoscopy to observe in vivo changes in the skin blood volume. NO production was determined in each cell using an NO indicator. An enzyme-linked immunoassay was used to measure the phosphorylated nitric oxide synthase (NOS) levels in ECs, DFs, and KCs in the presence or absence of MPS. RESULTS Topical application of MPS increased the skin blood volume in mice, and this increase was abolished through the addition of NOS inhibitors. MPS promoted the dose-dependent production of NO in various cells, which caused alterations in the phosphorylation state of NOS. CONCLUSION Our findings demonstrate that MPS promotes an increase in skin blood volume and NO production in various skin cell types. These results suggest that MPS can potentially accelerate CBF through the NO biosynthesis pathway in different skin cell types.
Collapse
Affiliation(s)
- Tam Kurachi
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan.
| | - Hironobu Ishimaru
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan.
| | - Ryo Tadakuma
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Miu Okaue
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Akira Koda
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Yuhki Ueda
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Takaaki Doi
- Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| |
Collapse
|
2
|
Phan TX, Sahibzada N, Ahern GP. Arteries are finely tuned thermosensors regulating myogenic tone and blood flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.532099. [PMID: 36993664 PMCID: PMC10055355 DOI: 10.1101/2023.03.22.532099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In response to changing blood pressure, arteries adjust their caliber to control perfusion. This vital autoregulatory property, termed vascular myogenic tone, stabilizes downstream capillary pressure. We discovered that tissue temperature critically determines myogenic tone. Heating steeply activates tone in skeletal muscle, gut, brain and skin arteries with temperature coefficients ( Q 10 ) of ∼11-20. Further, arterial thermosensitivity is tuned to resting tissue temperatures, making myogenic tone sensitive to small thermal fluctuations. Interestingly, temperature and intraluminal pressure are sensed largely independently and integrated to trigger myogenic tone. We show that TRPV1 and TRPM4 mediate heat-induced tone in skeletal muscle arteries. Variations in tissue temperature are known to alter vascular conductance; remarkably, thermosensitive tone counterbalances this effect, thus protecting capillary integrity and fluid balance. In conclusion, thermosensitive myogenic tone is a fundamental homeostatic mechanism regulating tissue perfusion. One-Sentence Summary Arterial blood pressure and temperature are integrated via thermosensitve ion channels to produce myogenic tone.
Collapse
|
3
|
Lee C, Crouch A, Jha A, Adapa A, Diaz J, Pandey A, Greve J, Pipe K. Extravascular Cooling of Blood Using a Concentrated Thermoelectric Cooling Probe. J Med Device 2022. [DOI: 10.1115/1.4054003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Thermal therapies have strong potential for improving outcomes for patients suffering from cardiac arrest, neonatal hypoxic-ischemic encephalopathy, or medically refractory intracranial hypertension. We propose a novel tool to manipulate blood temperature through extravascular thermoelectric heat exchange of blood vessel walls and flowing blood. This tool is a concentrated cooling probe with several thermoelectric units combined to focus cooling at the application site. Using this tool, we aim to achieve desired levels of temperature control and potentially reduce complications associated with traditional intravascular or systemic thermal therapies. Leveraging the feedback control, speed, and reversible operation of thermoelectric cooling modules, the device can adapt to cool or heat as desired. Pre-clinical testing on rodent models confirmed rapid, significant reduction of intravenous jugular blood temperature when a prototype device was brought in contact with the left carotid artery (change in blood temperature of -4.74 ± 2.9 °C/hr and -4.29 ± 1.64 °C/hr for 0 °C and -5 °C cooling trials respectively). Declines in rectal temperature were also noted, but at lesser magnitudes than for jugular blood (0 °C: -3.09 ± 1.29 °C/hr; -5 °C: -2.04 ± 1.08), indicating proof-of-concept of thermoelectric extravascular blood cooling within a relatively localized region of the body. With further improvements in the technique, there is potential for selective organ cooling via reduction in flowing blood temperature.
Collapse
Affiliation(s)
- Connie Lee
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, 2350 Hayward St, Ann Arbor, MI 48109-2125
| | - Anna Crouch
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, 2350 Hayward St, Ann Arbor, MI 48109-2125; Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 1506 Middle Drive, 312 Perkins Hall, Knoxville, TN 37996
| | - Aman Jha
- Mechanical Engineering, University of Michigan, Ann Arbor, MI; 2350 Hayward St, Ann Arbor, MI 48109-2125
| | - Arjun Adapa
- University of Michigan Medical School, Ann Arbor, MI; 1500 E Medical Center Dr, #5338, Ann Arbor, MI 48109
| | - Jose Diaz
- Division of Surgical Research, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN; Medical Center North, Nashville, TN 37232
| | - Aditya Pandey
- Neurosurgery, University of Michigan, Ann Arbor, MI; 1500 E Medical Center Dr, #5338, Ann Arbor, MI 48109
| | - Joan Greve
- Biomedical Engineering, University of Michigan, Ann Arbor, MI; Democracy II, Suite 200, 6707 Democracy Blvd., Bethesda, MD 20817
| | - Kevin Pipe
- Mechanical Engineering, University of Michigan, Ann Arbor, MI; Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; 2350 Hayward St, Ann Arbor, MI 48109-2125
| |
Collapse
|
4
|
Zhu L, Bischof DJ. Journal of Biomechanical Engineering Legacy Paper 2018. J Biomech Eng 2019; 141:2725828. [PMID: 30778565 DOI: 10.1115/1.4042897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/28/2024]
Abstract
The Journal of Biomechanical Engineering has contributed to biomechanical engineering field since 1977. To honor papers published at least 30 years that have had a long-lasting impact on the field, the Editors now recognize "Legacy Papers." The journal is pleased to present the following paper as this year's Legacy Paper: "A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature" by S. Weinbaum and L. Jiji, ASME Journal of Biomechanical Engineering 107: 131-139, 1985.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Dr John Bischof
- Department of Mechanical Engineering, University of Minnesota at Minneapolis, Minneapolis, MN 55455
| |
Collapse
|
5
|
Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 2014; 46:72-101. [DOI: 10.1016/j.jtherbio.2014.10.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/23/2022]
|
6
|
Smith KD. Experimental study and model validation of selective spinal cord and brain hypothermia induced by a simple torso-cooling pad. Proc Inst Mech Eng H 2011; 225:533-47. [PMID: 22034738 DOI: 10.1177/0954411911400156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo experiments have been performed to test the effectiveness of a torso-cooling pad to reduce the temperature in the spinal cord and brain in rats. Coolant was circulated through the cooling pad to provide either mild or moderate cooling. Temperatures in the brain tissue, on the head surface, and on the spine and back surfaces were measured. During mild cooling, the temperature on the back surface was 22.82 +/- 2.43 degrees C compared to 29.34 +/- 1.94 degrees C on the spine surface. The temperature on the back surface during moderate cooling was 13.66 +/- 1.28 degrees C compared to 24.12 +/- 5.7 degrees C on the spine surface. Although the temperature in the brain tissue did not drastically deviate from its baseline value during cooling, there was a difference between the rectal and brain temperatures during cooling, which suggests mild hypothermia in the brain tissue. Using experimental data, theoretical models of the rat head and torso were developed to predict the regional temperatures and to validate the rat models. There was good agreement between the theoretical and experimental temperatures in the torso region. Differences between the predicted and measured temperatures in the brain are likely to be the result of imperfect mixing between the cold spinal fluid and the warm cerebrospinal fluid that surrounds the brain.
Collapse
Affiliation(s)
- K D Smith
- Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
| |
Collapse
|
7
|
Salloum M, Ma R, Zhu L. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: Optimization of the heat absorption pattern. Int J Hyperthermia 2009; 25:309-21. [DOI: 10.1080/02656730902803118] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Salloum M, Ma R, Zhu L. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int J Hyperthermia 2009; 24:589-601. [PMID: 18979310 DOI: 10.1080/02656730802203377] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In magnetic nanoparticle hyperthermia in cancer treatment, the local blood perfusion rate and the amount of nanofluid delivered to the target region are important factors determining the temperature distribution in tissue. In this study, we evaluate the effects of these factors on the heating pattern and temperature elevations in the muscle tissue of rat hind limbs induced by intramuscular injections of magnetic nanoparticles during in vivo experiments. Temperature distribution in the vicinity of the injection site is measured inside the rat limb after the nanoparticle hyperthermia. The measured temperature elevations at the injection site are 3.5 degrees +/- 1.8 degrees C and 6.02 degrees +/- 0.8 degrees C above the measured body temperature, when the injection amount is 0.1 cc and 0.2 cc, respectively. The full width of half maximum (FWHM) of the temperature elevation, an index of heat transfer in the radial direction from the injection site is found to be approximately 31 mm for both injection amounts. The temperature measurements, together with the measured blood perfusion rate, ambient air temperature, and limb geometry, are used as inputs into an inverse heat transfer analysis for evaluation of the specific absorption rate (SAR) by the nanoparticles. It has been shown that the nanoparticles are more concentrated in the vicinity of the injection site when the injection amount is bigger. The current in vivo experimental studies have demonstrated the feasibility of elevating the tissue temperature above 43 degrees C under the experimental protocol and equipment used in this study.
Collapse
Affiliation(s)
- Maher Salloum
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | | | | |
Collapse
|
9
|
Kim C, O'Rourke AP, Will JA, Mahvi DM, Webster JG. Finite-element analysis of hepatic cryoablation around a large blood vessel. IEEE Trans Biomed Eng 2008; 55:2087-93. [PMID: 18632371 DOI: 10.1109/tbme.2008.919837] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cryoablation is a minimally invasive ablation technique for primary and metastatic hepatic tumors. Inadequate freezing around large blood vessels due to the warm blood flow can lead to local recurrence, and thus, necessitates close application of a cryoprobe to the large blood vessels. In this study, we constructed a perfusion model with an ex vivo bovine liver and ablated the tissue around a large blood vessel with one or two cryoprobes applied to the side of the vessel. The finite-element computer model developed in our previous study was modified to include a blood vessel and its convective heat transfer to the vicinity of the blood vessel. We compared the predicted simulation results to those acquired from this ex vivo perfusion model. The results indicate that blood vessels act as a heat source and generate steep temperature profiles in the area next to the large blood vessel. After validation, the maximum allowable distance between the cryoprobe and the large blood vessel for successful cryoablation was presented. The results of this study should be considered when placing cryoprobes in the vicinity of large blood vessels.
Collapse
Affiliation(s)
- Cheolkyun Kim
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
10
|
Diao C, Zhu L. Temperature distribution and blood perfusion response in rat brain during selective brain cooling. Med Phys 2006; 33:2565-73. [PMID: 16898461 DOI: 10.1118/1.2208918] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A rat model was used in this study to examine the transient temperature distribution and blood flow response in the brain during selective brain cooling (SBC) and rewarming. SBC was induced by a head cooling helmet with circulating water of 18 degrees C or 0 degrees C. It has been shown that the brain temperature reductions were 1.7+/-0.2 degrees C (5 mm beneath the brain surface) and 3.2+/-1.1 degrees C (2 mm beneath the brain surface) when the temperature of the water was 18 degrees C (moderate cooling). The cooling of the brain tissue was more evident when the circulating water was colder (0 degrees C, deep cooling). The characteristic time that it took for the tissue temperatures to reach a new steady state after the initiation of cooling varied from 5 to more than 35 min and it depended strongly on the blood flow response to the cooling. We used an ultrasound flow meter to measure continuously the blood flow rate in the common carotid artery during the cooling and rewarming. The blood flow rate dropped by up to 22% and 44% during the cooling from its baseline in the moderate cooling group and in the deep cooling group, respectively. Although all brain temperatures recovered to their baseline values 50 min after the helmet was removed, the blood flow rate only recovered to 92% and 77% of its baseline values after the moderate and deep cooling, respectively, implying a possible mismatch between the blood perfusion and metabolism in the brain. The current experimental results can be used to study the feasibility of inducing brain hypothermia by SBC if the blood flow responses in the rat are applicable to humans. The simultaneous recordings of temperature and blood flow rate in the rat brain can be used in the future to validate the theoretical model developed previously.
Collapse
Affiliation(s)
- Chenguang Diao
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore 21250, USA
| | | |
Collapse
|
11
|
Shrivastava D, Roemer RB. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network. J Biomech Eng 2006; 128:210-6. [PMID: 16524332 DOI: 10.1115/1.2165693] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A physiologically realistic arterio-venous countercurrent vessel network model consisting of ten branching vessel generations, where the diameter of each generation of vessels is smaller than the previous ones, has been created and used to determine the thermal significance of different vessel generations by investigating their ability to exchange thermal energy with the tissue. The temperature distribution in the 3D network (8178 vessels; diameters from 10 to 1000 microm) is obtained by solving the conduction equation in the tissue and the convective energy equation with a specified Nusselt number in the vessels. The sensitivity of the exchange of energy between the vessels and the tissue to changes in the network parameters is studied for two cases; a high temperature thermal therapy case when tissue is heated by a uniformly distributed source term and the network cools the tissue, and a hypothermia related case, when tissue is cooled from the surface and the blood heats the tissue. Results show that first, the relative roles of vessels of different diameters are strongly determined by the inlet temperatures to those vessels (e.g., as affected by changing mass flow rates), and the surrounding tissue temperature, but not by their diameter. Second, changes in the following do not significantly affect the heat transfer rates between tissue and vessels; (a) the ratio of arterial to venous vessel diameter, (b) the diameter reduction coefficient (the ratio of diameters of successive vessel generations), and (c) the Nusselt number. Third, both arteries and veins play significant roles in the exchange of energy between tissue and vessels, with arteries playing a more significant role. These results suggest that the determination of which diameter vessels are thermally important should be performed on a case-by-case, problem dependent basis. And, that in the development of site-specific vessel network models, reasonable predictions of the relative roles of different vessel diameters can be obtained by using any physiologically realistic values of Nusselt number and the diameter reduction coefficient.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84102, USA
| | | |
Collapse
|
12
|
Trübel HKF, Sacolick LI, Hyder F. Regional temperature changes in the brain during somatosensory stimulation. J Cereb Blood Flow Metab 2006; 26:68-78. [PMID: 15959461 DOI: 10.1038/sj.jcbfm.9600164] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Time-dependent variations in the brain temperature (Tt) are likely to be caused by fluctuations of cerebral blood flow (CBF) and cerebral metabolic rate of oxidative consumption (CMRO2) both of which are seemingly coupled to alterations in neuronal activity. We combined magnetic resonance, optical imaging, temperature sensing, and electrophysiologic methods in alpha-chloralose anesthetized rats to obtain multimodal measurements during forepaw stimulation. Localized changes in neuronal activity were colocalized with regional increases in Tt (by approximately 0.2%), CBF (by approximately 95%), and CMRO2 (by approximately 73%). The time-to-peak for Tt (42+/-11 secs) was significantly longer than those for CBF and CMRO2 (5+/-2 and 18+/-4 secs, respectively) with a 2-min stimulation. Net heat in the region of interest (ROI) was modeled as being dependent on the sum of heats attributed to changes in CMRO2 (Qm) and CBF (Qf) as well as conductive heat loss from the ROI to neighboring regions (Qc) and to the environment (Qe). Although tissue cooling because of Qf and Qc can occur and are enhanced during activation, the net increase in Tt corresponded to a large rise in Qm, whereas effects of Qe can be ignored. The results show that Tt increases slowly (by approximately 0.1 degrees C) during physiologic stimulation in alpha-chloralose anesthetized rats. Because the potential cooling effect of CBF depends on the temperature of blood entering the brain, Tt is mainly affected by CMRO2 during functional challenges. Implications of these findings for functional studies in awake humans and temperature regulation are discussed.
Collapse
Affiliation(s)
- Hubert K F Trübel
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|