1
|
Baylous K, Kovarovic B, Paz RR, Anam S, Helbock R, Horner M, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108469. [PMID: 39461118 DOI: 10.1016/j.cmpb.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves. METHODS An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. RESULTS Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm2 - nearly double the activation threshold - despite those being clinically classified as "mild" paravalvular leaks. CONCLUSIONS Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rodrigo R Paz
- ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551, USA; CONICET (IMIT), Argentina
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Goode D, Scotten L, Siegel R, Mohammadi H. Can mechanical heart valves perform similarly to tissue valves? An in vitro study. J Biomech 2024; 174:112270. [PMID: 39141959 DOI: 10.1016/j.jbiomech.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Current surgical aortic valve (AV) replacement options include bioprosthetic and mechanical heart valves (MHVs), each with inherent limitations. Bioprosthetic valves offer superior hemodynamics but suffer from durability issues, typically initiating deterioration within 7-8 years. MHVs, while durable, necessitate lifelong anticoagulation therapy, presenting risks such as severe bleeding and thromboembolic events. The need for anticoagulants is caused by non-physiological flow through the hinge area during the closed phase and large spikes of regional backflow velocity (RBV) during the closing phase that produces high shear events. This study introduces the iValve, a novel MHV designed to combine the hemodynamic benefits of bioprosthetic valves with the durability of MHVs without requiring anticoagulation. The iValve features eye-like leaflets, a saddle-shaped housing, and an optimized hinge design to enhance blood flow and minimize thrombotic risk. Fabricated using 6061-T6 aluminum and polyether ether ketone (PEEK), twelve iValve iterations were evaluated for their opening and closing dynamics. The reported top-performing prototypes demonstrated competitive performance against industry standards. The proposed iValve prototype exhibited a mean RBV of -4.34 m/s with no spikes in RBV, performing similarly to bioprosthetic valves and significantly outperforming existing MHVs. The iValve's optimized design showed a 7-10% reduction in closing time and a substantial decrease in RBV spikes, potentially reducing the need for anticoagulation therapy. This study highlights the iValve's potential to revolutionize prosthetic heart valve technology by offering a durable, hemodynamically superior solution that mitigates the drawbacks of current MHVs.
Collapse
Affiliation(s)
- Dylan Goode
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada
| | | | | | - Hadi Mohammadi
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Arminio M, Carbonaro D, Morbiducci U, Gallo D, Chiastra C. Fluid-structure interaction simulation of mechanical aortic valves: a narrative review exploring its role in total product life cycle. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1399729. [PMID: 39011523 PMCID: PMC11247014 DOI: 10.3389/fmedt.2024.1399729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Over the last years computer modelling and simulation has emerged as an effective tool to support the total product life cycle of cardiovascular devices, particularly in the device preclinical evaluation and post-market assessment. Computational modelling is particularly relevant for heart valve prostheses, which require an extensive assessment of their hydrodynamic performance and of risks of hemolysis and thromboembolic complications associated with mechanically-induced blood damage. These biomechanical aspects are typically evaluated through a fluid-structure interaction (FSI) approach, which enables valve fluid dynamics evaluation accounting for leaflets movement. In this context, the present narrative review focuses on the computational modelling of bileaflet mechanical aortic valves through FSI approach, aiming to foster and guide the use of simulations in device total product life cycle. The state of the art of FSI simulation of heart valve prostheses is reviewed to highlight the variety of modelling strategies adopted in the literature. Furthermore, the integration of FSI simulations in the total product life cycle of bileaflet aortic valves is discussed, with particular emphasis on the role of simulations in complementing and potentially replacing the experimental tests suggested by international standards. Simulations credibility assessment is also discussed in the light of recently published guidelines, thus paving the way for a broader inclusion of in silico evidence in regulatory submissions. The present narrative review highlights that FSI simulations can be successfully framed within the total product life cycle of bileaflet mechanical aortic valves, emphasizing that credible in silico models evaluating the performance of implantable devices can (at least) partially replace preclinical in vitro experimentation and support post-market biomechanical evaluation, leading to a reduction in both time and cost required for device development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
4
|
Laha S, Fourtakas G, Das PK, Keshmiri A. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model. Sci Rep 2024; 14:6762. [PMID: 38514703 PMCID: PMC10957961 DOI: 10.1038/s41598-024-57177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of the aortic heart valve is common, resulting in deterioration of the pumping function of the heart. For the end stage valve failure, bi-leaflet mechanical valve (most popular artificial valve) is implanted. However, due to its non-physiological behaviour, a significant alteration is observed in the normal haemodynamics of the aorta. While in-vivo experimentation of a human heart valve (native and artificial) is a formidable task, in-silico study using computational fluid dynamics (CFD) with fluid structure interaction (FSI) is an effective and economic tool for investigating the haemodynamics of natural and artificial heart valves. In the present work, a haemodynamic model of a natural and mechanical heart valve has been developed using meshless particle-based smoothed particle hydrodynamics (SPH). In order to further enhance its clinical relevance, this study employs a patient-specific vascular geometry and presents a successful validation against traditional finite volume method and 4D magnetic resonance imaging (MRI) data. The results have demonstrated that SPH is ideally suited to simulate the heart valve function due to its Lagrangian description of motion, which is a favourable feature for FSI. In addition, a novel methodology for the estimation of the wall shear stress (WSS) and other related haemodynamic parameters have been proposed from the SPH perspective. Finally, a detailed comparison of the haemodynamic parameters has been carried out for both native and mechanical aortic valve, with a particular emphasis on the clinical risks associated with the mechanical valve.
Collapse
Affiliation(s)
- Sumanta Laha
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK
- Department of Mechanical Engineering, IIT Kharagpur, Kharagpur, 721302, India
| | - Georgios Fourtakas
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Prasanta K Das
- Department of Mechanical Engineering, IIT Kharagpur, Kharagpur, 721302, India
| | - Amir Keshmiri
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK.
- Manchester University NHS Foundation Trust, Manchester, M13 9PL, UK.
| |
Collapse
|
5
|
García-Galindo A, Agujetas R, López-Mínguez JR, Ferrera C. Assessment of valve implantation in the descending aorta as an alternative for aortic regurgitation patients not treatable with conventional procedures. Biomech Model Mechanobiol 2022; 22:575-591. [PMID: 36550245 PMCID: PMC10097802 DOI: 10.1007/s10237-022-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aortic Regurgitation (AR) produces the entrance of an abnormal amount of blood in the left ventricle. This disease is responsible for high morbidity and mortality worldwide and may be caused by an aortic valve dysfunction. Surgical and transcatheter aortic valve replacement (TAVR) are the current options for treating AR. They have replaced older procedures such as Hufnagel's one. However, some physicians have reconsidered this procedure as a less aggressive alternative for patients not eligible for surgical or TAVR. Although Hufnagel suggested a 75% regurgitation reduction when a valve is placed in the descending aorta, a quantification of this value has not been reported. METHODS In this paper, CFD/FSI numerical simulation is conducted on an idealized geometry. We quantify the effect of placing a bileaflet mechanical heart valve in the descending aorta on a moderate-severe AR case. A three-element Windkessel model is employed to prescribe pressure outlet boundary conditions. We calculate the resulting flow rates and pressures at the aorta and first-generation vessels. Moreover, we evaluate several indices to assess the improvement due to the valve introduction. RESULTS AND CONCLUSIONS Regurgitation fraction (RF) is reduced from 37.5% (without valve) to 18.0% (with valve) in a single cardiac cycle. This reduction clearly shows the remarkable efficacy of the rescued technique. It will further ameliorate the left ventricle function in the long-term. Moreover, the calculations show that the implantation in that location introduces fewer incompatibilities' risks than a conventional one. The proposed methodology can be extended to any particular conditions (pressure waveforms/geometry) and is designed to assess usual clinical parameters employed by physicians.
Collapse
Affiliation(s)
- A García-Galindo
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain
| | - R Agujetas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain
| | - J R López-Mínguez
- Sección de Cardiologıa Intervencionista, Servicio de Cardiologıa, Hospital Universitario de Badajoz, Avda. de Elvas s/n, E-06006, Badajoz, Spain
| | - C Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain.
| |
Collapse
|
6
|
Lee JH, Kuhar S, Seo JH, Pasricha PJ, Mittal R. Computational modeling of drug dissolution in the human stomach: Effects of posture and gastroparesis on drug bioavailability. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:081904. [PMID: 35971381 PMCID: PMC9372820 DOI: 10.1063/5.0096877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/25/2023]
Abstract
The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as "StomachSim") to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.
Collapse
Affiliation(s)
| | - S. Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | - P. J. Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - R. Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
(Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). COR ET VASA 2022. [DOI: 10.33678/cor.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Chen A, Basri AAB, Ismail NB, Tamagawa M, Zhu D, Ahmad KA. Simulation of Mechanical Heart Valve Dysfunction and the Non-Newtonian Blood Model Approach. Appl Bionics Biomech 2022; 2022:9612296. [PMID: 35498142 PMCID: PMC9042627 DOI: 10.1155/2022/9612296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanical heart valve (MHV) is commonly used for the treatment of cardiovascular diseases. Nonphysiological hemodynamic in the MHV may cause hemolysis, platelet activation, and an increased risk of thromboembolism. Thromboembolism may cause severe complications and valve dysfunction. This paper thoroughly reviewed the simulation of physical quantities (velocity distribution, vortex formation, and shear stress) in healthy and dysfunctional MHV and reviewed the non-Newtonian blood flow characteristics in MHV. In the MHV numerical study, the dysfunction will affect the simulation results, increase the pressure gradient and shear stress, and change the blood flow patterns, increasing the risks of hemolysis and platelet activation. The blood flow passes downstream and has obvious recirculation and stagnation region with the increased dysfunction severity. Due to the complex structure of the MHV, the non-Newtonian shear-thinning viscosity blood characteristics become apparent in MHV simulations. The comparative study between Newtonian and non-Newtonian always shows the difference. The shear-thinning blood viscosity model is the basics to build the blood, also the blood exhibiting viscoelastic properties. More details are needed to establish a complete and more realistic simulation.
Collapse
Affiliation(s)
- Aolin Chen
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adi Azriff Bin Basri
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Norzian Bin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Masaaki Tamagawa
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan
| | - Di Zhu
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Kamarul Arifin Ahmad
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
9
|
Computational Methods for Fluid-Structure Interaction Simulation of Heart Valves in Patient-Specific Left Heart Anatomies. FLUIDS 2022. [DOI: 10.3390/fluids7030094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques.
Collapse
|
10
|
Bastos L, Marques R, Silva J, Freitas R, Marques Â, Gonçalves N, Cortez S, Coelho A, Sousa L, Parreira P, Silva B, Carneiro F. Design and development of a novel double-chamber syringe concept for venous catheterization. Med Eng Phys 2022; 100:103757. [DOI: 10.1016/j.medengphy.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
11
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Owen DG, de Oliveira DC, Neale EK, Shepherd DET, Espino DM. Numerical modelling of blood rheology and platelet activation through a stenosed left coronary artery bifurcation. PLoS One 2021; 16:e0259196. [PMID: 34731193 PMCID: PMC8565790 DOI: 10.1371/journal.pone.0259196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of reduced wall shear stress (WSS) and increased platelet adhesion. This study compares effects across different rheological approaches on hemodynamics, combined with a shear stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations used both single/multiphase blood models to determine which approach best predicts phenomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet tracking model was used to evaluate residence time and shear history of platelets indicating likely regions of thrombus formation. Results show a decrease in area of regions with pathologically low time-averaged WSS with the use of multiphase models, particularly in a stenotic bifurcation. Significant non-Newtonian effects were observed due to low-shear and varying hematocrit levels found on the outer walls of the bifurcation and distal to the stenosis. Platelet residence time increased 11% in the stenosed artery, with exposure times to low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis. This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase, with variations in hematocrit (0.163-0.617) and elevated vorticity distal to stenosis (+15%) impairing the function of the endothelium via reduced time-averaged WSS regions, rheological properties and platelet activation/adhesion.
Collapse
Affiliation(s)
- David G. Owen
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Diana C. de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Emma K. Neale
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Duncan E. T. Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Fluid Flow Characteristics of Healthy and Calcified Aortic Valves Using Three-Dimensional Lagrangian Coherent Structures Analysis. FLUIDS 2021. [DOI: 10.3390/fluids6060203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic valve calcification is an important cardiovascular disorder that deteriorates the accurate functioning of the valve leaflets. The increasing stiffness due to the calcification prevents the complete closure of the valve and therefore leads to significant hemodynamic alterations. Computational fluid dynamics (CFD) modeling enables the investigation of the entire flow domain by processing medical images from aortic valve patients. In this study, we computationally modeled and simulated a 3D aortic valve using patient-specific dimensions of the aortic root and aortic sinus. Leaflet stiffness is deteriorated in aortic valve disease due to calcification. In order to investigate the influence of leaflet calcification on flow dynamics, three different leaflet-stiffness values were considered for healthy, mildly calcified, and severely calcified leaflets. Time-dependent CFD results were used for applying the Lagrangian coherent structures (LCS) technique by performing finite-time Lyapunov exponent (FTLE) computations along with Lagrangian particle residence time (PRT) analysis to identify unique vortex structures at the front and backside of the leaflets. Obtained results indicated that the peak flow velocity at the valve orifice increased with the calcification rate. For the healthy aortic valve, a low-pressure field was observed at the leaflet tips. This low-pressure field gradually expanded through the entire aortic sinus as the calcification level increased. FTLE field plots of the healthy and calcified valves showed a variety of differences in terms of flow structures. When the number of fluid particles in the healthy valve model was taken as reference, 1.59 and 1.74 times more particles accumulated in the mildly and severely calcified valves, respectively, indicating that the calcified valves were not sufficiently opened to allow normal mass flow rates.
Collapse
|
14
|
Sari M, Bayram Z, Ayturk M, Bayam E, Kalkan S, Guner A, Kalcik M, Gursoy MO, Gunduz S, Ozkan M. Characteristic localization patterns of thrombus on various brands of bileaflet mitral mechanical heart valves as assessed by three-dimensional transesophageal echocardiography and their relationship with thromboembolism. Int J Cardiovasc Imaging 2021; 37:2691-2705. [PMID: 33835319 DOI: 10.1007/s10554-021-02234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional transesophageal echocardiography (3D-TEE) provides detailed images of prosthetic valve thrombosis (PVT). However, data regarding PVT localization patterns based on 3D-TEE and their association with clinical findings among various bileaflet mitral prosthetic valve brands is lacking. The locations of thrombi were classified into 4 groups according to hinge and annulus involvement based on 3D-TEE: ring-like PVT involving entire mitral annulus (type-1), PVT involving peri-hinge(s) region and extends through some part of the annulus (type-2), PVT involving mitral annulus without involving hinge(s) region (type-3), and PVT involving only (peri)hinge(s) area (type-4). This study was conducted in 265 patients (male: 71, mean age: 46.3 ± 12.7 years) with mitral PVT, including 150 St Jude Medical (SJM), 65 Carbomedics, 29 Medtronic ATS open-pivot, and 21 Sorin bileaflet mechanical valves. There was a significant difference in most common PVT localization patterns between different prosthetic valves (type-1 for Carbomedics and Sorin; type-2 for SJM and type-3 for ATS valves; p < 0.001). Additionally, PVT involving only (peri)hinge region(s) (type-4) was mostly observed in patients with SJM valves (18%). (Peri)hinge(s) area involvement was observed in the majority of study patients (78.1%). In patients who presented with thromboembolism, the most common PVT localization pattern was type-1 (53%). Increased age, low international normalized ratio on admission, PVT with a mobile part > 2 mm, type-1 and type-4 PVT were associated with thromboembolic events. In conclusion, thrombus can be displayed in distinct locations in several types of bileaflet mechanical valves due to different design, hinge and pivot mechanisms, which can be complicated with thromboembolic events.
Collapse
Affiliation(s)
- Munevver Sari
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey.
| | - Zubeyde Bayram
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey
| | - Mehmet Ayturk
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey
| | - Emrah Bayam
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey
| | - Semih Kalkan
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey
| | - Ahmet Guner
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Macit Kalcik
- Department of Cardiology, Faculty of Medicine, Hitit University, Çorum, Turkey
| | - Mustafa Ozan Gursoy
- Department of Cardiology, Izmir Ataturk Training and Research Hospital, Izmir, Turkey
| | - Sabahattin Gunduz
- Department of Cardiology, VM Medikal Park Pendik Hospital, Istanbul, Turkey
| | - Mehmet Ozkan
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Denizer caddesi, Cevizli Kavsagi, Kartal, 34865, Istanbul, Turkey
- Faculty of Health Sciences, University of Ardahan, Ardahan, Turkey
| |
Collapse
|
15
|
Hellmeier F, Brüning J, Sündermann S, Jarmatz L, Schafstedde M, Goubergrits L, Kühne T, Nordmeyer S. Hemodynamic Modeling of Biological Aortic Valve Replacement Using Preoperative Data Only. Front Cardiovasc Med 2021; 7:593709. [PMID: 33634167 PMCID: PMC7900157 DOI: 10.3389/fcvm.2020.593709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: Prediction of aortic hemodynamics after aortic valve replacement (AVR) could help optimize treatment planning and improve outcomes. This study aims to demonstrate an approach to predict postoperative maximum velocity, maximum pressure gradient, secondary flow degree (SFD), and normalized flow displacement (NFD) in patients receiving biological AVR. Methods: Virtual AVR was performed for 10 patients, who received actual AVR with a biological prosthesis. The virtual AVRs used only preoperative anatomical and 4D flow MRI data. Subsequently, computational fluid dynamics (CFD) simulations were performed and the abovementioned hemodynamic parameters compared between postoperative 4D flow MRI data and CFD results. Results: For maximum velocities and pressure gradients, postoperative 4D flow MRI data and CFD results were strongly correlated (R2 = 0.75 and R2 = 0.81) with low root mean square error (0.21 m/s and 3.8 mmHg). SFD and NFD were moderately and weakly correlated at R2 = 0.44 and R2 = 0.20, respectively. Flow visualization through streamlines indicates good qualitative agreement between 4D flow MRI data and CFD results in most cases. Conclusion: The approach presented here seems suitable to estimate postoperative maximum velocity and pressure gradient in patients receiving biological AVR, using only preoperative MRI data. The workflow can be performed in a reasonable time frame and offers a method to estimate postoperative valve prosthesis performance and to identify patients at risk of patient-prosthesis mismatch preoperatively. Novel parameters, such as SFD and NFD, appear to be more sensitive, and estimation seems harder. Further workflow optimization and validation of results seems warranted.
Collapse
Affiliation(s)
- Florian Hellmeier
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany
| | - Jan Brüning
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany
| | - Simon Sündermann
- Charité - Universitätsmedizin Berlin, Department of Cardiovascular Surgery, Berlin, Germany.,German Heart Center Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Lina Jarmatz
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany
| | - Marie Schafstedde
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Heart Center Berlin, Department of Congenital Heart Disease, Berlin, Germany
| | - Leonid Goubergrits
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| | - Titus Kühne
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,German Heart Center Berlin, Department of Congenital Heart Disease, Berlin, Germany
| | - Sarah Nordmeyer
- Charité - Universitätsmedizin Berlin, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany.,German Heart Center Berlin, Department of Congenital Heart Disease, Berlin, Germany
| |
Collapse
|
16
|
Mohammadi H, Bhullar A. The Apex bileaflet mechanical heart valve. J Med Eng Technol 2021; 45:41-51. [PMID: 33448912 DOI: 10.1080/03091902.2020.1853835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanical Heart Valves (MHVs) are known for their excellent lifespan and feasibly are the most reliable and stable valves amongst all prosthetic valves. Successful bileaflet MHVs such as the St. Jude Medical (SJM) are known for providing central blood flow and minimal pressure drop across the valve. However, due to their non-physiological flow conditions, they still suffer from hemodynamic complications, that is, red blood cell (RBC) lysis and/or thrombogenicity, to date. Our hypothesis is that the design of MHVs can be improved so that their hemodynamics can be comparable to those of tissue valves. In this study, a new concept for the design of MHVs is proposed. To accomplish this, we identified the major design limitations of bileaflet MHVs, such as the gold standard SJM valve as well as the believed contributing factors to their thrombogenicity. We developed a novel design architecture for bileaflet MHVs that addressed these limitations, and from it, the Apex Valve (AV). Our experimental assessment of the AV found that its hemodynamics were closer to that of a bioprosthetic valve than of a bileaflet MHV. This design has been filed as a US Provisional Patent.
Collapse
Affiliation(s)
- Hadi Mohammadi
- Faculty of Applied Science, The Heart Valve Performance Laboratory, School of Engineering, University of British Columbia, Kelowna, Canada
| | - Arpin Bhullar
- Faculty of Applied Science, The Heart Valve Performance Laboratory, School of Engineering, University of British Columbia, Kelowna, Canada
| |
Collapse
|
17
|
Qian JY, Gao ZX, Li WQ, Jin ZJ. Cavitation Suppression of Bileaflet Mechanical Heart Valves. Cardiovasc Eng Technol 2020; 11:783-794. [PMID: 32918244 DOI: 10.1007/s13239-020-00484-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Mechanical heart valves (MHVs) are widely used to replace diseased heart valves, but it may suffer from cavitation due to the rapid closing velocity of the leaflets, resulting in the damage of red blood cells and platelets. The aim of this study is to apply computational fluid dynamics (CFD) method to investigate the cavitation in bileaflets mechanical heart valves (BMHVs) and discuss the effects of the conduit and leaflet geometries on cavitation intensity. METHODS Firstly, CFD method together with moving-grid technology were applied and validated by comparing with experimental results obtained from other literature. Then the leaflets movement and the flow rate of BMHVs with different conduit geometries and leaflet geometries are compared. At last, the duration time of the saturated vapor pressure and the closing velocity of leaflets at the instant of valve closure were used to represent the cavitation intensity. RESULTS Larger closing velocity of leaflets at the instant of valve closure means higher cavitation intensity. For BMHVs with different conduit geometries, the conduit with Valsalva sinuses has the maximum cavitation intensity and the straight conduit has the minimum cavitation intensity, but the leaflets cannot reach the fully opened state in a straight conduit. For BMHVs with different leaflet geometries, in order to minimize the cavitation intensity, the leaflets are better to have a large thickness and a small rotational radius. CONCLUSION CFD method is a promising method to deal with cavitation in BMHVs, and the closing velocity of leaflets has the same trend with the cavitation intensity. By using CFD method, the effects of the conduit geometry and the leaflet geometry on cavitaion in BMHVs are found out.
Collapse
Affiliation(s)
- Jin-Yuan Qian
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhi-Xin Gao
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.,SUFA Technology Industry Co., Ltd, CNNC, Suzhou, 215129, People's Republic of China
| | - Wen-Qing Li
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhi-Jiang Jin
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
18
|
Hemodynamic Performance of Dysfunctional Prosthetic Heart Valve with the Concomitant Presence of Subaortic Stenosis: In Silico Study. Bioengineering (Basel) 2020; 7:bioengineering7030090. [PMID: 32784661 PMCID: PMC7552677 DOI: 10.3390/bioengineering7030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
The prosthetic heart valve is vulnerable to dysfunction after surgery, thus a frequent assessment is required. Doppler electrocardiography and its quantitative parameters are commonly used to assess the performance of the prosthetic heart valves and provide detailed information on the interaction between the heart chambers and related prosthetic valves, allowing early detection of complications. However, in the case of the presence of subaortic stenosis, the accuracy of Doppler has not been fully investigated in previous studies and guidelines. Therefore, it is important to evaluate the accuracy of the parameters in such cases to get early detection, and a proper treatment plan for the patient, at the right time. In the current study, a CFD simulation was performed for the blood flow through a Bileaflet Mechanical Heart Valve (BMHV) with concomitant obstruction in the Left Ventricle Outflow Tract (LVOT). The current study explores the impact of the presence of the subaortic on flow patterns. It also investigates the accuracy of (BMHV) evaluation using Doppler parameters, as proposed in the American Society of Echocardiography (ASE) guidelines.
Collapse
|
19
|
Kim W, Choi H, Kweon J, Yang DH, Kim YH. Effects of pannus formation on the flow around a bileaflet mechanical heart valve. PLoS One 2020; 15:e0234341. [PMID: 32530931 PMCID: PMC7292405 DOI: 10.1371/journal.pone.0234341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022] Open
Abstract
Some patients with a bileaflet mechanical heart valve (BMHV) show significant increases in the transvalvular pressure drop and abnormal leaflet motion due to a pannus (an abnormal fibrovascular tissue) formed on the ventricular side, even in the absence of physical contact between the pannus and leaflets. We investigate the effects of the pannus shape (circular or semi-circular ring), implantation location and height on the leaflet motion, flow structure and transvalvular pressure drop using numerical simulations. The valve model considered resembles a 25 mm masters HP valve. The mean systolic pressure drop is significantly increased with increasing pannus height, irrespective of its implantation orientation. Near the peak inflow rate, the flow behind the pannus becomes highly turbulent, and the transvalvular pressure drop is markedly increased by the pannus. At the end of valve opening and the start of valve closing, oscillatory motions of the leaflets occur due to periodic shedding of vortex rings behind the pannus, and their amplitudes become large with increasing pannus height. When the pannus shape is asymmetric (e.g., a semi-circular ring) and its height reaches about 0.1D (D (= 25 mm) is the diameter of an aorta), abnormal leaflet motions occur: two leaflets move asymmetrically, and valve closing is delayed in time or incomplete, which increases the regurgitation volume. The peak energy loss coefficients due to panni are obtained from simulation data and compared with those predicted by a one-dimensional model. The comparison indicates that the one-dimensional model is applicable for the BMHV with and without pannus.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Haecheon Choi
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
- * E-mail:
| | - Jihoon Kweon
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Sadipour M, Hanafizadeh P, Sadeghy K, Sattari A. Effect of Aortic Wall Deformation with Healthy and Calcified Annulus on Hemodynamic Performance of Implanted On-X Valve. Cardiovasc Eng Technol 2020; 11:141-161. [PMID: 31912432 DOI: 10.1007/s13239-019-00453-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In this research, the hemodynamic performance of a 23-mm On-X bileaflet mechanical heart valve (BMHV) was investigated with the realistic geometry model of the valve and the deformable aorta in accelerating systole. In addition, the effect of ascending aorta flexibility and aortic annulus calcification on the complex blood flow characteristics were investigated. METHODS The geometry of the aorta is derived from the medical images, and the Ogden model has been utilized for the mechanical behavior of the ascending aorta. The 3D numerical simulation by a two-way Fluid-Structure Interaction (FSI) analysis using the Arbitrary Lagrangian-Eulerian (ALE) method was performed throughout the accelerating systolic phase. RESULTS The dynamics of the leaflets are investigated, and blood flow characteristics such as velocities, vorticities as well as viscous and turbulent shear stress were precisely captured in the flow domain specifically in the hinge region. Streamline results are in accordance with the previously reported data, which show that the flared On-X valves inlet yields a more uniform flow in accelerating systole. Simulations show that aorta flexibility or valve annulus calcification causes variations up to 7% in maximum fluid velocity and 20% in Turbulence Kinetic Energy (TKE). CONCLUSIONS In this study, the complex flow field characteristics in the new generation of BMHVs considering aorta flexibility with healthy and calcified annulus were investigated. It was found that the blood flow around the hinges region is in the danger of hemolysis and platelet activation and subsequently thromboembolism. Furthermore, the results show that similar to vessel wall deformation, considering the probable annulus calcification after valve replacement is also essential.
Collapse
Affiliation(s)
- Masod Sadipour
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Pedram Hanafizadeh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Sadeghy
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirmohammad Sattari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Liu GM, Chen HB, Hou JF, Zhang Y, Hu SS. Platelet adhesion emulation: A novel method for estimating the device thrombosis potential of a ventricular assist device. Int J Artif Organs 2019; 43:252-257. [PMID: 31709882 DOI: 10.1177/0391398819885946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Device thrombosis inside ventricular assist devices remains a limitation to their long-term clinical use. Thrombosis potential exists in almost all ventricular assist devices because the device-induced high shear stress and vortices can activate platelets, which then aggregate and adhere to the surfaces inside the ventricular assist device. To decrease the device thrombosis potential of long-term use of ventricular assist devices, a methodology entitled platelet adhesion emulation for predicting the thrombosis potential and thrombosis position inside the ventricular assist devices is developed. The platelet adhesion emulation methodology combines numerical simulations with in vitro experiments by correlating the structure of the flow passage components within the ventricular assist device with the platelet adhesion to estimate the thrombosis potential and location, with the goal of developing ventricular assist devices with optimized antithrombotic performance. Platelet adhesion emulation is aimed at decreasing the device thrombus potential of ventricular assist devices. The platelet adhesion emulation effectiveness is validated by simulating and testing an axial left ventricular assist device. The blood velocity relative to the surfaces of the flow passage components is calculated to estimate the platelet adhesion potential, indicating the probability of thrombus formation on the surfaces. Platelet adhesion emulation experiments conducted in a mock circulation loop with pump prototypes show the distribution of platelet adhesion on the surfaces. This methodology of emulating the device thrombosis distribution indicates the potential for improving the component structure and reducing the device thrombosis of ventricular assist devices.
Collapse
Affiliation(s)
- Guang-Mao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-bo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-feng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-shou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Abbas SS, Nasif MS, Al-Waked R, Meor Said MA. Numerical investigation on the effect of bileaflet mechanical heart valve's implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation. Artif Organs 2019; 44:E20-E39. [PMID: 31378963 DOI: 10.1111/aor.13536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/27/2022]
Abstract
Platelet activation induced by shear stresses and non-physiological flow field generated by bileaflet mechanical heart valves (BMHVs) leads to thromboembolism, which can cause fatal consequences. One of the causes of platelet activation could be intermittent regurgitation, which arises due to asynchronous movement and rebound of BMHV leaflets during the valve closing phase. In this numerical study, the effect of intermittent regurgitation on the platelet activation potential of BMHVs was quantified by modeling a BMHV in the straight and anatomic aorta at implantation tilt angles 0°, 5°, 10°, and 20°. A fully implicit Arbitrary Lagrangian-Eulerian-based Fluid-Structure Interaction formulation was adopted with blood modeled as a multiphase, non-Newtonian fluid. Results showed that the intermittent regurgitation and consequently the platelet activation level increases with the increasing implantation tilt of BMHV. For the straight aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 20° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 8.5°, 3°, and 0°, respectively. For the anatomic aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 24° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 14°, 10°, and 7°, respectively. For all the implantation orientations of BMHVs, intermittent regurgitation and platelet activation were always higher in the anatomic aorta than in the straight aorta. The study concludes that the pivot axis of BMHV must be implanted parallel to the aortic root's curvature to minimize intermittent regurgitation and platelet activation.
Collapse
Affiliation(s)
- Syed Samar Abbas
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Mohammad Shakir Nasif
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Rafat Al-Waked
- Department of Mechanical and Maintenance Engineering, German Jordanian University, Amman, Jordan
| | - Mior Azman Meor Said
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| |
Collapse
|
23
|
Lavon K, Halevi R, Marom G, Ben Zekry S, Hamdan A, Joachim Schäfers H, Raanani E, Haj-Ali R. Fluid-Structure Interaction Models of Bicuspid Aortic Valves: The Effects of Nonfused Cusp Angles. J Biomech Eng 2019; 140:2661744. [PMID: 29098290 DOI: 10.1115/1.4038329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common type of congenital heart disease, occurring in 0.5-2% of the population, where the valve has only two rather than the three normal cusps. Valvular pathologies, such as aortic regurgitation and aortic stenosis, are associated with BAVs, thereby increasing the need for a better understanding of BAV kinematics and geometrical characteristics. The aim of this study is to investigate the influence of the nonfused cusp (NFC) angle in BAV type-1 configuration on the valve's structural and hemodynamic performance. Toward that goal, a parametric fluid-structure interaction (FSI) modeling approach of BAVs is presented. Four FSI models were generated with varying NFC angles between 120 deg and 180 deg. The FSI simulations were based on fully coupled structural and fluid dynamic solvers and corresponded to physiologic values, including the anisotropic hyper-elastic behavior of the tissue. The simulated angles led to different mechanical behavior, such as eccentric jet flow direction with a wider opening shape that was found for the smaller NFC angles, while a narrower opening orifice followed by increased jet flow velocity was observed for the larger NFC angles. Smaller NFC angles led to higher concentrated flow shear stress (FSS) on the NFC during peak systole, while higher maximal principal stresses were found in the raphe region during diastole. The proposed biomechanical models could explain the early failure of BAVs with decreased NFC angles, and suggests that a larger NFC angle is preferable in suture annuloplasty BAV repair surgery.
Collapse
Affiliation(s)
- Karin Lavon
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rotem Halevi
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Marom
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794
| | - Sagit Ben Zekry
- Echocardiography Laboratory, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Hans Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, University Hospitals of Saarland, Homburg 66421, Germany
| | - Ehud Raanani
- Department of Cardio-thoracic Surgery, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis. Comput Biol Med 2019; 110:79-92. [DOI: 10.1016/j.compbiomed.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
|
25
|
Comprehensive In Vitro Study of the Flow Past Two Transcatheter Aortic Valves: Comparison with a Severe Stenotic Case. Ann Biomed Eng 2019; 47:2241-2257. [DOI: 10.1007/s10439-019-02289-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
|
26
|
Joda A, Jin Z, Summers J, Korossis S. Comparison of a fixed-grid and arbitrary Lagrangian–Eulerian methods on modelling fluid–structure interaction of the aortic valve. Proc Inst Mech Eng H 2019; 233:544-553. [DOI: 10.1177/0954411919837568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was aimed at assessing the robustness of a fixed-grid fluid–structure interaction method (Multi-Material Arbitrary Lagrangian–Eulerian) to modelling the two-dimensional native aortic valve dynamics and comparing it to the Arbitrary Lagrangian–Eulerian method. For the fixed-grid method, the explicit finite element solver LS-DYNA was utilized, where two independent meshes for the fluid and structure were generated and the penalty method was used to handle the coupling between the fluid and structure domains. For the Arbitrary Lagrangian–Eulerian method, the implicit finite element solver ADINA was used where two separate conforming meshes were used for the valve structure and the fluid domains. The comparison demonstrated that both fluid–structure interaction methods predicted accurately the valve dynamics, fluid flow, and stress distribution, implying that fixed-grid methods can be used in situations where the Arbitrary Lagrangian–Eulerian method fails.
Collapse
Affiliation(s)
- Akram Joda
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
- Cardiopulmonary Regenerative Engineering (CARE) Group, The Centre for Biological Engineering (CBE), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Zhongmin Jin
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jon Summers
- Institute of Engineering Thermofluids, Surface and Interfaces, University of Leeds, Leeds, UK
| | - Sotirios Korossis
- Cardiopulmonary Regenerative Engineering (CARE) Group, The Centre for Biological Engineering (CBE), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Méndez Rojano R, Mendez S, Lucor D, Ranc A, Giansily-Blaizot M, Schved JF, Nicoud F. Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction. Biomech Model Mechanobiol 2019; 18:1139-1153. [DOI: 10.1007/s10237-019-01134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
|
28
|
Vu V, May-Newman K. Bileaflet Prosthesis Design and Orientation Affect Fluid Shear, Residence Time, and Thrombus Formation. J Cardiothorac Vasc Anesth 2019; 33:2870-2872. [PMID: 31060942 DOI: 10.1053/j.jvca.2019.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/11/2022]
Abstract
The orientation and design of bileaflet valve prosthesis in the mitral position affects the intraventricular blood flow and exposure to shear. The combination of the anatomic orientation and a small gap size of the St. Jude Medical valve produces an increase in shear exposure and blood residence time, which both predispose the formation of thrombus in the high shear gaps of the valve hinges.
Collapse
Affiliation(s)
- Vi Vu
- Bioengineering Program, Dept. of Mechanical Engineering, San Diego State University, San Diego, CA
| | - Karen May-Newman
- Bioengineering Program, Dept. of Mechanical Engineering, San Diego State University, San Diego, CA.
| |
Collapse
|
29
|
Hedayat M, Borazjani I. Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves. J Biomech 2019; 83:280-290. [DOI: 10.1016/j.jbiomech.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
30
|
Saito A, Soma K, Kojima T, Inaba T, Yao A, Komuro I. Diastolic Tricuspid Regurgitation Related to Atrial Systole With a Bileaflet Mechanical Valve. Circ J 2018; 82:2921-2922. [DOI: 10.1253/circj.cj-18-0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akihito Saito
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Katsura Soma
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Toshiya Kojima
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Toshiro Inaba
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Atsushi Yao
- Division for Health Service Promotion, The University of Tokyo
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| |
Collapse
|
31
|
Adverse Hemodynamic Conditions Associated with Mechanical Heart Valve Leaflet Immobility. Bioengineering (Basel) 2018; 5:bioengineering5030074. [PMID: 30223603 PMCID: PMC6165326 DOI: 10.3390/bioengineering5030074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
Artificial heart valves may dysfunction, leading to thrombus and/or pannus formations. Computational fluid dynamics is a promising tool for improved understanding of heart valve hemodynamics that quantify detailed flow velocities and turbulent stresses to complement Doppler measurements. This combined information can assist in choosing optimal prosthesis for individual patients, aiding in the development of improved valve designs, and illuminating subtle changes to help guide more timely early intervention of valve dysfunction. In this computational study, flow characteristics around a bileaflet mechanical heart valve were investigated. The study focused on the hemodynamic effects of leaflet immobility, specifically, where one leaflet does not fully open. Results showed that leaflet immobility increased the principal turbulent stresses (up to 400%), and increased forces and moments on both leaflets (up to 600% and 4000%, respectively). These unfavorable conditions elevate the risk of blood cell damage and platelet activation, which are known to cascade to more severe leaflet dysfunction. Leaflet immobility appeared to cause maximal velocity within the lateral orifices. This points to the possible importance of measuring maximal velocity at the lateral orifices by Doppler ultrasound (in addition to the central orifice, which is current practice) to determine accurate pressure gradients as markers of valve dysfunction.
Collapse
|
32
|
Owen B, Bojdo N, Jivkov A, Keavney B, Revell A. Structural modelling of the cardiovascular system. Biomech Model Mechanobiol 2018; 17:1217-1242. [PMID: 29911296 PMCID: PMC6154127 DOI: 10.1007/s10237-018-1024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/25/2018] [Indexed: 02/02/2023]
Abstract
Computational modelling of the cardiovascular system offers much promise, but represents a truly interdisciplinary challenge, requiring knowledge of physiology, mechanics of materials, fluid dynamics and biochemistry. This paper aims to provide a summary of the recent advances in cardiovascular structural modelling, including the numerical methods, main constitutive models and modelling procedures developed to represent cardiovascular structures and pathologies across a broad range of length and timescales; serving as an accessible point of reference to newcomers to the field. The class of so-called hyperelastic materials provides the theoretical foundation for the modelling of how these materials deform under load, and so an overview of these models is provided; comparing classical to application-specific phenomenological models. The physiology is split into components and pathologies of the cardiovascular system and linked back to constitutive modelling developments, identifying current state of the art in modelling procedures from both clinical and engineering sources. Models which have originally been derived for one application and scale are shown to be used for an increasing range and for similar applications. The trend for such approaches is discussed in the context of increasing availability of high performance computing resources, where in some cases computer hardware can impact the choice of modelling approach used.
Collapse
Affiliation(s)
- Benjamin Owen
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK.
| | - Nicholas Bojdo
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| | - Andrey Jivkov
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Alistair Revell
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Manchester, M1 3BB, UK
| |
Collapse
|
33
|
Madhavan S, Kemmerling EMC. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. Biomed Eng Online 2018; 17:66. [PMID: 29843730 PMCID: PMC5975715 DOI: 10.1186/s12938-018-0497-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Computational modeling of cardiovascular flow is a growing and useful field, but such simulations usually require the researcher to guess the flow’s inlet and outlet conditions since they are difficult and expensive to measure. It is critical to determine the amount of uncertainty introduced by these assumptions in order to evaluate the degree to which cardiovascular flow simulations are accurate. Our work begins to address this question by examining the sensitivity of flow to several different assumed velocity inlet and outlet conditions in a patient-specific aorta model. Methods We examined the differences between plug flow, parabolic flow, linear shear flows, skewed cubic flow profiles, and Womersley flow at the inlet. Only the shape of the inlet velocity profile was varied—all other parameters were identical among these simulations. Secondary flow in the form of a counter-rotating pair of vortices was also added to parabolic axial flow to study its effect on the solution. In addition, we examined the differences between two-element Windkessel, three element Windkessel and the outflow boundary conditions. In these simulations, only the outlet boundary condition was varied. Results The results show axial and in-plane velocities are considerably different close to the inlet for the cases with different inlet velocity profile shapes. However, the solutions are qualitatively similar beyond 1.75D, where D is the inlet diameter. This trend is also observed in other quantities such as pressure and wall shear stress. Normalized root-mean-square deviation, a measure of axial velocity magnitude differences between the different cases, generally decreases along the streamwise coordinate. The linear shear inlet velocity boundary condition and plug velocity boundary condition solution exhibit the highest time-averaged wall shear stress, approximately \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$8\%$$\end{document}8% higher than the parabolic inlet velocity boundary condition. Upstream of 1D from the inlet, adding secondary flow has a significant impact on temporal wall shear stress distributions. This is especially observable during diastole, when integrated wall shear stress magnitude varies about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$26\%$$\end{document}26% between simulations with and without secondary flow. The results from the outlet boundary condition study show the Windkessel models differ from the outflow boundary condition by as much as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$18\%$$\end{document}18% in terms of time-averaged wall shear stress. Furthermore, normalized root-mean-square deviation of axial velocity magnitude, a measure of deviation between Windkessel and the outflow boundary condition, increases along the streamwise coordinate indicating larger variations near outlets. Conclusion It was found that the selection of inlet velocity conditions significantly affects only the flow region close to the inlet of the aorta. Beyond two diameters distal to the inlet, differences in flow solution are small. Although additional studies must be performed to verify this result, the data suggest that it is important to use patient-specific inlet conditions primarily if the researcher is concerned with the details of the flow very close to the inlet. Similarly, the selection of outlet conditions significantly affects the flow in the vicinity of the outlets. Upstream of five diameters proximal to the outlet, deviations between the outlet boundary conditions examined are insignificant. Although the inlet and outlet conditions only affect the flow significantly in their respective neighborhoods, our study indicates that outlet conditions influence a larger percentage of the solution domain.
Collapse
Affiliation(s)
- Sudharsan Madhavan
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | | |
Collapse
|
34
|
Spühler JH, Jansson J, Jansson N, Hoffman J. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model. Front Physiol 2018; 9:363. [PMID: 29713288 PMCID: PMC5911501 DOI: 10.3389/fphys.2018.00363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/23/2018] [Indexed: 11/22/2022] Open
Abstract
Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.
Collapse
Affiliation(s)
- Jeannette H Spühler
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Jansson
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Niclas Jansson
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Hoffman
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
35
|
Buck AKW, Goebel SG, Goodin MS, Wright NJ, Groszek JJ, Moyer J, Singh S, Bluestein D, Fissell WH, Roy S. Original article submission: Platelet stress accumulation analysis to predict thrombogenicity of an artificial kidney. J Biomech 2018; 69:26-33. [PMID: 29395231 DOI: 10.1016/j.jbiomech.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023]
Abstract
An implantable artificial kidney using a hemofilter constructed from an array of silicon membranes to provide ultrafiltration requires a suitable blood flow path to ensure stable operation in vivo. Two types of flow paths distributing blood to the array of membranes were evaluated: parallel and serpentine. Computational fluid dynamics (CFD) simulations were used to guide the development of the blood flow paths. Pressure data from animal tests were used to obtain pulsatile flow conditions imposed in the transient simulations. A key consideration for stable operation in vivo is limiting platelet stress accumulation to avoid platelet activation and thrombus formation. Platelet stress exposure was evaluated by CFD particle tracking methods through the devices to provide distributions of platelet stress accumulation. The distributions of stress accumulation over the duration of a platelet lifetime for each device revealed that stress accumulation for the serpentine flow path exceeded levels expected to cause platelet activation while the accumulated stress for the parallel flow path was below expected activation levels.
Collapse
Affiliation(s)
- Amanda K W Buck
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | - Nathan J Wright
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Joseph J Groszek
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrett Moyer
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sukhveer Singh
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - William H Fissell
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Ventricular Assist Device Implantation Configurations Impact Overall Mechanical Circulatory Support System Thrombogenic Potential. ASAIO J 2018; 63:285-292. [PMID: 27922885 DOI: 10.1097/mat.0000000000000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ventricular assist devices (VADs) became in recent years the standard of care therapy for advanced heart failure with hemodynamic compromise. With the steadily growing population of device recipients, various postimplant complications have been reported, mostly associated with the hypershear generated by VADs that enhance their thrombogenicity by activating platelets. Although VAD design optimization can significantly improve its thromboresistance, the implanted VAD need to be evaluated as part of a system. Several clinical studies indicated that variability in implantation configurations may contribute to the overall system thrombogenicity. Numerical simulations were conducted in the HeartAssist 5 (HA5) and HeartMate II (HMII) VADs in the following implantation configurations: 1) inflow cannula angles: 115° and 140° (HA5); 2) three VAD circumferential orientations: 0°, 30°, and 60° (HA5 and HMII); and 3) 60° and 90° outflow graft anastomotic angles with respect to the ascending aorta (HA5). The stress accumulation of the platelets was calculated along flow trajectories and collapsed into a probability density function, representing the "thrombogenic footprint" of each configuration-a proxy to its thrombogenic potential (TP). The 140° HA5 cannula generated lower TP independent of the circumferential orientation of the VAD. Sixty-degree orientation generated the lowest TP for the HA5 versus 0° for the HMII. An anastomotic angle of 60° resulted in lower TP for HA5. These results demonstrate that optimizing the implantation configuration reduces the overall system TP. Thromboresistance can be enhanced by combining VAD design optimization with the surgical implantation configurations for achieving better clinical outcomes of implanted VADs.
Collapse
|
37
|
Hellmeier F, Nordmeyer S, Yevtushenko P, Bruening J, Berger F, Kuehne T, Goubergrits L, Kelm M. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD. Artif Organs 2017; 42:49-57. [PMID: 28853220 DOI: 10.1111/aor.12955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm2 /s2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians.
Collapse
Affiliation(s)
- Florian Hellmeier
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Pavlo Yevtushenko
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Bruening
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Titus Kuehne
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leonid Goubergrits
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Marcus Kelm
- Department of Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
38
|
Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med Biol Eng Comput 2017; 55:1519-1548. [DOI: 10.1007/s11517-017-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022]
|
39
|
Affiliation(s)
- Lauren D.C. Casa
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| | - David N. Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| |
Collapse
|
40
|
Hedayat M, Asgharzadeh H, Borazjani I. Platelet activation of mechanical versus bioprosthetic heart valves during systole. J Biomech 2017; 56:111-116. [DOI: 10.1016/j.jbiomech.2017.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
|
41
|
Susin FM, Espa S, Toninato R, Fortini S, Querzoli G. Integrated strategy for in vitro characterization of a bileaflet mechanical aortic valve. Biomed Eng Online 2017; 16:29. [PMID: 28209171 PMCID: PMC5314609 DOI: 10.1186/s12938-017-0314-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Background
Haemodynamic performance of heart valve prosthesis can be defined as its ability to fully open and completely close during the cardiac cycle, neither overloading heart work nor damaging blood particles when passing through the valve. In this perspective, global and local flow parameters, valve dynamics and blood damage safety of the prosthesis, as well as their mutual interactions, have all to be accounted for when assessing the device functionality. Even though all these issues have been and continue to be widely investigated, they are not usually studied through an integrated approach yet, i.e. by analyzing them simultaneously and highlighting their connections. Results
An in vitro test campaign of flow through a bileaflet mechanical heart valve (Sorin Slimline 25 mm) was performed in a suitably arranged pulsatile mock loop able to reproduce human systemic pressure and flow curves. The valve was placed in an elastic, transparent, and anatomically accurate model of healthy aorta, and tested under several pulsatile flow conditions. Global and local hydrodynamics measurements and leaflet dynamics were analysed focusing on correlations between flow characteristics and valve motion. The haemolysis index due to the valve was estimated according to a literature power law model and related to hydrodynamic conditions, and a correlation between the spatial distribution of experimental shear stress and pannus/thrombotic deposits on mechanical valves was suggested. As main and general result, this study validates the potential of the integrated strategy for performance assessment of any prosthetic valve thanks to its capability of highlighting the complex interaction between the different physical mechanisms that govern transvalvular haemodynamics. Conclusions We have defined an in vitro procedure for a comprehensive analysis of aortic valve prosthesis performance; the rationale for this study was the belief that a proper and overall characterization of the device should be based on the simultaneous measurement of all different quantities of interest for haemodynamic performance and the analysis of their mutual interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12938-017-0314-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Maria Susin
- Cardiovascular Fluid Dynamics Laboratory HER, Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| | - Stefania Espa
- Department of Civil and Environmental Engineering, Sapienza University of Rome, Rome, Italy.
| | - Riccardo Toninato
- Cardiovascular Fluid Dynamics Laboratory HER, Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| | - Stefania Fortini
- Department of Civil and Environmental Engineering, Sapienza University of Rome, Rome, Italy
| | - Giorgio Querzoli
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| |
Collapse
|
42
|
Reconstruction of Intima and Adventitia Models into a State Undeformed by a Catheter by Using CT, IVUS, and Biplane X-Ray Angiogram Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:9807617. [PMID: 28154609 PMCID: PMC5244750 DOI: 10.1155/2017/9807617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022]
Abstract
The number of studies on blood flow analysis using fluid-structure interaction (FSI) analysis is increasing. Though a 3D blood vessel model that includes intima and adventitia is required for FSI analysis, there are difficulties in generating it using only one type of medical imaging. In this paper, we propose a 3D modeling method for accurate FSI analysis. An intravascular ultrasound (IVUS) image is used with biplane X-ray angiogram images to calculate the position and orientation of the blood vessel. However, these images show that the blood vessel is deformed by the catheter inserted into the blood vessel for IVUS imaging. To eliminate such deformation, a CT image was added and the two models were registered. First, a 3D model of the undeformed intima was generated using a CT image. In the second stage, a model of intima and adventitia deformed by the catheter was generated by combining the IVUS image and the X-ray angiogram images. A 3D model of intima and adventitia with the deformation caused by insertion of the catheter eliminated was generated by matching these 3D blood vessel models in different states. In addition, a 3D blood vessel model including bifurcation was generated using the proposed method.
Collapse
|
43
|
Hanafizadeh P, Mirkhani N, Davoudi MR, Masouminia M, Sadeghy K. Non-Newtonian Blood Flow Simulation of Diastolic Phase in Bileaflet Mechanical Heart Valve Implanted in a Realistic Aortic Root Containing Coronary Arteries. Artif Organs 2017; 40:E179-E191. [PMID: 27739601 DOI: 10.1111/aor.12787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
Coronary arteries, which are branched from the sinuses, have tangible effects on the hemodynamic performance of the bileaflet mechanical heart valve (BMHV), especially in the diastolic phase. To better understand this issue, a computer model of ascending aorta including realistic sinus shapes and coronary arteries has been generated in this study in order to investigate the BMHV performance during diastole. Three-dimensional transient numerical analysis is conducted to simulate the diastolic blood flow through the hinges and in coronary arteries under the assumption of non-Newtonian behavior. Results indicate that as blood flows to the coronary arteries mainly during diastole, leakage flow from the hinge and other gaps will change considering the influence of coronary arteries. In addition, BMHV in the case of aortic replacement will increase blood flow rate into the coronary arteries about 100% as the mechanical valve resistance is higher than a native heart valve. Also, it will change the wall shear stress (WSS) distribution and increase coronary artery disease (CAD) potential. It is found out that although less leakage flow reduces the velocity magnitudes through the gaps, the shear stress acting on blood elements with non-Newtonian assumption will be detrimental in the hinge corner at the ventricular side. High WSS of 1800 Pa is observed at beginning of diastole at this region.
Collapse
Affiliation(s)
- Pedram Hanafizadeh
- Center of Excellence in Design and Optimization of Energy Systems, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Nima Mirkhani
- Center of Excellence in Design and Optimization of Energy Systems, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Mahtab Masouminia
- Center of Excellence in Design and Optimization of Energy Systems, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Keyvan Sadeghy
- Center of Excellence in Design and Optimization of Energy Systems, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
44
|
Capelli C, Corsini C, Biscarini D, Ruffini F, Migliavacca F, Kocher A, Laufer G, Taylor AM, Schievano S, Andreas M, Burriesci G, Rath C. Pledget-Armed Sutures Affect the Haemodynamic Performance of Biologic Aortic Valve Substitutes: A Preliminary Experimental and Computational Study. Cardiovasc Eng Technol 2016; 8:17-29. [PMID: 27873180 PMCID: PMC5320018 DOI: 10.1007/s13239-016-0284-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022]
Abstract
Surgical aortic valve replacement is the most common procedure of choice for the treatment of severe aortic stenosis. Bioprosthetic valves are traditionally sewed-in the aortic root by means of pledget-armed sutures during open-heart surgery. Recently, novel bioprostheses which include a stent-based anchoring system have been introduced to allow rapid implantation, therefore reducing the duration and invasiveness of the intervention. Different effects on the hemodynamics were clinically reported associated with the two technologies. The aim of this study was therefore to investigate whether the differences in hemodynamic performances are an effect of different anchoring systems. Two commercially available bio-prosthetic aortic valves, one sewed-in with pledget-armed sutures and one rapid-deployment, were thus tested in this study by means of a combined approach of experimental and computational tools. In vitro experiments were performed to evaluate the overall hydrodynamic performance under identical standard conditions; computational fluid dynamics analyses were set-up to explore local flow variations due to different design of the anchoring system. The results showed how the performance of cardiac valve substitutes is negatively affected by the presence of pledget-armed sutures. These are causing flow disturbances, which in turn increase the mean pressure gradient and decrease the effective orifice area. The combined approach of experiments and numerical simulations can be effectively used to quantify the detailed relationship between local fluid-dynamics and overall performances associated with different valve technologies.
Collapse
Affiliation(s)
- Claudio Capelli
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Chiara Corsini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Dario Biscarini
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Ruffini
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Alfred Kocher
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrew M Taylor
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Silvia Schievano
- UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Guilford Street, London, WC1N 1EH, UK
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Gaetano Burriesci
- Department of Mechanical Engineering, UCL, London, UK.,Fondazione Ri.MED, Bioengineering Group, Palermo, Italy
| | - Claus Rath
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Shear accumulation as a means for evaluating risk of thromboembolic events in novel endovascular stent graft designs. J Vasc Surg 2016; 65:1813-1819. [PMID: 27693030 DOI: 10.1016/j.jvs.2016.07.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study proposes to establish a simulation-based technique for evaluating shear accumulation in stent grafts and to use the technique to assess the performance of a novel branched stent graft system. METHODS Computational fluid dynamics models, with transient boundary conditions, particle injection, and rigid walls, simplifying assumptions were developed and used to evaluate the shear accumulation in various stent graft configurations with a healthy aorta as comparison. RESULTS Shear streamlines are presented for the various configurations. Shear accumulation was also calculated for each configuration. The number of particles with shear accumulations >3.5 Pa-s for each configuration was compared with the shear accumulation values of commercially available mechanical aortic valves from the literature. CONCLUSIONS The stent graft configuration with the diaphragm does have particles with shear accumulation >3.5 Pa-s. However, the percentage of particles with shear accumulation above 3.5 Pa-s is less than the two commercially available mechanical aortic valves, and more surprisingly, is smaller than in the healthy aorta.
Collapse
|
46
|
Taylor JO, Good BC, Paterno AV, Hariharan P, Deutsch S, Malinauskas RA, Manning KB. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Cardiovasc Eng Technol 2016; 7:191-209. [DOI: 10.1007/s13239-016-0270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
|
47
|
On-X Heart Valve Prosthesis: Numerical Simulation of Hemodynamic Performance in Accelerating Systole. Cardiovasc Eng Technol 2016; 7:223-37. [PMID: 27164902 DOI: 10.1007/s13239-016-0265-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Numerical simulation of the bileaflet mechanical heart valves (BMHVs) has been of interest for many researchers due to its capability of predicting hemodynamic performance. A lot of studies have tried to simulate this three-dimensional complex flow in order to analyze the effect of different valve designs on the blood flow pattern. However, simplified models and prescribed motion for the leaflets were utilized. In this paper, transient complex blood flow in the location of ascending aorta has been investigated in a realistic model by fully coupled simulation. Geometry model for the aorta and the replaced valve is constructed based on the medical images and extracted point clouds. A 23-mm On-X Medical BMHV as the new generation design has been selected for the flow field analysis. The two-way coupling simulation is conducted throughout the accelerating phase in order to obtain valve dynamics in the opening process. The complex flow field in the hinge recess is captured precisely for all leaflet positions and recirculating zones and elevated shear stress areas have been observed. Results indicate that On-X valve yields relatively less transvalvular pressure gradient which would lower cardiac external work. Furthermore, converging inlet leads to a more uniform flow and consequently less turbulent eddies. However, the leaflets cannot open fully due to middle diffuser-shaped orifice. In addition, asymmetric butterfly-shaped hinge design and converging orifice leads to better hemodynamic performance. With the help of two-way fluid solid interaction simulation, leaflet angle follows the experimental trends more precisely rather than the prescribed motion in previous 3D simulations.
Collapse
|
48
|
Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J Biomech 2016; 49:2502-12. [PMID: 26961798 DOI: 10.1016/j.jbiomech.2016.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 11/23/2022]
Abstract
This study developed a realistic 3D FSI computational model of the aortic valve using the fixed-grid method, which was eventually employed to investigate the effect of the leaflet thickness inhomogeneity and leaflet mechanical nonlinearity and anisotropy on the simulation results. The leaflet anisotropy and thickness inhomogeneity were found to significantly affect the valve stress-strain distribution. However, their effect on valve dynamics and fluid flow through the valve were minor. Comparison of the simulation results against in-vivo and in-vitro data indicated good agreement between the computational models and experimental data. The study highlighted the importance of simulating multi-physics phenomena (such as fluid flow and structural deformation), regional leaflet thickness inhomogeneity and anisotropic nonlinear mechanical properties, to accurately predict the stress-strain distribution on the natural aortic valve.
Collapse
|
49
|
Jahandardoost M, Fradet G, Mohammadi H. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves’ prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study. Proc Inst Mech Eng H 2016; 230:175-90. [DOI: 10.1177/0954411915624451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
Abstract
To date, to the best of the authors’ knowledge, in almost all of the studies performed around the hemodynamics of bileaflet mechanical heart valves, a heart rate of 70–72 beats/min has been considered. In fact, the heart rate of ~72 beats/min does not represent the entire normal physiological conditions under which the aortic or prosthetic valves function. The heart rates of 120 or 50 beats/min may lead to hemodynamic complications, such as plaque formation and/or thromboembolism in patients. In this study, the hemodynamic performance of the bileaflet mechanical heart valves in a wide range of normal and physiological heart rates, that is, 60–150 beats/min, was studied in the opening phase. The model considered in this study was a St. Jude Medical bileaflet mechanical heart valve with the inner diameter of 27 mm in the aortic position. The hemodynamics of the native valve and the St. Jude Medical valve were studied in a variety of heart rates in the opening phase and the results were carefully compared. The results indicate that peak values of the velocity profile downstream of the valve increase as heart rate increases, as well as the location of the maximum velocity changes with heart rate in the St. Jude Medical valve model. Also, the maximum values of shear stress and wall shear stresses downstream of the valve are proportional to heart rate in both models. Interestingly, the maximum shear stress and wall shear stress values in both models are in the same range when heart rate is <90 beats/min; however, these values significantly increase in the St. Jude Medical valve model when heart rate is >90 beats/min (up to ~40% growth compared to that of the native valve). The findings of this study may be of importance in the hemodynamic performance of bileaflet mechanical heart valves. They may also play an important role in design improvement of conventional prosthetic heart valves and the design of the next generation of prosthetic valves, such as percutaneous valves.
Collapse
Affiliation(s)
- Mehdi Jahandardoost
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada
| | - Guy Fradet
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hadi Mohammadi
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Biomedical Engineering Graduate Program, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Jahandardoost M, Fradet G, Mohammadi H. Hemodynamic study of the elliptic St. Jude Medical valve: A computational study. Proc Inst Mech Eng H 2016; 230:85-96. [DOI: 10.1177/0954411915621341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite successful implantation of St. Jude Medical bileaflet mechanical heart valves, red blood cell lysis and thrombogenic complications associated with these types of valves are yet to be addressed. In our previous study, we proposed an elliptic housing where 10% ovality was applied to the housing of St. Jude Medical valves. Our preliminary results suggested that the overall hemodynamic performance of St. Jude Medical valves improved in both the closing and opening phases. In this study, we evaluated the hemodynamics around the leaflets in the opening phase using a more sophisticated computational platform, computational fluid dynamics. Results suggested both lower shear stress and wall shear stress values and an overall improved hemodynamic performance in the proposed design. This improvement is characterized by lower values of shear stress and wall shear stress in the regions downstream of the leaflets, lower pressure drop across the valve and smaller recirculation zones in the sinuses areas. The proposed design may open a new chapter in the concept of design and hemodynamic improvement of the next generation of mechanical heart valves.
Collapse
Affiliation(s)
- Mehdi Jahandardoost
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Guy Fradet
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
- Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Hadi Mohammadi
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
- Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Biomedical Engineering Graduate Program, Faculty of Applied Science, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|