1
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Hines MR, Goetz JE, Gomez-Contreras PC, Rodman SN, Liman S, Femino EL, Kluz PN, Wagner BA, Buettner GR, Kelley EE, Coleman MC. Extracellular biomolecular free radical formation during injury. Free Radic Biol Med 2022; 188:175-184. [PMID: 35724853 PMCID: PMC9725094 DOI: 10.1016/j.freeradbiomed.2022.06.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue. To assess free radical production as a result of traumatic injury, we measured biomolecular free radical generation via immuno-spin trapping (IST) of protein/proteoglycan/lipid free radicals after a 2 J/cm2 impact to swine articular cartilage explants. This technique allows visualization of free radical formation upon a wide variety of molecules using formalin-fixed, paraffin-embedded approaches. Scoring of extracellular staining by trained, blinded scorers demonstrated significant increases with impact injury, particularly at sites of cartilage cracking. Increases remain in the absence of live chondrocytes but are diminished; thus, they appear to be a cell-dependent and -independent feature of injury. We then modulated the extracellular environment with a pulse of heparin to demonstrate the responsiveness of the IST signal to changes in cartilage biology. Addition of heparin caused a distinct change in the distribution of protein/lipid free radicals at sites of failure alongside a variety of pertinent redox changes related to osteoarthritis. This study directly confirms the production of biomolecular free radicals from articular trauma, providing a rigorous characterization of their formation by injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paige N Kluz
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
3
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
4
|
Chondrocyte and Pericellular Matrix Deformation and Strain in the Growth Plate Cartilage Reserve Zone Under Compressive Loading. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-43195-2_43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 2019; 14:393-403. [PMID: 29899547 DOI: 10.1038/s41584-018-0033-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Collapse
|
6
|
Graham BT, Wright AD, Burris DL, Axe MJ, Raisis LW, Price C. Quantification of solute diffusivity in osteoarthritic human femoral cartilage using correlation spectroscopy. J Orthop Res 2018; 36:3256-3267. [PMID: 30183098 DOI: 10.1002/jor.24138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/25/2018] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a chronic joint disease characterized by articular cartilage degeneration, pain, and disability. As an avascular tissue, the movement of water and solutes through the tissue is critical to cartilage health and function, and early changes in solute diffusivity due to micro-scale changes in the properties of cartilage's extracellular matrix might precede clinical symptoms. A diagnostic technique for quantifying alteration to the diffusive environment of cartilage that precedes macroscopic changes may allow for the earlier identification of osteoarthritic disease, facilitating earlier intervention strategies. Toward this end, we used two confocal microscopy-based correlation spectroscopy techniques, fluorescence correlation spectroscopy and raster image correlation spectroscopy, to quantify the diffusion of two small solutes, fluorescein and 3k dextran, within human osteoarthritic articular cartilage. Our goal was to determine if these relatively simple optical correlation spectroscopy techniques could detect changes in solute diffusivity associated with increasing cartilage damage as assessed by International Cartilage Repair Society scoring guidelines, and if these measures are correlated with mechanical and compositional measures of cartilage health. Our data show a modest, yet significant increase in solute diffusivity and cartilage permeability with increasing osteoarthritis score (grades 0-2), with a strong correlation between diffusion coefficients, permeability, and cartilage composition. The described correlation spectroscopy techniques are quick, simple, and easily adapted to existing laboratory workflow and equipment. Furthermore, the minimal solute concentrations and laser powers required for analysis, combined with recent advances in arthroscopic microscopy, suggest correlation spectroscopy techniques as translational candidates for development into early OA diagnosis tools. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3256-3267, 2018.
Collapse
Affiliation(s)
- Brian T Graham
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware
| | - Alison D Wright
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware.,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Michael J Axe
- Department of Physical Therapy, University of Delaware, Newark, Delaware.,First State Orthopaedics, Christiana Care Health System, Newark, Delaware
| | - Leo W Raisis
- Department of Physical Therapy, University of Delaware, Newark, Delaware.,First State Orthopaedics, Christiana Care Health System, Newark, Delaware
| | - Christopher Price
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware.,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
7
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
8
|
Han G, Hess C, Eriten M, Henak CR. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage. J Mech Behav Biomed Mater 2018; 84:28-34. [DOI: 10.1016/j.jmbbm.2018.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
|
9
|
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72:40-50. [PMID: 29800616 DOI: 10.1016/j.matbio.2018.05.008] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States.
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Shoga JS, Graham BT, Wang L, Price C. Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy. Ann Biomed Eng 2017; 45:2461-2474. [PMID: 28612188 PMCID: PMC5693644 DOI: 10.1007/s10439-017-1869-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/07/2017] [Indexed: 11/26/2022]
Abstract
Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.
Collapse
Affiliation(s)
- Janty S Shoga
- Biomechanics & Movement Science, University of Delaware, Newark, DE, USA
| | - Brian T Graham
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomechanics & Movement Science, University of Delaware, Newark, DE, USA.
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
11
|
|
12
|
Kar S, Smith DW, Gardiner BS, Li Y, Wang Y, Grodzinsky AJ. Modeling IL-1 induced degradation of articular cartilage. Arch Biochem Biophys 2016; 594:37-53. [PMID: 26874194 DOI: 10.1016/j.abb.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤ 1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states.
Collapse
Affiliation(s)
- Saptarshi Kar
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - David W Smith
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia.
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia
| | - Yang Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
14
|
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39:25-32. [PMID: 25172825 DOI: 10.1016/j.matbio.2014.08.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Johannah Sanchez-Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
Bougault C, Cueru L, Bariller J, Malbouyres M, Paumier A, Aszodi A, Berthier Y, Mallein-Gerin F, Trunfio-Sfarghiu AM. Alteration of cartilage mechanical properties in absence of β1 integrins revealed by rheometry and FRAP analyses. J Biomech 2013; 46:1633-40. [DOI: 10.1016/j.jbiomech.2013.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
|
16
|
Zhou R, Zhou H, Xiong B, He Y, Yeung ES. Pericellular Matrix Enhances Retention and Cellular Uptake of Nanoparticles. J Am Chem Soc 2012; 134:13404-9. [DOI: 10.1021/ja304119w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Haiying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Yan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Edward S. Yeung
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
17
|
Christensen SE, Coles JM, Zelenski NA, Furman BD, Leddy HA, Zauscher S, Bonaldo P, Guilak F. Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice. PLoS One 2012; 7:e33397. [PMID: 22448243 PMCID: PMC3308976 DOI: 10.1371/journal.pone.0033397] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.
Collapse
Affiliation(s)
- Susan E. Christensen
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jeffrey M. Coles
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Nicole A. Zelenski
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bridgette D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stefan Zauscher
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Paolo Bonaldo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Osmotic stress alters chromatin condensation and nucleocytoplasmic transport. Biochem Biophys Res Commun 2011; 408:230-5. [PMID: 21463604 DOI: 10.1016/j.bbrc.2011.03.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 11/22/2022]
Abstract
Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.
Collapse
|
19
|
Lee JI, Sato M, Ushida K, Mochida J. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy. BMC Biotechnol 2011; 11:19. [PMID: 21366913 PMCID: PMC3061899 DOI: 10.1186/1472-6750-11-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 03/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluorescence correlation spectroscopy (FCS) provides information about translational diffusion of fluorescent molecules in tiny detection volumes at the single-molecule level. In normal states, cartilage tissue lacks vascularity, so chondrocyte metabolism depends on diffusion for molecular exchanges. The abundant extracellular matrix (ECM) of cartilage is maintained by a limited number of chondrocytes. ECM plays an important role in the regulation of chondrocyte functions. In this study, FCS was used to measure diffusion behaviors of albumin, the major protein of the intra-articular space, using normal and degenerated cartilage. Preliminary investigation of fluorescence dyes including Alexa 488, Rhodamine 6G and Rhodamine 123 was conducted to evaluate their properties in cartilage. RESULTS The results indicate that the diffusion behaviors of fluorescently labeled albumin can be observed using FCS in both normal and chemically degenerated cartilage. CONCLUSIONS This work demonstrates the capability of FCS for direct measurement of diffusion in cartilaginous ECM. When the diffusion characteristics of fluorescent probes in ECM are clarified using FCS evaluation, FCS will be applicable as a method for early diagnosis of osteoarthritis, which is accompanied by increased abnormalities of ECM and also as tool for evaluating bio-engineered artificial cartilage for autologous chondrocyte implantation.
Collapse
Affiliation(s)
- Jeong Ik Lee
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | | | | | | |
Collapse
|
20
|
Vigfúsdóttir ÁT, Pasrija C, Thakore PI, Schmidt RB, Hsieh AH. Role of Pericellular Matrix in Mesenchymal Stem Cell Deformation during Chondrogenic Differentiation. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0135-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Leddy HA, Guilak F. Site-specific effects of compression on macromolecular diffusion in articular cartilage. Biophys J 2008; 95:4890-5. [PMID: 18689460 PMCID: PMC2576376 DOI: 10.1529/biophysj.108.137752] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/21/2008] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage is the connective tissue that lines joints and provides a smooth surface for joint motion. Because cartilage is avascular, molecular transport occurs primarily via diffusion or convection, and cartilage matrix structure and composition may affect diffusive transport. Because of the inhomogeneous compressive properties of articular cartilage, we hypothesized that compression would decrease macromolecular diffusivity and increase diffusional anisotropy in a site-specific manner that depends on local tissue strain. We used two fluorescence photobleaching methods, scanning microphotolysis and fluorescence imaging of continuous point photobleaching, to measure diffusion coefficients and diffusional anisotropy of 70 kDa dextran in cartilage during compression, and measured local tissue strain using texture correlation. For every 10% increase in normal strain, the fractional change in diffusivity decreased by 0.16 in all zones, and diffusional anisotropy increased 1.1-fold in the surface zone and 1.04-fold in the middle zone, and did not change in the deep zone. These results indicate that inhomogeneity in matrix structure and composition may significantly affect local diffusive transport in cartilage, particularly in response to mechanical loading. Our findings suggest that high strains in the surface zone significantly decrease diffusivity and increase anisotropy, which may decrease transport between cartilage and synovial fluid during compression.
Collapse
Affiliation(s)
- Holly A Leddy
- Department of Surgery and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|