1
|
Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, Falk V, Werner S, Mazza E, Giampietro C. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol 2024; 7:940. [PMID: 39097636 PMCID: PMC11297954 DOI: 10.1038/s42003-024-06604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.
Collapse
Affiliation(s)
| | - Dominic Rütsche
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland
| | - Asra Abukar
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland
| | - Paul Hiebert
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, HU6 7RX, UK
| | - Dominik Zanetti
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sabine Werner
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| |
Collapse
|
2
|
Guerra A, Belinha J, Salgado C, Monteiro FJ, Natal Jorge R. Computational Insights into the Interplay of Mechanical Forces in Angiogenesis. Biomedicines 2024; 12:1045. [PMID: 38791007 PMCID: PMC11117778 DOI: 10.3390/biomedicines12051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
This study employs a meshless computational model to investigate the impacts of compression and traction on angiogenesis, exploring their effects on vascular endothelial growth factor (VEGF) diffusion and subsequent capillary network formation. Three distinct initial domain geometries were defined to simulate variations in endothelial cell sprouting and VEGF release. Compression and traction were applied, and the ensuing effects on VEGF diffusion coefficients were analysed. Compression promoted angiogenesis, increasing capillary network density. The reduction in the VEGF diffusion coefficient under compression altered VEGF concentration, impacting endothelial cell migration patterns. The findings were consistent across diverse simulation scenarios, demonstrating the robust influence of compression on angiogenesis. This computational study enhances our understanding of the intricate interplay between mechanical forces and angiogenesis. Compression emerges as an effective mediator of angiogenesis, influencing VEGF diffusion and vascular pattern. These insights may contribute to innovative therapeutic strategies for angiogenesis-related disorders, fostering tissue regeneration and addressing diseases where angiogenesis is crucial.
Collapse
Affiliation(s)
- Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal
| | - Jorge Belinha
- ISEP—Instituto Superior de Engenharia do Porto, Departamento de Engenharia Mecânica, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Christiane Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Renato Natal Jorge
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal;
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade do Porto, 4200-165 Porto, Portugal
| |
Collapse
|
3
|
Zhang H, Rahman T, Lu S, Adam AP, Wan LQ. Helical vasculogenesis driven by cell chirality. SCIENCE ADVANCES 2024; 10:eadj3582. [PMID: 38381835 PMCID: PMC10881055 DOI: 10.1126/sciadv.adj3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The cellular helical structure is well known for its crucial role in development and disease. Nevertheless, the underlying mechanism governing this phenomenon remains largely unexplored, particularly in recapitulating it in well-controlled engineering systems. Leveraging advanced microfluidics, we present compelling evidence of the spontaneous emergence of helical endothelial tubes exhibiting robust right-handedness governed by inherent cell chirality. To strengthen our findings, we identify a consistent bias toward the same chirality in mouse vascular tissues. Manipulating endothelial cell chirality using small-molecule drugs produces a dose-dependent reversal of the handedness in engineered vessels, accompanied by non-monotonic changes in vascular permeability. Moreover, our three-dimensional cell vertex model provides biomechanical insights into the chiral morphogenesis process, highlighting the role of cellular torque and tissue fluidity in its regulation. Our study unravels an intriguing mechanism underlying vascular chiral morphogenesis, shedding light on the broader implications and distinctive perspectives of tubulogenesis within biological systems.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
4
|
Hall JD, Farzaneh S, Babakhani Galangashi R, Pujari A, Sweet DT, Kahn ML, Jiménez JM. Lymphoedema conditions disrupt endothelial barrier function in vitro. J R Soc Interface 2022; 19:20220223. [PMID: 36000230 PMCID: PMC9399713 DOI: 10.1098/rsif.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Lymphatic vessel contractions generate net antegrade pulsatile lymph flow. By contrast, impaired lymphatic vessels are often associated with lymphoedema and altered lymph flow. The effect of lymphoedema on the lymph flow field and endothelium is not completely known. Here, we characterized the lymphatic flow field of a platelet-specific receptor C-type lectin-like receptor 2 (CLEC2) deficient lymphoedema mouse model. In regions of lymphoedema, collecting vessels were significantly distended, vessel contractility was greatly diminished and pulsatile lymph flow was replaced by quasi-steady flow. In vitro exposure of human dermal lymphatic endothelial cells (LECs) to lymphoedema-like quasi-steady flow conditions increased intercellular gap formation and permeability in comparison to normal pulsatile lymph flow. In the absence of flow, LECs exposed to steady pressure (SP) increased intercellular gap formation in contrast with pulsatile pressure (PP). The absence of pulsatility in steady fluid flow and SP conditions without flow-induced upregulation of myosin light chain (MLCs) regulatory subunits 9 and 12B mRNA expression and phosphorylation of MLCs, in contrast with pulsatile flow and PP without flow. These studies reveal that the loss of pulsatility, which can occur with lymphoedema, causes LEC contraction and an increase in intercellular gap formation mediated by MLC phosphorylation.
Collapse
Affiliation(s)
- Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sina Farzaneh
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Reza Babakhani Galangashi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Akshay Pujari
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Daniel T. Sweet
- Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark L. Kahn
- Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
5
|
Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021; 78:312-322. [PMID: 34291887 DOI: 10.1002/cm.21680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
6
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
7
|
Horton PD, Dumbali SP, Bhanu KR, Diaz MF, Wenzel PL. Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:1-15. [PMID: 33937868 PMCID: PMC8087251 DOI: 10.1007/s43152-020-00027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sandeep P. Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Krithikaa Rajkumar Bhanu
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Miguel F. Diaz
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Zhou H, Wang H, Shi N, Wu F. Potential Protective Effects of the Water-Soluble Chinese Propolis on Hypertension Induced by High-Salt Intake. Clin Transl Sci 2020; 13:907-915. [PMID: 32112504 PMCID: PMC7938408 DOI: 10.1111/cts.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
High‐salt (HS) intake is closely associated with the ignition and progression of hypertension. The mechanisms might be involved in endothelial dysfunction, nitric oxide deficiency, oxidative stress, and proinflammatory cytokines. Propolis is widely used as a natural antioxidant and is a well‐known functional food for its biological activities, which includes anti‐inflammation, antimicrobial, and liver detoxification. In this study, we successfully replicated a HS diet‐induced hypertensive rat model. We found that in the long‐term HS diet group, the myocardial function of the rats was altered and led to a significant decrease (around 49%) in heart function. However, doses of Chinese water‐soluble propolis (WSP) were found directly proportional (11%, 60%, 91%, respectively) to the myocardial function improvement in hypertensive rats. The results from the blood circulation test and hematoxylin‐eosin stains showed that propolis had protective effects on myocardial functions and blood vessels in hypertensive rats. Also, based on the results of western blot and polymerase chain reaction, WSP effectively regulated Nox2 and Nox4 levels and was responsible for a decrease in reactive oxygen species synthesis. Our findings demonstrate that Chinese WSP has a significant effect on the blood pressure of hypertensive rats and their cardiovascular functions that improved significantly. The improvement in the cardiovascular functions might be related to the process of anti‐oxidation, anti‐inflammation, and the improvements of the endothelial function in hypertensive rats.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Physiology, Anhui Medical College, Hefei, Anhui, China
| | - Haihua Wang
- Department of Physiology, Wannan Medical College, Wuhu, Anhui, China
| | - Na Shi
- Department of Physiology, Wannan Medical College, Wuhu, Anhui, China
| | - Fang Wu
- Department of Physiology, Anhui Medical College, Hefei, Anhui, China
| |
Collapse
|
9
|
Yoshino D, Funamoto K, Sato K, Kenry, Sato M, Lim CT. Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling. Commun Biol 2020; 3:152. [PMID: 32242084 PMCID: PMC7118103 DOI: 10.1038/s42003-020-0881-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular tubulogenesis is tightly linked with physiological and pathological events in the living body. Endothelial cells (ECs), which are constantly exposed to hemodynamic forces, play a key role in tubulogenesis. Hydrostatic pressure in particular has been shown to elicit biophysical and biochemical responses leading to EC-mediated tubulogenesis. However, the relationship between tubulogenesis and hydrostatic pressure remains to be elucidated. Here, we propose a specific mechanism through which hydrostatic pressure promotes tubulogenesis. We show that pressure exposure transiently activates the Ras/extracellular signal-regulated kinase (ERK) pathway in ECs, inducing endothelial tubulogenic responses. Water efflux through aquaporin 1 and activation of protein kinase C via specific G protein–coupled receptors are essential to the pressure-induced transient activation of the Ras/ERK pathway. Our approach could provide a basis for elucidating the mechanopathology of tubulogenesis-related diseases and the development of mechanotherapies for improving human health. Yoshino et al. investigate the mechanism by which exposure to pressure promotes endothelial cells to form tubes and find that Aquaporin-mediated water efflux activates the Ras-ERK pathway via PKC and GPCR activation. These findings may be relevant to understand how blood pressure affects vascular tubulogenesis.
Collapse
Affiliation(s)
- Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan. .,Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan. .,Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Kenichi Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kakeru Sato
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.,Tokyo Gas Co., Ltd., 1-5-20 Kaigan, Minato-ku, Tokyo, 105-8527, Japan
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Masaaki Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, #10-01 T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, #14-01 MD6, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|