1
|
Darrieutort-Laffite C, Weiss SN, Nuss CA, Newton JB, Eekhoff JD, Soslowsky LJ. Decorin Knockdown Improves Aged Tendon Healing by Enhancing Recovery of Viscoelastic Properties, While Biglycan May Not. Ann Biomed Eng 2024:10.1007/s10439-024-03612-y. [PMID: 39612017 DOI: 10.1007/s10439-024-03612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/01/2024] [Indexed: 11/30/2024]
Abstract
The objective of the study was to determine the specific roles of decorin and biglycan in the early and late phases of tendon healing in aged mice. Aged (300 day-old) female wildtype (WT), Dcnflox/flox (I-Dcn-/-), Bgnflox/flox (I-Bgn-/-), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-) mice with a tamoxifen (TM) inducible Cre underwent a bilateral patellar tendon injury (PT). Cre excision of the conditional alleles was induced at 5 days (samples collected at 3 and 6 weeks) or 21 days post-injury (samples collected at 6 weeks). Scar tissue area, collagen architecture, gene expression and mechanical properties were assessed during re-establishment of tendon architecture after injury. Fibril diameter distribution was impacted by both decorin and biglycan knockdown at 3 and 6 weeks compared to WT. Although early healing appeared to be delayed in the I-Bgn-/- tendons (larger scar tissue area at 3 weeks), no differences in failure properties were detected. By 6 weeks, in the I-Dcn-/- tendons, we observed a better recovery of viscoelastic properties compared to the WT tendons (reduced stress relaxation and increased dynamic modulus) when the knockdown was induced early. This could be explained by the increased expression of other matrix proteins, such as elastin whose gene expression was increased at 3 weeks in the I-Dcn-/- tendons. Despite an impact on collagen fibrillogenesis, decorin and/or biglycan knockdown did not produce a detectable effect on quasi-static properties after patellar tendon injury. However, early decorin knockdown resulted in better recovery of viscoelastic properties. Mechanisms underlying this result remained to be clarified in further studies.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes Université, CHU Nantes, INSERM, F-44000, Nantes, France
- Rheumatology Department, Nantes University Hospital, 1 place Alexis Ricordeau, 44000, Nantes, France
| | - Stephanie N Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph B Newton
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Sankova MV, Beeraka NM, Oganesyan MV, Rizaeva NA, Sankov AV, Shelestova OS, Bulygin KV, Vikram PR H, Barinov A, Khalimova A, Padmanabha Reddy Y, Basappa B, Nikolenko VN. Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine. J Orthop Translat 2024; 49:289-307. [PMID: 39559294 PMCID: PMC11570240 DOI: 10.1016/j.jot.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024] Open
Abstract
Background In recent years, many countries have actively implemented programs and strategies to promote physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent, accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures. Objective To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop strategies for personalized prevention. Methods This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI, Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLeninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed. Results The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared. Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing Achilles injuries were also discussed. Discussion The combination of several established factors significantly increases the risk of Achilles tendon rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic disorders are essential components of a comprehensive prevention plan. Conclusion Early identification of Achilles tendon risk factors allows for the timely development of effective personalized prevention strategies. These measures can contribute significantly to public health preservation by reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued research and clinical advancements in treatment methods will further enhance the ability to prevent and manage Achilles tendon injuries. The translational potential of this article This study identifies key modifiable and non-modifiable risk factors for Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise, and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and rehabilitation, ultimately reducing Achilles injuries and enhancing public health.
Collapse
Affiliation(s)
- Maria V. Sankova
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Marine V. Oganesyan
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Negoriya A. Rizaeva
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V. Sankov
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga S. Shelestova
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V. Bulygin
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Hemanth Vikram PR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - A.N. Barinov
- Head of Neurology and Psychotherapy Chair of Medical Academy MEDSI Group, Moscow, Russia
| | - A.K. Khalimova
- International Medical Company “Prime Medical Group”, Almaty, Kazakhstan Asia Halimova Prime Medical Group Medical Center, Republic of Kazakhstan
| | - Y. Padmanabha Reddy
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N. Nikolenko
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Hatami-Marbini H, Emu ME. The effect of enzymatic GAG degradation on transverse shear properties of porcine cornea. J Biomech 2024; 176:112360. [PMID: 39405836 DOI: 10.1016/j.jbiomech.2024.112360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
The structural integrity of cornea depends on properties of its extracellular matrix, mainly a mixture of collagen fibers and soluble proteoglycans (PGs). PGs are macromolecules of negatively charged sulphated glycosaminoglycans (GAGs) covalently attached to a protein core. GAGs appear as bridges between adjacent collagen fibers and could facilitate force transfer between them. Furthermore, GAGs are responsible for corneal hydration by attracting and maintaining water molecules into the extracellular matrix. Based on these observations, GAGs are expected to be essential for biomechanical properties of cornea. The primary objective of the present study was to determine the effects of GAGs on shear properties of cornea. For this purpose, GAGs were enzymatically removed from porcine corneal disks by keratanase II enzyme. After confirming the successful removal of GAGs by histochemical methods, torsional rheometry was performed to characterize the shear stiffness of GAG-depleted samples as a function of axial strain. It was found that the shear modulus of all samples was a function of applied shear strain and compressive strain. Beyond the range of linear viscoelastic response, the average complex shear modulus decreased with increasing the shear strain. Increasing the axial strain from 0% to 40% significantly increased the average complex shear modulus of corneal disks in all groups. Finally, the enzyme treatment with keratanase II enzyme significantly decreased the shear stiffness. The experimental measurements were discussed in terms of microstructural and compositional properties of corneal extracellular matrix and it was concluded that GAGs play a significant role in defining shear properties of cornea.
Collapse
Affiliation(s)
- H Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL, USA.
| | - M E Emu
- Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Zhu X, Sun S, Yao Y, Jiang F, Yang F, Zhao H, Xue Z, Dai S, Yu T, Xiao X. Preliminary identification of somatic mutations profile in ACL injury. Sci Rep 2024; 14:22847. [PMID: 39354002 PMCID: PMC11445548 DOI: 10.1038/s41598-024-73718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Anterior cruciate ligament (ACL) injury is a common orthopedic disease with a high incidence, long recovery time, and often requiring surgical treatment. However, the susceptibility factors for ACL injury are currently unclear, and there is a lack of analysis on the differences in the ligament itself. Previous studies have focused on germline mutations, with less research on somatic mutations. To determine the role of somatic mutations in ACL injuries, we recruited seven patients between the ages of 20 and 39 years diagnosed with ACL injuries, collected their peripheral blood, injured ligament ends, and healthy ligament ends tissues, and performed exome sequencing with gene function enrichment analysis. We detected multiple gene mutations and gene deletions, which were only present in some of the samples. Unfortunately, it was not possible to determine whether these somatic mutations are related to ligament structure or function, or are involved in ACL injury. However, this study provides valuable clues for future in-depth research.
Collapse
Affiliation(s)
- Xuesai Zhu
- The Second School of Clinical Medical College of Binzhou Medical College, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong Province, China
- Department of Orthopedic Surgery, Key Laboratory of Orthopedics, Sports Medicine & Rehabilitation, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zichao Xue
- Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao, 266071, Shandong Province, China
| | - Shiyou Dai
- Department of Orthopedic Surgery, Key Laboratory of Orthopedics, Sports Medicine & Rehabilitation, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Key Laboratory of Orthopedics, Sports Medicine & Rehabilitation, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China.
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
5
|
Liu Y, Li X, Jiang L, Ma J. Identification of age-related genes in rotator cuff tendon. Bone Joint Res 2024; 13:474-484. [PMID: 39253760 PMCID: PMC11384310 DOI: 10.1302/2046-3758.139.bjr-2023-0398.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Aims Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Methods Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs. Results We identified 49 genes in torn supraspinatus tendons associated with advancing age. Among them, five age-related genes showed DE in lesioned tendons compared to normal tendons. Functional analyses and previous studies have highlighted their specific enrichments in biological functions, such as muscle development (e.g. myosin heavy chain 3 (MYH3)), transcription regulation (e.g. CCAAT enhancer binding brotein delta (CEBPD)), and metal ion homeostasis (e.g. metallothionein 1X (MT1X)). Conclusion This study uncovered molecular aspects of tendon ageing and their potential links to RCT development, offering insights for targeted interventions. These findings enhance our understanding of the mechanisms of tendon degeneration, allowing potential strategies to be made for reducing the incidence of RCT.
Collapse
Affiliation(s)
- Yibin Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xing Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Jiang
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
- Department of the Heart Failure, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China, Guangzhou, Guangdong, China
| | - Jinjin Ma
- School of Medicine, South China University of Technology, Guangzhou, China
- Institute of Future Health, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Yang X, Tang H, He L, Peng T, Li J, Zhang J, Liu L, Zhou H, Chen Z, Zhao J, Zhang Y, Zhong M, Han M, Zhang M, Niu H, Xu K. Proteomic changes of botulinum neurotoxin injection on muscle growth in children with spastic cerebral palsy. Proteomics Clin Appl 2024; 18:e2300070. [PMID: 38456375 DOI: 10.1002/prca.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP). EXPERIMENTAL DESIGN A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection. In addition, 48 unrelated children were enrolled, among whom one group had never received BoNT-A injections and another group was sampled after their first BoNT-A injection. Differentially expressed proteins were identified using the data-independent acquisition (DIA) mass spectrometry approach. Gene Ontology (GO), protein-protein interaction network, and Kyoto Encyclopedia of Genes and Genome analysis were conducted to explore the function and relationship among differentially expressed proteins. The expression levels of target proteins were verified by quantitative real-time PCR and western blotting. RESULTS Analysis identified significant differential expression of 90 proteins across two time points, including 48 upregulated and 42 downregulated proteins. The upregulated thioredoxin, α-actinin-1, and aggrecan, and the downregulated integrin beta-1 may affect the growth of muscles affected by spasticity 3 months after BoNT-A injection. This effect is potentially mediated through the activation or inhibition of PI3K-Akt, focal adhesion, and regulation of actin cytoskeleton signaling pathways. CONCLUSION AND CLINICAL RELEVANCE BoNT-A injection could lead to a disruption of protein levels and signaling pathways, a condition subsequently associated with muscle growth. This finding might aid clinicians in optimizing the management of spasticity in children with CP.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Sport Rehabilitation, Shanghai University of Sport, shanghai, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingshan Han
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengqing Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd, Shanghai, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Darrieutort-Laffite C, Blanchard F, Soslowsky LJ, Le Goff B. Biology and physiology of tendon healing. Joint Bone Spine 2024; 91:105696. [PMID: 38307405 DOI: 10.1016/j.jbspin.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Tendon disorders affect people of all ages, from elite and recreational athletes and workers to elderly patients. After an acute injury, 3 successive phases are described to achieve healing: an inflammatory phase followed by a proliferative phase, and finally by a remodeling phase. Despite this process, healed tendon fails to recover its original mechanical properties. In this review, we proposed to describe the key factors involved in the process such as cells, transcription factors, extracellular matrix components, cytokines and growth factors and vascularization among others. A better understanding of this healing process could help provide new therapeutic approaches to improve patients' recovery while tendon disorders management remains a medical challenge.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France.
| | - Frédéric Blanchard
- Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoit Le Goff
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| |
Collapse
|
8
|
Ackerman JE, Muscat SN, Adjei-Sowah E, Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. Matrix Biol 2024; 125:59-72. [PMID: 38101460 PMCID: PMC10922883 DOI: 10.1016/j.matbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; NDORMS, University of Oxford, Oxford, United Kingdom
| | - Samantha N Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Anne E C Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark R Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
9
|
Pechanec MY, Mienaltowski MJ. Decoding the transcriptomic expression and genomic methylation patterns in the tendon proper and its peritenon region in the aging horse. BMC Res Notes 2023; 16:267. [PMID: 37821884 PMCID: PMC10566085 DOI: 10.1186/s13104-023-06562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood. The objective of this study was to assess TP and PERI regional differences in adolescent, midlife, and geriatric horses using RNA sequencing and DNA methylation techniques. RESULTS Differences existed between TP and PERI regions of equine superficial digital flexor tendons by age as evidenced by RNASeq and DNA methylation. Cluster analysis indicated that regional distinctions existed regardless of age. Genes such as DCN, COMP, FN1, and LOX maintained elevated TP expression while genes such as GSN and AHNAK were abundant in PERI. Increased gene activity was present in adolescent and geriatric populations but decreased during midlife. Regional differences in DNA methylation were also noted. Notably, when evaluating all ages of TP against PERI, five genes (HAND2, CHD9, RASL11B, ADGRD1, and COL14A1) had regions of differential methylation as well as differential gene expression.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Michael J Mienaltowski
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Halvorsen S, Wang R, Zhang Y. Contribution of Elastic and Collagen Fibers to the Mechanical Behavior of Bovine Nuchal Ligament. Ann Biomed Eng 2023; 51:2204-2215. [PMID: 37284997 PMCID: PMC10528717 DOI: 10.1007/s10439-023-03254-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Ligamentum nuchae is a highly elastic tissue commonly used to study the structure and mechanics of elastin. This study combines imaging, mechanical testing, and constitutive modeling to examine the structural organization of elastic and collagen fibers and their contributions to the nonlinear stress-strain behavior of the tissue. Rectangular samples of bovine ligamentum nuchae cut in both longitudinal and transverse directions were tested in uniaxial tension. Purified elastin samples were also obtained and tested. It was observed that the stress-stretch response of purified elastin tissue follows a similar curve as the intact tissue initially, but the intact tissue shows a significant stiffening behavior for stretches above 1.29 with collagen engagement. Multiphoton and histology images confirm the elastin-dominated bulk of ligamentum nuchae interspersed with small bundles of collagen fibrils and sporadic collagen-rich regions with cellular components and ground substance. A transversely isotropic constitutive model that considers the longitudinal organization of elastic and collagen fibers was developed to describe the mechanical behavior of both intact and purified elastin tissue under uniaxial tension. These findings shed light on the unique structural and mechanical roles of elastic and collagen fibers in tissue mechanics and may aid in future use of ligamentum nuchae in tissue grafting.
Collapse
Affiliation(s)
- Samuel Halvorsen
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Ruizhi Wang
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Yanhang Zhang
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Biomedical Engineering, Boston University, Boston, MA, USA.
- Division of Materials Science & Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
12
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
13
|
Ackerman JE, Adjei-Sowah E, Korcari A, Muscat SN, Nichols AE, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550090. [PMID: 37502924 PMCID: PMC10370208 DOI: 10.1101/2023.07.21.550090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Current affiliation: NDORMS, University of Oxford, Oxford, United Kingdom
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| | - Mark R. Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
14
|
Jones CL, Penney BT, Theodossiou SK. Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040453. [PMID: 37106640 PMCID: PMC10135874 DOI: 10.3390/bioengineering10040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM-material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell-ECM-material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality.
Collapse
Affiliation(s)
- Calvin L Jones
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Brian T Penney
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Sophia K Theodossiou
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| |
Collapse
|
15
|
Ostadi Moghaddam A, Arshee MR, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Wagoner Johnson AJ. An indentation-based framework for probing the glycosaminoglycan-mediated interactions of collagen fibrils. J Mech Behav Biomed Mater 2023; 140:105726. [PMID: 36827935 PMCID: PMC10061372 DOI: 10.1016/j.jmbbm.2023.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Microscale deformation processes, such as reorientation, buckling, and sliding of collagen fibrils, determine the mechanical behavior and function of collagenous tissue. While changes in the structure and composition of tendon have been extensively studied, the deformation mechanisms that modulate the interaction of extracellular matrix (ECM) constituents are not well understood, partly due to the lack of appropriate techniques to probe the behavior. In particular, the role of glycosaminoglycans (GAGs) in modulating collagen fibril interactions has remained controversial. Some studies suggest that GAGs act as crosslinkers between the collagen fibrils, while others have not found such evidence and postulate that GAGs have other functions. Here, we introduce a new framework, relying on orientation-dependent indentation behavior of tissue and computational modeling, to evaluate the shear-mediated function of GAGs in modulating the collagen fibril interactions at a length scale more relevant to fibrils compared to bulk tests. Specifically, we use chondroitinase ABC to enzymatically deplete the GAGs in tendon; measure the orientation-dependent indentation response in transverse and longitudinal orientations; and infer the microscale deformation mechanisms and function of GAGs from a microstructural computational model and a modified shear-lag model. We validate the modeling approach experimentally and show that GAGs facilitate collagen fibril sliding with minimal crosslinking function. We suggest that the molecular reconfiguration of GAGs is a potential mechanism for their microscale, strain-dependent viscoelastic behavior. This study reveals the mechanisms that control the orientation-dependent indentation response by affecting the shear deformation and provides new insights into the mechanical function of GAGs and collagen crosslinkers in collagenous tissue.
Collapse
Affiliation(s)
- A Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - M R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Z Lin
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - M Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - H Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - B L McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL, 60612, USA
| | - K C Toussaint
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Hwang Y, Choi YS, Grounds MD, Kennedy BF. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5879-5899. [PMID: 36733728 PMCID: PMC9872891 DOI: 10.1364/boe.471062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Skeletal muscle function is governed by both the mechanical and structural properties of its constituent tissues, which are both modified by disease. Characterizing the mechanical properties of skeletal muscle tissue at an intermediate scale, i.e., between that of cells and organs, can provide insight into diseases such as muscular dystrophies. In this study, we use quantitative micro-elastography (QME) to characterize the micro-scale elasticity of ex vivo murine skeletal muscle in three-dimensions in whole muscles. To address the challenge of achieving high QME image quality with samples featuring uneven surfaces and geometry, we encapsulate the muscles in transparent hydrogels with flat surfaces. Using this method, we study aging and disease in quadriceps tissue by comparing normal wild-type (C57BL/6J) mice with dysferlin-deficient BLAJ mice, a model for the muscular dystrophy dysferlinopathy, at 3, 10, and 24 months of age (sample size of three per group). We observe a 77% decrease in elasticity at 24 months in dysferlin-deficient quadriceps compared to wild-type quadriceps.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
17
|
Camy C, Brioche T, Senni K, Bertaud A, Genovesio C, Lamy E, Fovet T, Chopard A, Pithioux M, Roffino S. Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J 2022; 36:e22548. [PMID: 36121701 DOI: 10.1096/fj.202200713r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Karim Senni
- Laboratoire EBInnov, Ecole de Biologie Industrielle-EBI, Cergy, France
| | - Alexandrine Bertaud
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Edouard Lamy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Department of Orthopaedics and Traumatology, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| | - Sandrine Roffino
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| |
Collapse
|
18
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|