1
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
2
|
Li Y, Xin G, Li S, Dong Y, Zhu Y, Yu X, Wan C, Li F, Wei Z, Wang Y, Zhang K, Chen Q, Niu H, Huang W. PD-L1 Regulates Platelet Activation and Thrombosis via Caspase-3/GSDME Pathway. Front Pharmacol 2022; 13:921414. [PMID: 35784685 PMCID: PMC9240427 DOI: 10.3389/fphar.2022.921414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets play a central role in hemostasis and thrombosis, regulating the occurrence and development of thrombotic diseases, including ischemic stroke. Programmed death ligand 1 (PD-L1) has recently been detected in platelet, while the function of PD-L1 in platelets remain elusive. Our data reveal a novel mechanism for the role of PD-L1 on platelet activation and arterial thrombosis. PD-L1 knockout does not affect platelet morphology, count, and mean volume under homeostasis and without risk of bleeding, which inhibits platelet activation by suppressing outside-in-activation of integrin by downregulating the Caspase-3/GSDME pathway. Platelet adoptive transfer experiments demonstrate that PD-L1 knockout inhibits thrombosis. And the absence of PD-L1 improves ischemic stroke severity and increases mice survival. Immunohistochemical staining of the internal structure of the thrombus proves that PD-L1 enhances the seriousness of the thrombus by inhibiting platelet activation. This work reveals a regulatory role of PD-L1 on platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
|
3
|
Niklaus M, Klingler P, Weber K, Koessler A, Kuhn S, Boeck M, Kobsar A, Koessler J. Platelet toll-like-receptor 2 and 4 mediate different immune-related responses to bacterial ligands. TH OPEN 2022; 6:e156-e167. [PMID: 36046205 PMCID: PMC9273317 DOI: 10.1055/a-1827-7365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background
Like immune cells, platelets express toll-like receptors (TLRs) on their surface membrane. TLR2 and TLR4 are able to recognize bacterial antigens and have the potential to influence hemostatic functions and classical intracellular signaling pathways. This study investigated the role of TLR2 and TLR4 for immune-related functions in human platelets.
Materials and Methods
Washed platelets and neutrophils were prepared from fresh human peripheral blood. Basal-, Pam3CSK4- (as TLR2 agonist) and Lipopolysaccharides (LPS; as TLR4 agonist) -induced CD62P expression, fibrinogen binding and TLR2 or TLR4 expression, intracellular reactive oxygen species (ROS) production in H
2
DCFDA-loaded platelets and uptake of fluorescence-labeled TLR ligands, and fluorophore-conjugated fibrinogen were evaluated by flow cytometry. Analysis of platelet–neutrophil complexes was performed after coincubation of washed platelets and neutrophils in the presence and absence of TLR2 or TLR4 agonists on poly-L-lysine coated surfaces, followed by immunostaining and immunofluorescence imaging.
Results
Pam3CSK4 rapidly and transiently increased TLR2 and TLR4 expression. Over the course of 30 minutes after activation with Pam3CSK4 and LPS, the expression of both receptors decreased. Pam3CSK4-stimulated intracellular ROS production and the uptake of TLR ligands or fibrinogen much stronger than LPS. Besides, TLR4 activation led to a significant increase of platelet–neutrophil contacts.
Conclusion
Stimulation leads to rapid mobilization of TLR2 or TLR4 to the platelet surface, presumably followed by receptor internalization along with bound TLR ligands. After activation, platelet TLR2 and TLR4 mediate different immune-related reactions. In particular, TLR2 induces intracellular responses in platelets, whereas TLR4 initiates interactions with other immune cells such as neutrophils.
Collapse
Affiliation(s)
- Marius Niklaus
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Philipp Klingler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Sabine Kuhn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Factors Associated with Platelet Activation-Recent Pharmaceutical Approaches. Int J Mol Sci 2022; 23:ijms23063301. [PMID: 35328719 PMCID: PMC8955963 DOI: 10.3390/ijms23063301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Platelets are at the forefront of human health and disease following the advances in their research presented in past decades. Platelet activation, their most crucial function, although beneficial in the case of vascular injury, may represent the initial step for thrombotic complications characterizing various pathologic states, primarily atherosclerotic cardiovascular diseases. In this review, we initially summarize the structural and functional characteristics of platelets. Next, we focus on the process of platelet activation and its associated factors, indicating the potential molecular mechanisms involving inflammation, endothelial dysfunction, and miRs. Finally, an overview of the available antiplatelet agents is being portrayed, together with agents possessing off-set platelet-inhibitory actions, while an extensive presentation of drugs under investigation is being given.
Collapse
|
5
|
Inflammatory Mediators of Platelet Activation: Focus on Atherosclerosis and COVID-19. Int J Mol Sci 2021; 22:ijms222011170. [PMID: 34681830 PMCID: PMC8539848 DOI: 10.3390/ijms222011170] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Atherosclerotic cardiovascular diseases are characterized by a dysregulated inflammatory and thrombotic state, leading to devastating complications with increased morbidity and mortality rates. Summary: In this review article, we present the available evidence regarding the impact of inflammation on platelet activation in atherosclerosis. Key messages: In the context of a dysfunctional vascular endothelium, structural alterations by means of endothelial glycocalyx thinning or functional modifications through impaired NO bioavailability and increased levels of von Willebrand factor result in platelet activation. Moreover, neutrophil-derived mediators, as well as neutrophil extracellular traps formation, have been implicated in the process of platelet activation and platelet-leukocyte aggregation. The role of pro-inflammatory cytokines is also critical since their receptors are also situated in platelets while TNF-α has also been found to induce inflammatory, metabolic, and bone marrow changes. Additionally, important progress has been made towards novel concepts of the interaction between inflammation and platelet activation, such as the toll-like receptors, myeloperoxidase, and platelet factor-4. The accumulating evidence is especially important in the era of the coronavirus disease-19 pandemic, characterized by an excessive inflammatory burden leading to thrombotic complications, partially mediated by platelet activation. Lastly, recent advances in anti-inflammatory therapies point towards an anti-thrombotic effect secondary to diminished platelet activation.
Collapse
|
6
|
The involvement of toll-like receptors 2 and 4 in human platelet signalling pathways. Cell Signal 2020; 76:109817. [PMID: 33132157 DOI: 10.1016/j.cellsig.2020.109817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
In addition to haemostasis, platelets play an essential role in mechanisms of inflammation and in immunological reactions. Platelets express various toll-like receptors (TLR) on their surface, among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. This study compared TLR2- and TLR4-dependent platelet signalling and their effect on platelet function. Platelet-rich-plasma and washed platelets were prepared from peripheral blood samples of healthy donors. Pam3CSK4 or LPS (lipopolysaccharides from Escherichia coli) were used for stimulation of TLR2 and TLR4. Intracellular signalling pathways were investigated by Western blot. TLR2- and TLR4-mediated specific transcription factor DNA binding activity was measured by the nuclear factor kappa B (NFκB) transcription factor assay kit. Platelet adhesion and glycoprotein Ib function were assessed by immunofluorescence staining and analysis of ristocetin-induced agglutination. Both, Pam3CSK4 and LPS were able to induce NFκB-mediated and classical activating platelet signalling with a higher stimulatory capacity of TLR2. In addition, TLR2 and TLR4 activation led to a similar activation of inhibitory pathways. In contrast to TLR2, stimulation of TLR4 resulted in decreased Akt/protein kinase B phosphorylation conditioned by enhanced protein phosphatase 2A activity. TLR4-mediated signalling induced platelet adhesion and facilitated ristocetin-induced platelet agglutination. In conclusion, Pam3CSK4 directly induces aggregation via classical activation cascades, whereas LPS enhances platelet adhesion and glycoprotein receptor Ib-dependent platelet agglutination.
Collapse
|
7
|
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020; 21:ijms21176150. [PMID: 32858930 PMCID: PMC7504402 DOI: 10.3390/ijms21176150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource—a “researcher’s toolkit”—for undertaking further research in the field of platelet-TLR biology.
Collapse
|
8
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
9
|
Hally KE, Bird GK, La Flamme AC, Harding SA, Larsen PD. Platelets modulate multiple markers of neutrophil function in response to in vitro Toll-like receptor stimulation. PLoS One 2019; 14:e0223444. [PMID: 31581214 PMCID: PMC6776355 DOI: 10.1371/journal.pone.0223444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In addition to their role in facilitating leukocyte-mediated inflammation, platelets can dampen leukocyte pro-inflammatory responses in some contexts. Consequently, platelets are increasingly appreciated as regulators of inflammation. Together, platelets and neutrophils play a role in inflammation through Toll-like receptor (TLR) expression, although we do not fully understand how platelets shape neutrophil responses to TLR stimulation. Here, we aimed to determine the extent to which platelets can modulate neutrophil function in response to in vitro stimulation with TLR4, TLR2/1, and TLR2/6 agonists. METHODS Neutrophils from 10 healthy individuals were cultured alone or with autologous platelets. Neutrophils ± platelets were left unstimulated or were stimulated with 1 or 100 ng/mL lipopolysaccharide (LPS; a TLR4 agonist), Pam3CSK4 (a TLR2/1 agonist) and fibroblast-stimulating lipopeptide (FSL)-1 (a TLR2/6 agonist). Neutrophil activation and phagocytic activity were assessed by flow cytometry, and elastase and interleukin-8 secretion were assessed by ELISA. RESULTS The addition of platelets attenuated neutrophil CD66b and CD11b expression in response to various doses of Pam3CSK4 and FSL-1. Furthermore, platelet co-culture was associated with higher CD62L expression (indicating reduced CD62L shedding) in response to these TLR agonists. Platelets also reduced elastase secretion in unstimulated cultures and in response to low-dose TLR stimulation. Conversely, platelet co-culture increased neutrophil phagocytosis in unstimulated cultures and in response to low-dose Pam3CSK4 and FSL-1. Platelets also increased IL-8 secretion in response to low-dose LPS. CONCLUSION Platelets are complex immunomodulators that can attenuate some, and simultaneously augment other, neutrophil functions. This modulation can occur both in the absence and presence of TLR stimulation.
Collapse
Affiliation(s)
- Kathryn E. Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- * E-mail:
| | - Georgina K. Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Anne C. La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Scott A. Harding
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Peter D. Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| |
Collapse
|
10
|
Koessler J, Niklaus M, Weber K, Koessler A, Kuhn S, Boeck M, Kobsar A. The Role of Human Platelet Preparation for Toll-Like Receptors 2 and 4 Related Platelet Responsiveness. TH OPEN 2019; 3:e94-e102. [PMID: 31249988 PMCID: PMC6524919 DOI: 10.1055/s-0039-1685495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background
Like immune cells, platelets express the repertoire of toll-like receptors (TLR), among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. Receptor-mediated functional effects in platelets have been investigated, but reliable conclusions are tampered due to heterogeneous study designs with variable platelet preparation methods. This study compares TLR2- and TLR4-dependent platelet responsiveness in platelet-rich plasma (PRP) and in washed platelets (WPs).
Material and Methods
Fresh peripheral blood samples from healthy donors served for the preparation of PRP and WP. Basal and agonist-stimulated TLR2 and TLR4 expression levels were evaluated by flow cytometry. Light transmission aggregometry was used to investigate functional effects of TLR2 and TLR4 stimulation with Pam3CSK4 or LPS (lipopolysaccharides from
Escherichia coli
) as ligands. The capacity of chemokine release was determined by immunoassays.
Results
Pam3CSK4 and LPS (in combination with thrombin) were able to induce aggregation in WP, but not in PRP, with threshold concentrations of 15 µg/mL. Basal expression levels of TLR2 and TLR4 were higher in WP than in PRP, increasing several-fold rapidly and persistently upon platelet activation with potent agonists. Pam3CSK4 (15 µg/mL) or LPS led to the submaximal release of RANTES, PF4, PDGF, NAP-2, and sCD40L from WP. In PRP, secretory effects are less pronounced for RANTES, PDGF, or PF4, and not detectable for NAP-2 or sCD40L.
Conclusion
The effects mediated by TLR2 and TLR4 stimulation are dependent on platelet preparation, an important issue for experimental designs and for manufacturing of platelet concentrates in transfusion medicine.
Collapse
Affiliation(s)
- Juergen Koessler
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Marius Niklaus
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Katja Weber
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Angela Koessler
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Sabine Kuhn
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Markus Boeck
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| | - Anna Kobsar
- Institute of Clinical Transfusion Medicine and Haemotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Hally KE, La Flamme AC, Harding SA, Larsen PD. The effects of aspirin and ticagrelor on Toll-like receptor (TLR)-mediated platelet activation: results of a randomized, cross-over trial. Platelets 2018; 30:599-607. [PMID: 29869943 DOI: 10.1080/09537104.2018.1479520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Platelet activation underlies the pathology of an acute myocardial infarction (AMI), and dual antiplatelet therapy (DAPT) is administered post-AMI to limit this activation. Platelets express Toll-like receptors (TLRs) 1, 2, and 4 and become potently activated in response to TLR2/1 and TLR4 stimulation. However, it is unknown whether antiplatelet agents can protect against platelet activation via these TLR pathways. This study aimed to determine the extent to which TLR-mediated platelet activation can be inhibited by currently used antiplatelet agents. Ten healthy subjects were enrolled into a single-blinded randomized cross-over trial. Subjects received either aspirin monotherapy or DAPT (aspirin in combination with ticagrelor) for 1 week, were washed out, and crossed over to the other drug regimen. Platelet activation was assessed in response to Pam3CSK4 (a TLR2/1 agonist) and lipopolysaccharide (LPS; a TLR4 agonist) at baseline and after each antiplatelet drug regimen. Platelet-surface expression of CD62p and PAC1 by flow cytometry was measured as markers of platelet activation. At baseline, expression of CD62p and PAC1 increased significantly in response to high-dose LPS and in a dose-dependent manner in response to Pam3CSK4. Aspirin monotherapy did not inhibit platelet activation in response to any TLR agonist tested. DAPT with aspirin and ticagrelor only modestly inhibited expression of both activation markers in response to high doses of Pam3CSK4 and LPS. However, incubation with these TLR agonists led to substantial platelet activation despite treatment with these anti-platelet agents. Platelet-TLR2/1 and platelet-TLR4 represent intact on-treatment platelet activation pathways, which may contribute to on-going platelet activation post-AMI.
Collapse
Affiliation(s)
- Kathryn E Hally
- a School of Biological Sciences , Victoria University of Wellington , Wellington , New Zealand.,b Wellington Cardiovascular Research Group , Wellington , New Zealand
| | - Anne C La Flamme
- a School of Biological Sciences , Victoria University of Wellington , Wellington , New Zealand.,b Wellington Cardiovascular Research Group , Wellington , New Zealand
| | - Scott A Harding
- a School of Biological Sciences , Victoria University of Wellington , Wellington , New Zealand.,b Wellington Cardiovascular Research Group , Wellington , New Zealand.,c Department of Cardiology , Wellington Hospital , Wellington , New Zealand
| | - Peter D Larsen
- a School of Biological Sciences , Victoria University of Wellington , Wellington , New Zealand.,b Wellington Cardiovascular Research Group , Wellington , New Zealand.,d Department of Surgery and Anaesthesia , University of Otago , Wellington , New Zealand
| |
Collapse
|
12
|
Tao Z, Meng X, Han YQ, Xue MM, Wu S, Wu P, Yuan Y, Zhu Q, Zhang TJ, Wong CCL. Therapeutic Mechanistic Studies of ShuFengJieDu Capsule in an Acute Lung Injury Animal Model Using Quantitative Proteomics Technology. J Proteome Res 2017; 16:4009-4019. [PMID: 28880561 DOI: 10.1021/acs.jproteome.7b00409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ShuFengJieDu capsule (SFJDC), a traditional Chinese medicine (TCM) that contains eight medicinal herbs, has been extensively utilized for the treatment of acute lung injury (ALI) and respiratory infections for more than 30 years in China. SFJDC has also been listed in the official guidelines of the China Food and Drug Administration (CFDA) due to its stable clinical manifestations. However, the underlying mechanism of SFJDC during ALI repair remains unclear. In the present study, we explored the protective and therapeutic mechanisms of SFJDC in a rat model by performing qualitative and label-free quantitative proteomics studies. After establishing lipopolysaccharide (LPS)-induced ALI rat models, we profiled macrophage cells isolated from freshly resected rat lung tissues derived from ALI models and ALI rat lung tissue sections using a high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) shotgun proteomics approach to identify changes in the expression levels of proteins of interest. On the basis of our proteomics results and the results of a protein dysregulation analysis of ALI rat lung tissues and rat lung macrophages, AKT1 was selected as a putative key factor that may play an important role in mediating the effects of SFJDC treatment during ALI progression. Follow-up validation studies demonstrated that AKT1 expression effectively regulates various ALI-related molecules, and Gene Ontology analysis indicated that SFJDC-treated ALI rat macrophages were influenced by AKT1-based networks. Gain- and loss-of-function analyses following lentivirus-AKT1 or lentivirus-si-AKT1 infection in macrophages also indicated that AKT1 was essential for the development of ALI due to its ability to regulate oxidative stress, apoptosis, or inflammatory responses. In summary, SFJDC effectively modulated anti-inflammatory and immunomodulation activity during ALI, potentially due to AKT1 regulation during ALI progression. New insights into SFJDC mechanisms may facilitate the development of novel pharmaceutical strategies to control the expression of inflammatory factors.
Collapse
Affiliation(s)
| | - Xia Meng
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Yan-Qi Han
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | | | - Shifei Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Ping Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | | | - Qiang Zhu
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China
| | - Tie-Jun Zhang
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | - Catherine C L Wong
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| |
Collapse
|
13
|
Phagocytic Receptors Activate Syk and Src Signaling during Borrelia burgdorferi Phagocytosis. Infect Immun 2017; 85:IAI.00004-17. [PMID: 28717031 DOI: 10.1128/iai.00004-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of the Lyme disease-causing pathogen Borrelia burgdorferi has been shown to be important for generating an inflammatory response to the pathogen. As a result, understanding the mechanisms of phagocytosis has been an area of great interest in the field of Lyme disease. Several cell surface receptors that participate in B. burgdorferi phagocytosis have been reported, including the scavenger receptor MARCO and integrin α3β1. We sought to define the mechanisms by which these receptors mediate phagocytosis and to identify signaling pathways activated downstream of these receptors upon contact with B. burgdorferi We identified both Syk and Src signaling pathways as ones that participate in B. burgdorferi phagocytosis and the resulting cytokine activation. In our studies, we found that both MARCO and integrin β1 play a role in the activation of the Src kinase pathway. However, only integrin β1 participates in the activation of Syk. Interestingly, the integrin activates Syk without the help of the signaling adaptor Dap12 or FcRγ. Thus, we report that multiple pathways participate in B. burgdorferi internalization and that different cell surface receptors act simultaneously in cooperation and independently to mediate phagocytosis.
Collapse
|
14
|
Imaging XPS and photoemission electron microscopy; surface chemical mapping and blood cell visualization. Biointerphases 2017; 12:02C408. [DOI: 10.1116/1.4982644] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Tunjungputri RN, Peters E, van der Ven A, de Groot PG, de Mast Q, Pickkers P. Human recombinant alkaline phosphatase inhibits ex vivo platelet activation in humans. Thromb Haemost 2016; 116:1111-1121. [PMID: 27656709 DOI: 10.1160/th16-03-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
Sepsis-associated acute kidney injury (AKI) is associated with high morbidity and mortality. Excessive platelet activation contributes to AKI through the formation of microthrombi and amplification of systemic inflammation. Two phase II trials demonstrated that bovine-intestinal alkaline phosphatase (AP) improved renal function in critically ill patients with sepsis-associated AKI. In this study, we characterised the platelet-inhibiting effects of a human recombinant AP. Whole blood and platelet-rich plasma (PRP) of healthy volunteers (n=6) was pre-treated ex vivo with recAP, whereafter platelet reactivity to ADP, collagen-related peptide (CRP-XL) and Pam3CSK4 was determined by flow cytometry. RecAP (40 U/ml) reduced the platelet reactivity to ADP (inhibition with a median of 47 %, interquartile range 43-49 %; p<0.001) and tended to reduce platelet reactivity to CRP-XL (9 %, 2-25 %; p=0.08) in whole blood. The platelet-inhibiting effects of recAP were more pronounced in PRP both for ADP- (64 %, 54-68 %; p=0.002) and CRP-XL-stimulated samples (60 %, 46-71 %; p=0.002). RecAP rapidly converted ADP into adenosine, whereas antagonism of the A2A adenosine receptor partially reversed the platelet inhibitory effects of recAP. Platelets of septic shock patients (n=5) showed a 31% (22-34%; p=0.03) more pronounced reactivity compared to healthy volunteers, and this was completely reversed by recAP treatment. In conclusion, we demonstrate that recAP inhibits ex vivo human platelet activation through dephosphorylation of ADP and formation of adenosine as its turnover product. RecAP is able to reverse the platelet hyperreactivity present in septic shock patients. These effects may contribute to the beneficial effects of recAP as a new therapeutic candidate for sepsis-associated AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Pickkers
- Peter Pickkers, Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbag 710, 6500 HB Nijmegen, The Netherlands, Tel.: +31 24 36 15363, Fax: +31 24 36 68058, E-mail:
| |
Collapse
|