1
|
Uskoković V. Calcium phosphate coated nanoparticles for drug delivery: where are we now? Expert Opin Drug Deliv 2025; 22:47-54. [PMID: 39645586 DOI: 10.1080/17425247.2024.2440100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION For three decades since the term 'biomaterial' was defined in the late 1960s, the interest of the biomaterials research community in calcium phosphates (CaPs) constantly increased. After this interest reached its peak in the mid-1990s, however, it has begun its steady decline, which lasts to this day, the reasons being manifold, many of which are explicated in this review piece. As of this turning point onwards, one solution for CaP to regain its relevance has involved its use in composite structures where properties of complementary components are intended to mitigate each other's weaknesses. A major type of such hybrid particulate structures has included CaP as a surface coating, the goal being to augment bioactivity, promote an intimate interaction with living tissues, facilitate cellular uptake and/or impart smart, pH-sensitive properties to the particles, among other intended effects. AREAS COVERED In this review article, historical remarks, recent examples, challenges and opportunities pertaining to CaP-coated nanoparticles for drug delivery are elaborated. Discussion is supplemented with a bibliographic analysis and framed within a chronological timeline. EXPERT OPINION Phenomenal properties and functions are bound to be elicited by composite structures containing CaP coatings and it is imperative that the exploration of these hybrids continues in decades that follow.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, USA
| |
Collapse
|
2
|
Maleki-Ghaleh H, Kamiński B, Moradpur-Tari E, Raza S, Khanmohammadi M, Zbonikowski R, Shakeri MS, Siadati MH, Akbari-Fakhrabadi A, Paczesny J. Visible Light-Sensitive Sustainable Quantum Dot Crystals of Co/Mg Doped Natural Hydroxyapatite Possessing Antimicrobial Activity and Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405708. [PMID: 39449217 DOI: 10.1002/smll.202405708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Cutting-edge research in advanced materials is increasingly turning toward the development of novel multifunctional nanomaterials for use in high-tech applications. This research uses the solid-state method as a solvent-free technique to create multifunctional quantum dot (QD) hydroxyapatite (HA) crystals from bovine bone waste. By incorporating cobalt (Co) and magnesium (Mg) into the HA structure, the crystallinity of the hexagonal HA nanoparticles (99.7%), showing QD crystals is enhanced. Oxygen vacancies on the surfaces of the HA nanoparticles contributed to their bandgap falling within the visible light range. In addition, the dopants substituted calcium in the HA crystal structure and generated a divalent oxidation state, shifting the bandgap of natural HA toward red wavelengths (3.26 to 1.94 eV). Moreover, the incorporation of Co led to magnetization within the HA structure through spin polarization. Additionally, the doped QD crystals of HA nanoparticles showed significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and bacteriophages MS2, particularly under visible light exposure. In short, the Co/Mg co-doped HA nanoparticles exhibited ferromagnetic properties, sensitivity to visible light, biocompatibility, and considerable antimicrobial effects, establishing their potential as sustainable multifunctional materials for biomedical applications, especially in anti-infection treatments.
Collapse
Affiliation(s)
- Hossein Maleki-Ghaleh
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Bartosz Kamiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Ehsan Moradpur-Tari
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | | | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, 15418, Iran
| | - Ali Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Santiago, 8370456, Chile
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| |
Collapse
|
3
|
Carbonaro R, Ghiringhelli G, Amendola F, Vaienti L, Maduri R, Zingaretti N, Zanotti B. Cranioplasty With Hydroxyapatite Implants: A Multidisciplinary Approach of Neurosurgeon and Plastic Surgeons to Improve Surgical Technique and Clinical Outcome. J Craniofac Surg 2024:00001665-990000000-02137. [PMID: 39509728 DOI: 10.1097/scs.0000000000010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/05/2024] [Indexed: 11/15/2024] Open
Abstract
Cranioplasty using Hydroxyapatite prosthesis is a conceptually simple procedure, but it may harbor several challenges for the surgeons. Several papers in the literature deal with cranioplasty using porous hydroxyapatite. The results are not homogeneous both because of the variability of the patients treated but also because Hydroxyapatite requires a more careful surgical technique to achieve maximum performance. The aim of the present study is to offer an insight of a single institution, multidisciplinary experience with custom-made Hydroxyapatite cranioplasty with surgical tips and tricks based on personal opinion and literature evidence. We will provide an overview of all the fundamental steps we believe to be useful to optimize surgical outcomes, including preoperative planning of cranioplasty; as cranioplasty flap/soft tissue coverage planning, infectious prophylaxis, patient positioning, incisional patterns, tissue dissection, primary bone demolition, and preparation of the craniectomy margins before implant positioning. The authors will also discuss methods for dural suspension, implant fixation and anchorage, margins polishing, drainage, suturing, and dressing. Cranioplasty using hydroxyapatite prosthesis is a valuable alternative for skull reconstruction with heterologous implants, and in our opinion a multidisciplinary approach integrating plastic surgeons and neurosurgeons' specific skills can facilitate surgical planning, reducing complications and allowing to achieve better functional and aesthetic results.
Collapse
Affiliation(s)
- Riccardo Carbonaro
- Plastic Surgery Department, I.R.C.C.S. Istituto Ortopedico Galeazzi
- Università degli Studi di Milano, Milano, Italy
| | - Gaia Ghiringhelli
- Plastic Surgery Department, I.R.C.C.S. Istituto Ortopedico Galeazzi
- Università degli Studi di Milano, Milano, Italy
| | - Francesco Amendola
- Plastic Surgery Department, I.R.C.C.S. Istituto Ortopedico Galeazzi
- Università degli Studi di Milano, Milano, Italy
| | - Luca Vaienti
- Plastic Surgery Department, I.R.C.C.S. Istituto Ortopedico Galeazzi
- Università degli Studi di Milano, Milano, Italy
| | - Rodolfo Maduri
- Swiss Medical Network, Clinique de Genolier, Genolier, Switzerland
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, Udine
| | - Bruno Zanotti
- Neurosurgery Unit, Department of Neuroscience, "C. Poma" Hospital, Mantua, Italy
| |
Collapse
|
4
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
5
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Uskoković V. Toward functionalization without functional agents: An X-ray photoelectron spectroscopy study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Uskoković V, Wu VM. Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5824. [PMID: 36079205 PMCID: PMC9456825 DOI: 10.3390/ma15175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp), the most abundant biological material among mammals, has been recently demonstrated to possess moderate antibacterial properties. Metagenomics provides a series of tools for analyzing the simultaneous interaction of materials with larger communities of microbes, which may aid in optimizing the antibacterial activity of a material such as HAp. Here, a microbiome intrinsic to the sample of sandy soil collected from the base of an African Natal plum (Carissa macrocarpa) shrub surrounding the children's sandbox at the Arrowhead Park in Irvine, California was challenged with HAp nanoparticles and analyzed with next-generation sequencing for hypervariable 16S ribosomal DNA base pair homologies. HAp nanoparticles overwhelmingly reduced the presence of Gram-negative phyla, classes, orders, families, genera and species, and consequently elevated the relative presence of their Gram-positive counterparts. Thermodynamic, electrostatic and chemical bonding arguments were combined in a model proposed to explain this selective affinity. The ability of amphiphilic surface protrusions of lipoteichoic acid in Gram-positive bacteria and mycolic acid in mycobacteria to increase the dispersibility of the bacterial cells and assist in their resistance to capture by the solid phase is highlighted. Within the Gram-negative group, the variability of the distal, O-antigen portion of the membrane lipopolysaccharide was shown to be excessive and the variability of its proximal, lipid A portion insufficient to explain the selectivity based on chemical sequence arguments. Instead, flagella-driven motility proves to be a factor favoring the evasion of binding to HAp. HAp displayed a preference toward binding to less pathogenic bacteria than those causative of disease in humans, while taxa having a positive agricultural effect were largely captured by HAp, indicating an evolutionary advantage this may have given it as a biological material. The capacity to selectively sequester Gram-negative microorganisms and correspondingly alter the composition of the microbiome may open up a new avenue in environmental and biomedical applications of HAp.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
8
|
Uskoković V, Wu VM. When Nothing Turns Itself Inside out and Becomes Something: Coating Poly (Lactic-Co-Glycolic Acid) Spheres with Hydroxyapatite Nanoparticles vs. the Other Way Around. J Funct Biomater 2022; 13:jfb13030102. [PMID: 35893470 PMCID: PMC9332181 DOI: 10.3390/jfb13030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
To stabilize drugs physisorbed on the surface of hydroxyapatite (HAp) nanoparticles and prevent burst release, these nanoparticles are commonly coated with polymers. Bioactive HAp, however, becomes shielded from the surface of such core/shell entities, which partially defeats the purpose of using it. The goal of this study was to assess the biological and pharmacokinetic effects of inverting this classical core/shell structure by coating poly(lactic-co-glycolic acid) (PLGA) spheres with HAp nanoparticles. The HAp shell did not hinder the release of vancomycin; rather, it increased the release rate to a minor degree, compared to that from undecorated PLGA spheres. The decoration of PLGA spheres with HAp induced lesser mineral deposition and lesser upregulation of osteogenic markers compared to those induced by the composite particles where HAp nanoparticles were embedded inside the PLGA spheres. This was explained by homeostatic mechanisms governing the cell metabolism, which ensure than the sensation of a product of this metabolism in the cell interior or exterior is met with the reduction in the metabolic activity. The antagonistic relationship between proliferation and bone production was demonstrated by the higher proliferation rate of cells challenged with HAp-coated PLGA spheres than of those treated with PLGA-coated HAp. It is concluded that the overwhelmingly positive response of tissues to HAp-coated biomaterials for bone replacement is unlikely to be due to the direct induction of new bone growth in osteoblasts adhering to the HAp coating. Rather, these positive effects are consequential to more elementary aspects of cell attachment, mechanotransduction, and growth at the site of contact between the HAp-coated material and the tissue.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC., 7 Park Vista, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
- Correspondence: or ; Tel.: +1-(415)-412-0233
| | - Victoria M. Wu
- TardigradeNano LLC., 7 Park Vista, Irvine, CA 92604, USA;
| |
Collapse
|
9
|
The Antibiotic Immersion of Custom-Made Porous Hydroxyapatite Cranioplasty. J Craniofac Surg 2022; 33:1464-1468. [DOI: 10.1097/scs.0000000000008363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022] Open
|
10
|
Degli Esposti L, Adamiano A, Siliqi D, Giannini C, Iafisco M. The effect of chemical structure of carboxylate molecules on hydroxyapatite nanoparticles. A structural and morphological study. Bioact Mater 2021; 6:2360-2371. [PMID: 33553821 PMCID: PMC7844063 DOI: 10.1016/j.bioactmat.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/30/2022] Open
Abstract
Being the most abundant non-macromolecular organic component of bone, the role of citrate (Cit) in hydroxyapatite (HA) crystallization is of high relevance. In this work we have investigated the influence of hydroxycitrate (CitOH) and glutarate (Glr) on HA crystallization in terms of particle growth, composition, and morphology in comparison to Cit. CitOH and Glr have been selected for this work because they share the same backbone structure of Cit but bear different functional groups in the central region. Our data has revealed that CitOH strongly inhibits HA crystallization more efficiently than Cit. CitOH-HA nanoparticles are composed of platy, elongated particles similar to those of Cit-HA but they are ca. twice smaller and have a lower crystal order. On the other hand, Glr does not inhibit HA crystallization as Cit, but leads to the formation of OCP platelets that convert with maturation time to HA nanorods with larger aspect ratio than Cit-HA. In comparison to Cit-HA samples, Glr-HA nanoparticles have bigger dimensions, and higher structural order. Overall, our data reveal that the central carboxyl group of Cit is involved in the selective binding with HA crystal surface and in regulating HA crystal growth. The results of this work highlight new possibilities to control the formation of HA for designing advanced bioactive materials and give new insights on the role of the structure of Cit in regulating the HA morphology.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza, Italy
| |
Collapse
|
11
|
Wang Y, Teng W, Zhang Z, Zhou X, Ye Y, Lin P, Liu A, Wu Y, Li B, Zhang C, Yang X, Li W, Yu X, Gou Z, Ye Z. A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. Bioact Mater 2021; 6:1853-1866. [PMID: 33336116 PMCID: PMC7732879 DOI: 10.1016/j.bioactmat.2020.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023] Open
Abstract
Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles. However, ordinary antimicrobial treatments usually failed to combat multiple waves of infections during arthroplasty and prosthesis revisions etc. As these incidents could easily introduce new microbial pathogens in/onto the implants. Herein, we demonstrate that an antimicrobial trilogy strategy incorporating a sophisticated multilayered coating system leveraging multiple ion exchange mechanisms and fine nanotopography tuning, could effectively eradicate bacterial infection at various stages of implantation. Early stage bacteriostatic effect was realized via nano-topological structure of top mineral coating. Antibacterial effect at intermediate stage was mediated by sustained release of zinc ions from doped CaP coating. Strong antibacterial potency was validated at 4 weeks post implantation via an implanted model in vivo. Finally, the underlying zinc titanate fiber network enabled a long-term contact and release effect of residual zinc, which maintained a strong antibacterial ability against both Staphylococcus aureus and Escherichia coli even after the removal of top layer coating. Moreover, sustained release of Sr2+ and Zn2+ during CaP coating degradation substantially promoted implant osseointegration even under an infectious environment by showing more peri-implant new bone formation and substantially improved bone-implant bonding strength.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Zengjie Zhang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Peng Lin
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - An Liu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Wu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Binghao Li
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, 10016, USA
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Weixu Li
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xiaohua Yu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| |
Collapse
|
12
|
Xi J, An L, Huang Y, Jiang J, Wang Y, Wei G, Xu Z, Fan L, Gao L. Ultrasmall FeS 2 Nanoparticles-Decorated Carbon Spheres with Laser-Mediated Ferrous Ion Release for Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005473. [PMID: 33661558 DOI: 10.1002/smll.202005473] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Recent progress in nanotechnology and the ancient use of sulfur in treating dermatological disorders have promoted the development of nano-sulfides for antimicrobial applications. However, the variable valences and abundant forms of nano-sulfides have complicated investigations on their antibacterial activity. Here, carbon nanospheres (CNSs) with decoration of ultrasmall FeS2 nanoparticles (CNSs@FeS2 ) is synthesized, and their antibacterial ability and mechanism are explored. The CNSs@FeS2 released Fe2+ and sulfur ions simultaneously through dissolution and disproportionation. In vitro study indicated that the released Fe2+ killed bacteria by increasing the oxidative state of bacterial surfaces and intracellular molecules. Importantly, the released sulfur exhibited a protective effect on Fe2+ , ensuring the stable existence of Fe2+ to continuously combat bacteria. Moreover, the carbon shells of CNSs@FeS2 not only prevented the aggregation of FeS2 but also accelerated the release of Fe2+ through photothermal effects to achieve synergistic hyperthermia/Fe2+ therapy. In vivo experiments indicated that treatment with CNSs@FeS2 resulted in a marked reduction in bacterial number and improvement in survival in an acute peritonitis mouse model, and antibacterial wound experiments demonstrated high efficacy of CNSs@FeS2 -enabled synergistic hyperthermia/Fe2+ therapy. Thus, this study clarifies the antibacterial mechanism of FeS2 and offers a synergetic therapeutic platform with laser-mediated Fe2+ release for antibacterial applications.
Collapse
Affiliation(s)
- Juqun Xi
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009, China
| | - Lanfang An
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yaling Huang
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jian Jiang
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanqiu Wang
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Gen Wei
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Wu VM, Huynh E, Tang S, Uskoković V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomed Mater 2020; 16:015018. [DOI: 10.1088/1748-605x/aba281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Mommaerts MY, Depauw PR, Nout E. Ceramic 3D-Printed Titanium Cranioplasty. Craniomaxillofac Trauma Reconstr 2020; 13:329-333. [PMID: 33456704 PMCID: PMC7797988 DOI: 10.1177/1943387520927916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STUDY DESIGN Inlay cranioplasties following partial craniectomy in tumor or trauma cases and onlay cranioplasties for reconstructions of residual developmental skull anomalies are frequently performed using CAD-CAM techniques. OBJECTIVE In this case series, we present a novel cranial implant design, being a combination of 3D-printed titanium grade 23 and calcium phosphate paste (CeTi). METHODS The titanium patient-specific implant, manufactured using selective laser melting, has a latticed border with interconnected micropores. The cranioplasty is miniscrew fixed and its border zone subsequently partially filled with calcium phosphate paste to promote osteoinduction and osteoconduction. From April 2017 to April 2019, 8 patients have been treated with such a CeTi implant. The inlay cranioplasties were each time revision surgeries of complicated cases. RESULTS All implants were successful after a limited follow-up time (range 18-42 months). There were no dehiscences and no infections, and no complaints of thermal conduction. CONCLUSIONS The proposed CeTi cranial implant combines the strength of titanium implants with the biological integration potential of ceramic implants and seems particularly resistant to infection, probably due to the biofunctionalized titanium surface and the antimicrobial activity of elevated intracellular free calcium levels.
Collapse
Affiliation(s)
- Maurice Y. Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Paul R. Depauw
- Department of Neurosurgery, GH Elisabeth-Tweesteden, Tilburg, The Netherlands
| | - Erik Nout
- Division of Oro-Maxillo-Facial Surgery, GH Elisabeth-Tweesteden, Tilburg, The Netherlands
| |
Collapse
|
15
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Uskoković V. X-ray photoelectron and ion scattering spectroscopic surface analyses of amorphous and crystalline calcium phosphate nanoparticles with different chemical histories. Phys Chem Chem Phys 2020; 22:5531-5547. [PMID: 32123882 DOI: 10.1039/c9cp06529f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface of hydroxyapatite nanoparticles is enriched in the topmost atomic layer with calcium and depleted of it elsewhere, alongside being dependent on the history of formation of hydroxyapatite from the amorphous precursor.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| |
Collapse
|
17
|
Uskoković V, Janković-Častvan I, Wu VM. Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomater Sci Eng 2019; 5:3483-3498. [DOI: 10.1021/acsbiomaterials.9b00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1600 Fourth Street, San Francisco, California 94158, United States
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| |
Collapse
|