1
|
Dickinson CG, Mendez KM, Holyfield MD, Batchelor NT, McCully KK. Muscle Mitochondrial Capacity Is Impaired Immediately Following Maximal Exercise. Med Sci Sports Exerc 2025; 57:173-180. [PMID: 39160766 DOI: 10.1249/mss.0000000000003533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
PURPOSE This study measured the time course mV̇O 2 max following both maximal and submaximal exercise. METHODS Healthy male and female participants were tested ( n = 12 maximal and n = 8 submaximal exercise). A NIRS device was placed on the left medial gastrocnemius. Participants performed either 1 min of maximal, rapid (~2 Hz), or submaximal (~0.37 Hz) plantar flexion exercise on a custom pneumatic ergometer. mV̇O 2 max was measured before and immediately after exercise. mV̇O 2 max measurements consisted of four incomplete recovery curves of muscle metabolism taken after 30 s of electrical muscle stimulation except in the first post-exercise to be consistent with the use of pre-exercise trial. The four recovery curves were collected 50-, 156-, 260-, and 366-s postexercise, each producing an mV̇O 2 max rate constant. RESULTS After maximal exercise, muscle acceleration decreased to 52 ± 18% ( P = 0.001) of prevalues. mV̇O 2 max was reduced from the pre-exercise mean at the first post-trial (2.16 ± 0.44 to 1.21 ± 0.52 min -1 , P < 0.001). The fourth trial showed recovery from the first (2.2 ± 0.46 min -1 vs 1.21 ± 0.52 min -1 , P < 0.001) and was not significantly different from pre-exercise values (2.2 ± 0.46 vs 2.16 ± 0.44 min -1 , P = 0.41). No change in acceleration or mV̇O 2 max was seen after submaximal exercise ( P > 0.05). CONCLUSIONS The 56.7% reduction in mV̇O 2 max supports the hypothesis that in young, healthy individuals, a minute of maximal exercise transiently impairs mV̇O 2 max, which then recovers within 6 min. The NIRS method shows promise in tracking time course changes in mV̇O 2 max and warrants further investigation of the transient effects of exercise on mV̇O 2 max.
Collapse
|
2
|
John K, Page J, Heffernan SM, Conway GE, Bezodis NE, Kilduff LP, Clark B, Périard JD, Waldron M. The effect of a 4-week, remotely administered, post-exercise passive leg heating intervention on determinants of endurance performance. Eur J Appl Physiol 2024; 124:3631-3647. [PMID: 39052044 PMCID: PMC11569002 DOI: 10.1007/s00421-024-05558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Post-exercise passive heating has been reported to augment adaptations associated with endurance training. The current study evaluated the effect of a 4-week remotely administered, post-exercise passive leg heating protocol, using an electrically heated layering ensemble, on determinants of endurance performance. METHODS Thirty recreationally trained participants were randomly allocated to either a post-exercise passive leg heating (PAH, n = 16) or unsupervised training only control group (CON, n = 14). The PAH group wore the passive heating ensemble for 90-120 min/day, completing a total of 20 (16 post-exercise and 4 stand-alone leg heating) sessions across 4 weeks. Whole-body (peak oxygen uptake, gas exchange threshold, gross efficiency and pulmonary oxygen uptake kinetics), single-leg exercise (critical torque and NIRS-derived muscle oxygenation), resting vascular characteristics (flow-mediated dilation) and angiogenic blood measures (nitrate, vascular endothelial growth factor and hypoxia inducible factor 1-α) were recorded to characterize the endurance phenotype. All measures were assessed before (PRE), at 2 weeks (MID) and after (POST) the intervention. RESULTS There was no effect of the intervention on test of whole-body endurance capacity, vascular function or blood markers (p > 0.05). However, oxygen kinetics were adversely affected by PAH, denoted by a slowing of the phase II time constant; τ (p = 0.02). Furthermore, critical torque-deoxygenation ratio was improved in CON relative to PAH (p = 0.03). CONCLUSION We have demonstrated that PAH had no ergogenic benefit but instead elicited some unfavourable effects on sub-maximal exercise characteristics in recreationally trained individuals.
Collapse
Affiliation(s)
- Kevin John
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK
| | - Joe Page
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK
| | - Shane M Heffernan
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK
| | - Gillian E Conway
- Institute of Life Science, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, UK
| | - Neil E Bezodis
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Liam P Kilduff
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Brad Clark
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Mark Waldron
- Applied Sports Science Technology and Medicine (A-STEM) Research Centre, Faculty of Science & Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, Wales, UK.
- Welsh Institute of Performance Science, Swansea University, Swansea, UK.
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| |
Collapse
|
3
|
Desanlis J, Gordon D, French C, Calveyrac C, Cottin F, Gernigon M. Effects of occlusion pressure on hemodynamic responses recorded by near-infrared spectroscopy across two visits. Front Physiol 2024; 15:1441239. [PMID: 39324105 PMCID: PMC11422206 DOI: 10.3389/fphys.2024.1441239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Ischemic Preconditioning (IPC) has emerged as a promising approach to mitigate the impact of hypoxia on physiological functions. However, the heterogeneity of occlusion pressures for inducing arterial occlusion has led to inconsistent hemodynamic outcomes across studies. This study aims to evaluate the peripheral hemodynamic responses to partial and total blood-flow occlusions on the left arm at rest, using absolute or individualized pressures, on two occasions. Thirty-five young males volunteered to participate in this study. IPC procedure (3 × 7-min) was performed on the left upper arm with cuff pressures at 50 mmHg (G1), 50 mmHg over the systolic blood pressure (SBP + 50 mmHg) (G2) or 250 mmHg (G3). NIRS-derived parameters were assessed for each occlusion and reperfusion phase in the brachioradialis. Results showed a significantly lower magnitude of deoxygenation (TSIAUC) for G1 compared to G2 (-1959.2 ± 1417.4 vs. -10908.1 ± 1607.5, P < 0.001) and G3 -1959.2 ± 1417.4 vs. -11079.3 ± 1828.1, P < 0.001), without differences between G2 and G3. However, G3 showed a significantly faster reoxygenation only for tissue saturation index (TSIslope) compared to G2 (1.3 ± 0.1 vs. 1.0 ± 0.2, P = 0.010), but without differences in the speed of recovery of deoxyhemoglobin [(HHb) slope], or in the magnitude of post-occlusive hyperemia (PORH). Besides TSI reoxygenation speed, G2 and G3 elicit comparable resting hemodynamic responses measured by NIRS. Thus, this study highlights the practicality and effectiveness of using relative occlusion pressures based on systolic blood pressure (SBP) rather than relying on excessively high absolute pressures.
Collapse
Affiliation(s)
- Julien Desanlis
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan Gordon
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Chloe French
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Camille Calveyrac
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - François Cottin
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Marie Gernigon
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| |
Collapse
|
4
|
Abdalsalam O, Howard S, O’Sullivan TD. Phase-based structured interrogation frequency-domain near-infrared spectroscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1500-1512. [PMID: 39873575 PMCID: PMC11775415 DOI: 10.1364/josaa.523194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 01/30/2025]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error. Particularly noteworthy, the phase-only component of SI FD-NIRS can quantify both the optical absorption and reduced scattering in homogeneous tissues and shows a 20% improved sensitivity to absorption changes in deeper tissues compared to conventional methods. We show that this enhanced sensitivity is promising for improving the accuracy of functional brain monitoring in the cortex of an infant with less superficial contamination.
Collapse
Affiliation(s)
- Ola Abdalsalam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Thomas D. O’Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
5
|
Caswell AM, Tripp TR, Kontro H, Edgett BA, Wiley JP, Lun V, MacInnis MJ. The influence of sex, hemoglobin mass, and skeletal muscle characteristics on cycling critical power. J Appl Physiol (1985) 2024; 137:10-22. [PMID: 38779761 DOI: 10.1152/japplphysiol.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Before CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis (VL) muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (FFM) [means (SD); V̇o2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg·FFM-1·min-1, respectively]. Males had a significantly greater CP than females in absolute units [225 (28) vs. 170 (43) W; P = 0.001] but not relative to body mass [3.0 (0.6) vs. 2.7 (0.6) W·kg·BM-1; P = 0.267] or FFM [3.6 (0.7) vs. 3.7 (0.8) W·kg·FFM-1; P = 0.622]. Males had significantly greater W' (P ≤ 0.030) and greater Hbmass (P ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (P = 0.375), τ (P = 0.603), or MHC I proportionality (P = 0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444 ≤ r ≤ 0.695; P < 0.05), mitochondrial protein content (0.413 ≤ r ≤ 0.708; P < 0.05), and MHC I proportionality (0.506 ≤ r ≤ 0.585; P < 0.05), and negatively correlated with τ when expressed in relative units only (-0.588 ≤ r ≤ -0.527; P < 0.05). Overall, CP was independent of sex, but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand the factors underpinning CP.NEW & NOTEWORTHY In males and females matched for aerobic fitness [maximal oxygen uptake normalized to fat-free mass (FFM)], absolute critical power (CP) was greater in males, but relative CP (per kilogram body mass or FFM) was similar between sexes. CP correlated with hemoglobin mass, mitochondrial protein content, myosin heavy chain type I proportion, and skeletal muscle oxidative capacity. These findings demonstrate the importance of matching sexes for aerobic fitness, but further experiments are needed to determine causality.
Collapse
Affiliation(s)
- Allison M Caswell
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hilkka Kontro
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brittany A Edgett
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Victor Lun
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Giacona JM, Petric UB, Kositanurit W, Wang J, Saldanha S, Young BE, Khan G, Connelly MA, Smith SA, Rohatgi A, Vongpatanasin W. HDL-C and apolipoprotein A-I are independently associated with skeletal muscle mitochondrial function in healthy humans. Am J Physiol Heart Circ Physiol 2024; 326:H916-H922. [PMID: 38334968 PMCID: PMC11279711 DOI: 10.1152/ajpheart.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.
Collapse
Affiliation(s)
- John M Giacona
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ursa B Petric
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Weerapat Kositanurit
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jijia Wang
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Suzanne Saldanha
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin E Young
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ghazi Khan
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Scott A Smith
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anand Rohatgi
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Wanpen Vongpatanasin
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Maliszewski K, Feldmann A, McCully KK, Julian R. A systematic review of the relationship between muscle oxygen dynamics and energy rich phosphates. Can NIRS help? BMC Sports Sci Med Rehabil 2024; 16:25. [PMID: 38245757 PMCID: PMC10799478 DOI: 10.1186/s13102-024-00809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Phosphocreatine dynamics provide the gold standard evaluation of in-vivo mitochondrial function and is tightly coupled with oxygen availability. Low mitochondrial oxidative capacity has been associated with health issues and low exercise performance. METHODS To evaluate the relationship between near-infrared spectroscopy-based muscle oxygen dynamics and magnetic resonance spectroscopy-based energy-rich phosphates, a systematic review of the literature related to muscle oxygen dynamics and energy-rich phosphates was conducted. PRISMA guidelines were followed to perform a comprehensive and systematic search of four databases on 02-11-2021 (PubMed, MEDLINE, Scopus and Web of Science). Beforehand pre-registration with the Open Science Framework was performed. Studies had to include healthy humans aged 18-55, measures related to NIRS-based muscle oxygen measures in combination with energy-rich phosphates. Exclusion criteria were clinical populations, laboratory animals, acutely injured subjects, data that only assessed oxygen dynamics or energy-rich phosphates, or grey literature. The Effective Public Health Practice Project Quality Assessment Tool was used to assess methodological quality, and data extraction was presented in a table. RESULTS Out of 1483 records, 28 were eligible. All included studies were rated moderate. The studies suggest muscle oxygen dynamics could indicate energy-rich phosphates under appropriate protocol settings. CONCLUSION Arterial occlusion and exercise intensity might be important factors to control if NIRS application should be used to examine energetics. However, more research needs to be conducted without arterial occlusion and with high-intensity exercises to support the applicability of NIRS and provide an agreement level in the concurrent course of muscle oxygen kinetics and muscle energetics. TRIAL REGISTRATION https://osf.io/py32n/ . KEY POINTS 1. NIRS derived measures of muscle oxygenation agree with gold-standard measures of high energy phosphates when assessed in an appropriate protocol setting. 2. At rest when applying the AO protocol, in the absence of muscle activity, an initial disjunction between the NIRS signal and high energy phosphates can been seen, suggesting a cascading relationship. 3. During exercise and recovery a disruption of oxygen delivery is required to provide the appropriate setting for evaluation through either an AO protocol or high intensity contractions.
Collapse
Affiliation(s)
- Kevin Maliszewski
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, USA
| | - Ross Julian
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany.
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, England.
| |
Collapse
|
9
|
Sakaue T, Tsutsui A, Togo S, Takeda T, Nakajima K, Fukuda K. Effects of Different Gum Hardness on Masseter Muscle Activity During Gum Chewing: An NIRS Oximetry Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:341-345. [PMID: 39400845 DOI: 10.1007/978-3-031-67458-7_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Gum chewing is used in orofacial therapy to improve oral functions, such as a patient's chewing ability, bite force, tongue pressure, and lip closure strength. However, its effects on masseter muscle oxygen dynamics and muscle activity may vary with the hardness and features of the gum base. Therefore, when considering gum chewing for therapeutic purposes, it is essential to select gum of an appropriate hardness. This study aimed to elucidate the impact of gum hardness differences on masseter muscle tissue oxygen dynamics and muscle activity. We conducted a 120-s gum chewing study using three types of gum with different hardness levels on 11 healthy adult males. Each patient's masseter muscle tissue oxygen dynamics, muscle activity, and heart rate were measured, and the extent of masseter fatigue was assessed using a visual analogue scale (VAS). Per our findings, as gum hardness increased, significant reductions in oxygen saturation (StO2) and significant increases in deoxyhaemoglobin (Deoxy-Hb) concentrations were observed in masseter muscle tissue oxygen dynamics. Likewise, muscle activity, heart rate, and muscle fatigue (according to VAS) also increased significantly as gum hardness increased. The findings of this study reveal that increasing gum base hardness not only affects masseter muscle tissue oxygen dynamics but also increases muscle activity, masseter fatigue, and heart rate. When selecting gum for orofacial therapy involving gum chewing exercises, it is crucial to choose the appropriate gum.
Collapse
Affiliation(s)
- Takahiro Sakaue
- Department of Oral Health and Clinical Science, Division of Sports Dentistry, Tokyo Dental College, Tokyo, Japan.
| | - Arata Tsutsui
- Department of Oral Health and Clinical Science, Division of Sports Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Shinji Togo
- Department of Oral Health and Clinical Science, Division of Sports Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Tomotaka Takeda
- Department of Oral Health and Clinical Science, Division of Sports Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Oral Health and Clinical Science, Division of Sports Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Kenichi Fukuda
- Department of Oral Health and Clinical Science, Division of Special Needs Dentistry and Orofacial Pain, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
10
|
Ji W, Nightingale TE, Zhao F, Fritz NE, Phillips AA, Sisto SA, Nash MS, Badr MS, Wecht JM, Mateika JH, Panza GS. The Clinical Relevance of Autonomic Dysfunction, Cerebral Hemodynamics, and Sleep Interactions in Individuals Living With SCI. Arch Phys Med Rehabil 2024; 105:166-176. [PMID: 37625532 DOI: 10.1016/j.apmr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
A myriad of physiological impairments is seen in individuals after a spinal cord injury (SCI). These include altered autonomic function, cerebral hemodynamics, and sleep. These physiological systems are interconnected and likely insidiously interact leading to secondary complications. These impairments negatively influence quality of life. A comprehensive review of these systems, and their interplay, may improve clinical treatment and the rehabilitation plan of individuals living with SCI. Thus, these physiological measures should receive more clinical consideration. This special communication introduces the under investigated autonomic dysfunction, cerebral hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral hemodynamics, and sleep disorders and some secondary outcomes are discussed. Recent evidence is synthesized to make clinical recommendations on the assessment and potential management of important autonomic, cerebral hemodynamics, and sleep-related dysfunction in people with SCI. Finally, a few recommendations for clinicians and researchers are provided.
Collapse
Affiliation(s)
- Wenjie Ji
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Trauma Science Research, University of Birmingham, Birmingham, UK; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Nora E Fritz
- Department of Health Care Sciences, Program of Physical Therapy, Detroit, MI; Department of Neurology, Wayne State University, Detroit, MI
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular institute, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada; RESTORE.network, University of Calgary, Calgary, AB, Canad
| | - Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabilitation Physical Therapy, Miami, FL; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Jill M Wecht
- James J Peters VA Medical Center, Department of Spinal Cord Injury Research, Bronx, NY; Icahn School of Medicine Mount Sinai, Departments of Rehabilitation and Human Performance, and Medicine Performance, and Medicine, New York, NY
| | - Jason H Mateika
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
11
|
Whyte E, Thomas S, Marzolini S. Muscle oxygenation of the paretic and nonparetic legs during and after exercise in chronic stroke: Implications for mobility. PM R 2023; 15:1239-1248. [PMID: 36459570 DOI: 10.1002/pmrj.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Oxygen delivery and demand are reduced in the paretic leg of individuals after stroke. However, it is unknown how muscle oxygenation, the balance between delivery and utilization of oxygen at the muscle, is altered post-stroke during aerobic exercise and how it relates to mobility. OBJECTIVE To monitor muscle oxygenation changes between the paretic and nonparetic legs of individuals after stroke during treadmill exercise and the 6-minute walk test and analyze the association with mobility. DESIGN Cross-sectional study. SETTING Cardiac rehabilitation program. PATIENTS Eleven male participants were enrolled in the study. Ten men (30.8 ± 4.1 months post-stroke; age 63.9 ± 13.9 years) with hemiparetic gait pattern finished the study. METHODS OR INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Muscle oxygenation was measured with near-infrared spectroscopy placed on the vastus lateralis of each leg during treadmill exercise at the first ventilatory threshold and during a 6-minute walk test. RESULTS The desaturation slope during treadmill exercise was significantly steeper (p = .047) in the paretic (-0.7 ± 0.6%/s) compared to the nonparetic leg (-0.3 ± 0.2%/s). There was no other significant difference between legs. The 6-minute walk test distance was not correlated with 6-minute walk test muscle oxygenation in either leg (paretic: r = 0.20, p = 0.590; nonparetic: r = 0.42, p = .232). CONCLUSIONS At the onset of treadmill exercise, the paretic leg was unable to effectively match the oxygen demand and extraction of the nonparetic leg, suggesting the need for an immediate cardiovascular warmup prior to initiating moderate intensity exercise in this population. Because the exercise desaturation rate is thought to indicate increased anaerobic metabolism and lactate production, efforts to delay rapid desaturation could improve the sustainability of activities of daily living and exercise.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - Scott Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Susan Marzolini
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Muscle oxygenation is associated with bilateral strength asymmetry during isokinetic testing in sport teams. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Costilla M, Casals C, Marín-Galindo A, Sánchez-Sixto A, Muñoz-López A, Sañudo B, Corral-Pérez J, Ponce-González JG. Changes in Muscle Deoxygenation During Squat Exercise After 6-Week Resistance Training With Different Percentages of Velocity Loss. J Strength Cond Res 2023:00124278-990000000-00199. [PMID: 36727700 DOI: 10.1519/jsc.0000000000004430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Costilla, M, Casals, C, Marín-Galindo, A, Sánchez-Sixto, A, Muñoz-López, A, Sañudo, B, Corral-Pérez, J, and Ponce-González, JG. Changes in muscle deoxygenation during squat exercise after 6-week resistance training with different percentages of velocity loss. J Strength Cond Res XX(X): 000-000, 2022-The present study compared, for the first time, the effects of 6 weeks of 20% (20VL) vs. 40% (40VL) velocity loss (VL) resistance training (RT) programs on muscle oxygen dynamics during the squat exercise. Twenty-three young men (21.4 ± 2.4 years) were randomly allocated into the 20VL group (n = 8), 40VL group (n = 7), or control group (CG; n = 8). The RT program consisted of 3 sets of Smith machine back squat exercise at 20VL or 40VL with a 3-minute rest between sets, twice per week for 6 weeks. Tissue oxygenation index (TOI) was measured using near-infrared spectroscopy in the vastus medialis and vastus lateralis during a squat test (8-repetition 1 m·s-1 load test), and the maximum (maxTOI) and minimum (minTOI) TOIs were measured during a 3-min recovery period. After the 6-week RT program, TOI increased significantly at the beginning of the test in both muscles (during the first 4 repetitions in the vastus lateralis and 5 repetitions in the vastus medialis) in the 20VL group (p < 0.05), with nonsignificant changes in the 40VL group and CG. The maxTOI was significantly increased in the vastus medialis (+3.76%) and vastus lateralis (+3.97%) after the training only in the 20VL group (p < 0.05). The minTOI in the vastus medialis reached during the test remained unchanged postintervention for both training groups, with the CG showing significantly higher values compared with the 20VL group (+14.1%; p < 0.05). In conclusion, depending on the VL reached during a squat RT program, different changes in muscle oxygen dynamics can be expected. Training at 20% of VL improves metabolic efficiency and the reoxygenation peak after the set.
Collapse
Affiliation(s)
- Manual Costilla
- Exercise Physiology, Nutrition, and Health Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - Cristina Casals
- Exercise Physiology, Nutrition, and Health Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Alberto Marín-Galindo
- Exercise Physiology, Nutrition, and Health Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | | | - Alejandro Muñoz-López
- Department of Human Motricity and Sports Performance, University of Seville, Seville, Spain; and
| | - Borja Sañudo
- Department of Physical Education, University of Seville, Seville, Spain
| | - Juan Corral-Pérez
- Exercise Physiology, Nutrition, and Health Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Jesús Gustavo Ponce-González
- Exercise Physiology, Nutrition, and Health Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| |
Collapse
|
14
|
Aviram R, Kima I, Parmet Y, Bassan H, Willigenburg T, Riemer R, Bar-Haim S. Haemodynamics and oxygenation in the lower-limb muscles of young ambulatory adults with cerebral palsy. Dev Med Child Neurol 2023. [PMID: 36646638 DOI: 10.1111/dmcn.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 01/18/2023]
Abstract
AIM To evaluate muscle haemodynamics and oxygen metabolism in adults with cerebral palsy (CP) at rest and during exercise. METHOD This cross-sectional study included 12 adults with spastic CP (four females, eight males; mean age [SD] 29 years 6 months [7 years 10.8 months]) and 13 typically developing individuals (seven females, six males; mean age [SD] 26 years 6 months [1 year 1.9 months]). Near-infrared spectroscopy was used to assess changes in muscle blood flow (mBF), muscle oxygen consumption (mVO2 ), and muscle oxygen saturation in the vastus lateralis and rectus femoris muscles during three conditions: rest, low load at 20% maximum voluntary contraction (MVC), and high load at 80% MVC. RESULTS MBF was lower in participants with CP than in typically developing participants at rest (p < 0.001) and at 20% MVC (p = 0.007) in both muscles. Increased load caused a reduction in mBF in typically developing participants and an increase in CP. MVO2 in typically developing participants increased from rest to 20% MVC and was reduced at 80% MVC compared with 20% MVC. In participants with CP, there was no change with load in the rectus femoris muscle; however, there was an increase in the vastus lateralis muscle from rest to 20% MVC, and 80% MVC had a similar value. Muscle saturation was higher in participants with CP across all conditions (vastus lateralis, p < 0.001; rectus femoris, p = 0.0518). INTERPRETATION Oxidative metabolism in CP is not limited by oxygen delivery (mBF), because high muscle saturation suggests oxygen availability. Adults with CP demonstrate muscular responses to exercise that are inconsistent with typical high-workload activation, probably because of inefficient fibre recruitment and secondary anomalies.
Collapse
Affiliation(s)
- Ronit Aviram
- Faculty of Health Sciences, Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Inbar Kima
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Haim Bassan
- Child Neurology & Development Center, Shamir Medical Center (Assaf Harofe), Be'er Ya'akov, Israel
| | | | - Raziel Riemer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Simona Bar-Haim
- Faculty of Health Sciences, Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
15
|
Lin TY, Chen JJJ, Lin LL, Ou Yang WT, Chen MY, Tsai YC. Effects of multicomponent exercise training on muscle oxygenation in young and older adults. J Exerc Sci Fit 2023; 21:138-146. [PMID: 36606262 PMCID: PMC9800305 DOI: 10.1016/j.jesf.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Though multicomponent exercise training was found beneficial in improving the physical functionality, the effects of multicomponent exercise training on muscle oxygenation are still unclear. The purpose of this study was to investigate the effects of multicomponent exercise training on muscle oxygenation in young and older participants. Methods In this study, 17 young adults (Y) and 18 healthy older adults (E) were recruited to receive a multicomponent exercise training for 12 weeks, 2-3 sessions per week. Muscle oxygenation, muscle strength, and electromyography data were collected and compared pre- and post-training. Muscle oxygen saturation (SpO2) during isometric knee extension tests involving voluntary contraction (VOL) and electrical stimulation (ES) was measured by near-infrared spectroscopy. The SpO2 kinetics in the contraction and recovery phases were calculated using a tangential model to extract ΔSpO2 and inflection time (IF). Results Muscle strength significantly increased in the post-training (234.31 ± 83.2 N·m, p < 0.05). The post-training ΔSpO2 of the ES in the Y (8.43 ± 5.35%) significantly increased and was higher than that in the E (2.78 ± 3.03%, p < 0.05). In the recovery phase, the post-training IF of VOL (7.07 ± 3.31s) was significantly shorter than that of the pre-training period (8.73 ± 4.46s, p < 0.05). Additionally, the median frequency of electromyography significantly decreased in the post-training period (103.84 ± 21.75 Hz, p < 0.05). Conclusion The multicomponent exercise training improved the muscle strength, neuromuscular performance, and muscle aerobic function irrespective of age. The primary adaptation of the muscles to the multicomponent exercise training between the two groups varied.
Collapse
Affiliation(s)
- Tai-You Lin
- National Sport Training Center, Kaohsiung, Taiwan
| | - Jia-Jin J. Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Linda L. Lin
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan,Corresponding author. Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, No 1. Ta-Hsueh Rd., Tainan, Taiwan.
| | - Wei-Tsun Ou Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Yu Chen
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Ellis C, Burns D. All about oxygen: using near-infrared spectroscopy to understand bioenergetics. ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:685-692. [PMID: 36201307 DOI: 10.1152/advan.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The interchange among the energy-providing phosphagen, glycolytic, and aerobic systems during exercise is often poorly understood by beginning students in exercise physiology. Exercise is oftentimes thought of as being aerobic or anaerobic, with the body progressing sequentially from one system to the next, although the energy systems work synergistically to produce energy from the onset of exercise, and all ultimately use oxygen. Traditional methods of teaching these concepts using only indirect calorimetry and a metabolic cart can be misleading. Relatively inexpensive noninvasive monitors of muscle oxygenation levels ([Formula: see text]) provide a useful tool to help students better understand the contribution and timing of these three systems of ATP generation and convey the concept that ultimately all energy production in the human body is oxygen dependent. In this laboratory, students use near-infrared spectroscopy (NIRS) to visualize oxygen utilization by skeletal muscle during exercise by devising three exercise unique protocols, with each designed to stress a different energy system. Students then perform their protocols while using NIRS to measure and analyze [Formula: see text]. Students generate graphs with collected data, allowing them to visualize and appreciate oxygen consumption during all three protocols as well as elevated oxygen consumption after exercise. The students learn that any exercise is really all about oxygen.NEW & NOTEWORTHY Traditional methods of teaching bioenergetics using indirect calorimetry and a metabolic cart may be misleading. Recent advances in technology have made near-infrared spectroscopy (NIRS) a relatively inexpensive, noninvasive means of monitoring muscle oxygen levels during exercise. In this laboratory activity, NIRS devices are used for hands-on exploration of the synergistic nature of the energy systems, allowing students to appreciate the synergistic nature of the energy systems and how all exercise is really all about oxygen.
Collapse
Affiliation(s)
- Carrie Ellis
- Sport and Exercise Physiology Department, DeSales University, Center Valley, Pennsylvania
| | - Douglas Burns
- Sport and Exercise Physiology Department, DeSales University, Center Valley, Pennsylvania
| |
Collapse
|
17
|
Paulauskas R, Nekriošius R, Dadelienė R, Sousa A, Figueira B. Muscle Oxygenation Measured with Near-Infrared Spectroscopy Following Different Intermittent Training Protocols in a World-Class Kayaker-A Case Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:8238. [PMID: 36365935 PMCID: PMC9653646 DOI: 10.3390/s22218238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Training elite kayakers at a distance of 1000 m is associated with aerobic and anaerobic metabolism, while intermittent training, in a variety of forms, is one of the effective ways to improve cardiorespiratory and metabolic function. Thus, this study aimed to investigate muscle oxygenation responses during repetition training (RT), interval training (IT), and sprint interval training (SIT). Near-infrared spectroscopy (NIRS) monitors were placed on the latissimus dorsi (LD), pectoralis major (PM), and vastus lateralis (VL) of a world-class kayaker during their preparatory period. The intensity of work, relief, and recovery intervals were the independent variables that were manipulated using three different training protocols. The inferential analysis between intermittent training protocols showed significant differences for all variables except total the hemoglobin (tHb) index in LD during bout 2 (F = 2.83, p = 0.1, ηp2 = 0.205); bout 3 (F = 2.7, p = 0.125, ηp2 = 0.193); bout 4 (F = 1.8, p = 0.202, ηp2 = 0.141); and bout 6 (F = 1.1, p = 0.327, ηp2 = 0.092). During the rest bouts, all training protocols showed significant differences for all variables except muscle oxygen saturation (SmO2) in the VL during bout 5 (F = 4.4, p = 0.053, ηp2 = 0.286) and tHb in VL during bout 1 (F = 2.28, p = 0.132, ηp2 = 0.172); bout 2 (F = 0.564, p = 0.561, ηp2 = 0.049); bout 3 (F = 1.752, p = 0.205, ηp2 = 0.137); bout 4 (F = 1.216, p = 0.301, ηp2 = 0.1); and bout 6 (F = 4.146, p = 0.053, ηp2 = 0.274). The comparison between IT protocols RT and SIT presented similar results. All variables presented higher values during SIT, except HR results. Finally, the comparison between IT and SIT showed significant differences in several variables, and a clear trend was identified. The results of this study suggest that the application of different intermittent exercise protocols promotes distinct and significant changes in the peripheral effect of muscle oxygenation in response to training stimuli and may be internal predictors of hemodynamic and metabolic changes.
Collapse
Affiliation(s)
- Rūtenis Paulauskas
- Educational Research Institute, Education Academy, Vytautas Magnus University, 44244 Kaunas, Lithuania
| | - Ričardas Nekriošius
- Department of Applied Biology and Rehabilitation, Lithuanian Sport University, 44221 Kaunas, Lithuania
| | - Rūta Dadelienė
- Institute of Health Science, Department of Rehabilitation, Physical and Sports Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Ana Sousa
- Research Center for Sports, Exercise and Human Development, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Research Center for Sports, Exercise and Human Development, University of Maia, ISMAI, 4475-690 Maia, Portugal
| | - Bruno Figueira
- Educational Research Institute, Education Academy, Vytautas Magnus University, 44244 Kaunas, Lithuania
- Research Center for Sports, Exercise and Human Development, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
Lahti DS, Pockett C, Boyes NG, Bradley TJ, Butcher SJ, Wright KD, Erlandson MC, Tomczak CR. Effects of 12-Week Home-based Resistance Training on Peripheral Muscle Oxygenation in Children With Congenital Heart Disease: A CHAMPS Study. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:203-212. [PMID: 37969430 PMCID: PMC10642115 DOI: 10.1016/j.cjcpc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2023]
Abstract
Background A hallmark feature of children with congenital heart disease (CHD) is exercise intolerance. Whether a home-based resistance training intervention improves muscle oxygenation (as measured by tissue oxygenation index, TOI) and exercise tolerance (V ˙ O2 reserve) during aerobic exercise in children with CHD compared with healthy children is unknown. Methods We report findings for 10 children with CHD (female/male: 4/6; mean ± standard deviation age: 13 ± 1 years) and 9 healthy controls (female/male: 5/4; age: 12 ± 3 years). Children with CHD completed a 12-week home-based exercise programme in addition to 6 in-person sessions. Exercise tolerance was assessed with a peak exercise test. Vastus lateralis TOI was continuously sampled during the peak V ˙ O2 test via near-infrared spectroscopy. Results There was a medium effect (Cohen's d = 0.67) of exercise training on lowering TOI at peak exercise (pre: 30 ± 16 %total labile signal vs post: 20 ± 13 % total labile signal; P = 0.099). Exercise training had a small effect (Cohen's d = 0.23) on increasing V ˙ O2 reserve by 1.6 mL/kg/min (pre: 27.2 ± 5.7 mL/kg/min vs post: 29.4 ± 8.8 mL/kg/min; P = 0.382). There was also a small effect (Cohen's d = 0.27) of exercise on peak heart rate (pre: 175 ± 23 beats/min vs post: 169 ± 21 beats/min; P = 0.18). TOI, V ˙ O2 reserve, and heart rate were generally lower than healthy control participants. Conclusions Our findings indicate that home-based resistance training may enhance skeletal muscle oxygen extraction (lower TOI) and subsequently V ˙ O2 reserve in children with CHD.
Collapse
Affiliation(s)
- Dana S. Lahti
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Charissa Pockett
- Division of Cardiology, Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G. Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy J. Bradley
- Division of Cardiology, Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scotty J. Butcher
- School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kristi D. Wright
- Department of Psychology, University of Regina, Regina, Saskatchewan, Canada
| | - Marta C. Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corey R. Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Rupp T, Saugy JJ, Bourdillon N, Millet GP. Brain-muscle interplay during endurance self-paced exercise in normobaric and hypobaric hypoxia. Front Physiol 2022; 13:893872. [PMID: 36091393 PMCID: PMC9453479 DOI: 10.3389/fphys.2022.893872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Hypoxia is one major environmental factor, supposed to mediate central motor command as well as afferent feedbacks at rest and during exercise. By using a comparison of normobaric (NH) and hypobaric (HH) hypoxia with the same ambient pressure in oxygen, we examined the potential differences on the cerebrovascular and muscular regulation interplay during a self-paced aerobic exercise. Methods: Sixteen healthy subjects performed three cycling time-trials (250 kJ) in three conditions: HH, NH and normobaric normoxia (NN) after 24 h of exposure. Cerebral and muscular oxygenation were assessed by near-infrared spectroscopy, cerebral blood flow by Doppler ultrasound system. Gas exchanges, peripheral oxygen saturation, power output and associated pacing strategies were also continuously assessed. Results: The cerebral oxygen delivery was lower in hypoxia than in NN but decreased similarly in both hypoxic conditions. Overall performance and pacing were significantly more down-regulated in HH versus NH, in conjunction with more impaired systemic (e.g. saturation and cerebral blood flow) and prefrontal cortex oxygenation during exercise. Conclusions: The difference in pacing was likely the consequence of a complex interplay between systemic alterations and cerebral oxygenation observed in HH compared to NH, aiming to maintain an equivalent cerebral oxygen delivery despite higher adaptive cost (lower absolute power output for the same relative exercise intensity) in HH compared to NH.
Collapse
Affiliation(s)
- Thomas Rupp
- LIBM, Inter-university Laboratory of Human Movement Science, University Savoie Mont Blanc, Chambéry, France
| | - Jonas J. Saugy
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P. Millet
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Grégoire P. Millet,
| |
Collapse
|
20
|
Dwivedi A, Groll H, Beckerle P. A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding. SENSORS (BASEL, SWITZERLAND) 2022; 22:6319. [PMID: 36080778 PMCID: PMC9460678 DOI: 10.3390/s22176319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Humans learn about the environment by interacting with it. With an increasing use of computer and virtual applications as well as robotic and prosthetic devices, there is a need for intuitive interfaces that allow the user to have an embodied interaction with the devices they are controlling. Muscle-machine interfaces can provide an intuitive solution by decoding human intentions utilizing myoelectric activations. There are several different methods that can be utilized to develop MuMIs, such as electromyography, ultrasonography, mechanomyography, and near-infrared spectroscopy. In this paper, we analyze the advantages and disadvantages of different myography methods by reviewing myography fusion methods. In a systematic review following the PRISMA guidelines, we identify and analyze studies that employ the fusion of different sensors and myography techniques, while also considering interface wearability. We also explore the properties of different fusion techniques in decoding user intentions. The fusion of electromyography, ultrasonography, mechanomyography, and near-infrared spectroscopy as well as other sensing such as inertial measurement units and optical sensing methods has been of continuous interest over the last decade with the main focus decoding the user intention for the upper limb. From the systematic review, it can be concluded that the fusion of two or more myography methods leads to a better performance for the decoding of a user's intention. Furthermore, promising sensor fusion techniques for different applications were also identified based on the existing literature.
Collapse
Affiliation(s)
- Anany Dwivedi
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Helen Groll
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
21
|
Tuesta M, Yáñez-Sepúlveda R, Verdugo-Marchese H, Mateluna C, Alvear-Ordenes I. Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review. BIOLOGY 2022; 11:biology11071073. [PMID: 36101451 PMCID: PMC9312707 DOI: 10.3390/biology11071073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary In recent years, physical exercise has been used as a therapeutic strategy in various clinical conditions, with pleiotropic benefits. Near-infrared spectroscopy (NIRS) has been positioned as a tool to analyze effects on muscle oxygenation, also allowing knowledge of adaptations on microvascular levels and muscle metabolism in subjects with central and peripheral vascular alterations, as well as cardiovascular, metabolic, and/or musculoskeletal diseases. This knowledge can help to guide therapeutic exercise specialists in decision making regarding the prescription and follow up of physical exercise as a therapeutic tool in the observation of acute or chronic adaptations to improve efficiency in the treatment and recovery of these patients. This review presents an overview of the effects of exercise clinical trials on muscle oxygenation in different pathologies and the technical characteristics related to the equipment used. Abstract Using muscle oxygenation to evaluate the therapeutic effects of physical exercise in pathologies through near-infrared spectroscopy (NIRS) is of great interest. The aim of this review was to highlight the use of muscle oxygenation in exercise interventions in clinical trials and to present the technological characteristics related to the equipment used in these studies. PubMed, WOS, and Scopus databases were reviewed up to December 2021. Scientific articles that evaluated muscle oxygenation after exercise interventions in the sick adult population were selected. The PEDro scale was used to analyze the risk of bias (internal validity). The results were presented grouped in tables considering the risk of bias scores, characteristics of the devices, and the effects of exercise on muscle oxygenation. All the stages were carried out using preferred reporting items for systematic reviews and meta-analyses (PRISMA). The search strategy yielded 820 clinical studies, of which 18 met the eligibility criteria. This review detailed the characteristics of 11 NIRS devices used in clinical trials that used physical exercise as an intervention. The use of this technology made it possible to observe changes in muscle oxygenation/deoxygenation parameters such as tissue saturation, oxyhemoglobin, total hemoglobin, and deoxyhemoglobin in clinical trials of patients with chronic disease. It was concluded that NIRS is a non-invasive method that can be used in clinical studies to detect the effects of physical exercise training on muscle oxygenation, hemodynamics, and metabolism. It will be necessary to unify criteria such as the measurement site, frequency, wavelength, and variables for analysis. This will make it possible to compare different models of exercise/training in terms of time, intensity, frequency, and type to obtain more precise conclusions about their benefits for patients.
Collapse
Affiliation(s)
- Marcelo Tuesta
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
- Laboratory of Sport Sciences, Centro de Medicina Deportiva Sports MD, Viña del Mar 2521156, Chile;
| | - Rodrigo Yáñez-Sepúlveda
- Applied Physiology Laboratory (FISAP), Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain;
- School of Education, Pedagogy in Physical Education, Universidad Viña del Mar, Viña del Mar 2572007, Chile
| | | | - Cristián Mateluna
- Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2530388, Chile;
| | - Ildefonso Alvear-Ordenes
- Applied Physiology Laboratory (FISAP), Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain;
- Correspondence:
| |
Collapse
|
22
|
Desanlis J, Gordon D, Calveyrac C, Cottin F, Gernigon M. Intra- and Inter-Day Reliability of the NIRS Portamon Device after Three Induced Muscle Ischemias. SENSORS (BASEL, SWITZERLAND) 2022; 22:5165. [PMID: 35890846 PMCID: PMC9317239 DOI: 10.3390/s22145165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Near-infrared spectroscopy (NIRS) is an innovative and non-invasive technology used to investigate muscular oxygenation. The aim of this study is to assess the within- and between-session reliability of the NIRS Portamon (Artinis, Elst, Netherlands) device following three sets of induced muscle ischemia. (2) Methods: Depending on the experimental group (G1, G2 or G3), a cuff was inflated three times on the left upper arm to 50 mmHg (G1), systolic blood pressure (SBP) + 50 mmHg (G2) or 250 mmHg (G3). Maximum, minimum and reoxygenation rate values were assessed after each occlusion phase, using a Portamon device placed on the left brachioradialis. Reliability was assessed with intraclass correlation coefficient (ICC) value and ICC 95% confidence interval (CI-95%), coefficient of variation (CV) and standard error of measurement (SEM) (3) Results: Our results showed a good to excellent reliability for maximums and minimums within-session. However, the reoxygenation rate within sessions as well as measurements between sessions cannot predominantly show good reliability. (4) Conclusions: Multiple measurements of maximums and minimums within a single session appeared to be reliable which shows that only one measurement is necessary to assess these parameters. However, it is necessary to be cautious with a comparison of maximum, minimum and reoxygenation rate values between sessions.
Collapse
Affiliation(s)
- Julien Desanlis
- CIAMS, Université Paris-Saclay, CEDEX, 91405 Orsay, France; (C.C.); (F.C.); (M.G.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
- Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Dan Gordon
- Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Camille Calveyrac
- CIAMS, Université Paris-Saclay, CEDEX, 91405 Orsay, France; (C.C.); (F.C.); (M.G.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - François Cottin
- CIAMS, Université Paris-Saclay, CEDEX, 91405 Orsay, France; (C.C.); (F.C.); (M.G.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Marie Gernigon
- CIAMS, Université Paris-Saclay, CEDEX, 91405 Orsay, France; (C.C.); (F.C.); (M.G.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
23
|
Lu YJ, Chen SY, Lai YC, Chaiyawat P, Chao YH, Chuang LM, Shih TTF, Wang HK. Muscle Microcirculatory Responses to Incremental Exercises Are Correlated with Peak Oxygen Uptake in Individuals With and Without Type 2 Diabetes Mellitus. Metab Syndr Relat Disord 2022; 20:405-413. [PMID: 35594301 DOI: 10.1089/met.2021.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Background: The role of impaired oxygen extraction on peak oxygen uptake (V̇O2peak) has been extensively studied using noninvasive and indirect methods in both diabetic patients and healthy participants. Methods: A total of 22 participants with type 2 diabetes mellitus [T2DM; median (range) age: 60 (47-70) years] and 22 controls [58 (52-69) years] with no history of diabetes were recruited (reference no. 201812135RINB). Subjects performed an exhaustive incremental exercise and were evaluated using a gas analyzer and near-infrared spectroscopy (NIRS) to determine V̇O2peak and changes in muscle oxygenation (SmO2) in the vastus lateralis, respectively. Measurements were taken at rest, warm-up, a period during exercise when SmO2 reached a minimum saturation plateau, and recovery. The microcirculatory responses of the vastus lateralis muscle during incremental exercise in patients with T2DM were compared with those in control individuals, and the correlation between changes in SmO2 and V̇O2peak was estimated. Results: The diabetic group demonstrated lower V̇O2peak, peak workload, peak heart rate, peak minute ventilation (all P < 0.05), and lower SmO2 during the rest, warm-up, and recovery phases (all P < 0.05) compared with the control group. A correlation was observed between the change in SmO2 between the warm-up and plateau value and the V̇O2peak (r = 0.608, P = 0.006). Conclusions: The results obtained in this study using NIRS support the feasibility of directly measuring changes in muscle SmO2 magnitudes to estimate the contributions of peripheral active muscle to systemic O2 uptake (V̇O2) during incremental exercise.
Collapse
Affiliation(s)
- Yan-Jhen Lu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Ssu-Yuan Chen
- Division of Physical Medicine and Rehabilitation, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chuen Lai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yuan-Hung Chao
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Division of Metabolism and Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Image and Radiology, Medical College and Hospital, National Taiwan University, Taipei, Taiwan
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Habets LE, Bartels B, Asselman FL, Hulzebos EHJ, Stegeman DF, Jeneson JAL, van der Pol WL. Motor Unit and Capillary Recruitment During Fatiguing Arm-Cycling Exercise in Spinal Muscular Atrophy Types 3 and 4. J Neuromuscul Dis 2022; 9:397-409. [PMID: 35466947 DOI: 10.3233/jnd-210765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exercise intolerance is an important impairment in patients with SMA, but little is known about the mechanisms underlying this symptom. OBJECTIVE To investigate if reduced motor unit- and capillary recruitment capacity in patients with SMA contribute to exercise intolerance. METHODS Adolescent and adult patients with SMA types 3 and 4 (n = 15) and age- and gender matched controls (n = 15) performed a maximal upper body exercise test. We applied respiratory gas analyses, non-invasive surface electromyography (sEMG) and continuous wave near-infrared spectroscopy (CW-NIRS) to study oxygen consumption, arm muscle motor unit- and capillary recruitment, respectively. RESULTS Maximal exercise duration was twofold lower (p < 0.001) and work of breathing and ventilation was 1.6- and 1.8-fold higher (p < 0.05) in patients compared to controls, respectively. Regarding motor unit recruitment, we found higher normalized RMS amplitude onset values of sEMG signals from all muscles and the increase in normalized RMS amplitudes was similar in the m. triceps brachii, m. brachioradialis and m. flexor digitorum in SMA compared to controls. Median frequency, onset values were similar in patients and controls. We found a similar decrease in median frequencies of sEMG recordings from the m. biceps brachii, a diminished decrease from the m. brachioradialis and m. flexor digitorum, but a larger decrease from the m. triceps brachii. With respect to capillary recruitment, CW-NIRS recordings in m. biceps brachii revealed dynamics that were both qualitatively and quantitatively similar in patients and controls. CONCLUSION We found no evidence for the contribution of motor unit- and capillary recruitment capacity of the upper arm muscles in adolescent and adult patients with SMA types 3 and 4 as primary limiting factors to premature fatigue during execution of a maximal arm-cycling task.
Collapse
Affiliation(s)
- Laura E Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jeroen A L Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| |
Collapse
|
25
|
Goto M, Yamashina Y, Takada A, Kikuchi Y, Hamaoka T, Terada S. The use of a cold pack during resistance exercises is effective for reducing intramuscular oxygenation and increasing myoelectric activity. J Phys Ther Sci 2022; 34:335-340. [PMID: 35400842 PMCID: PMC8989479 DOI: 10.1589/jpts.34.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to determine the efficacy of using a cold pack
while doing resistance exercises for enhancing muscle strength and muscle hypertrophy
through decreased intramuscular oxygenation and/or increased myoelectric activity.
[Participants and Methods] Twenty-four resistance-trained males (age: 26.4 ± 8.4 years,
height: 169.3 ± 5.2 cm, body weight: 74.7 ± 8.8 kg) involved in this study. All the
participants completed two experimental sessions in random order (cold pack resistance
exercise and resistance exercise) with a 3-day interval. Four types of resistance
exercises (4 sets × 8 repetitions with an 8-repetition maximum) targeting the right
triceps brachii muscle were performed in both the experimental sessions. [Results] The
percentage baseline oxyhemoglobin/myoglobin level during resistance exercise was
significantly lower, the half-recovery time of muscle oxygenation in intervals between
sets was significantly longer, and the myoelectric activity was significantly higher in
the cold pack resistance exercise than in the resistance exercise session. [Conclusion]
The results suggest that using a cold pack with resistance exercises is effective in
inducing intramuscular deoxygenation and increasing myoelectric activity and may be useful
for increasing muscle strength and inducing hypertrophy.
Collapse
Affiliation(s)
- Masahiro Goto
- Department of Physical Therapy, Health Science, Aino University: 4-5-4 Higashioda, Ibaraki, Osaka 567-0012, Japan
| | - Yoshihiro Yamashina
- Department of Physical Therapy, Health Science, Aino University: 4-5-4 Higashioda, Ibaraki, Osaka 567-0012, Japan
| | - Akihiro Takada
- Department of Rehabilitation, Hakuai Memorial Hospital, Japan
| | - Yui Kikuchi
- Department of Physical Therapy, Health Science, Aino University: 4-5-4 Higashioda, Ibaraki, Osaka 567-0012, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Japan
| | - Shigeru Terada
- Department of Physical Therapy, Health Science, Aino University: 4-5-4 Higashioda, Ibaraki, Osaka 567-0012, Japan
| |
Collapse
|
26
|
Kuroiwa M, Hamaoka‐Fuse S, Amagasa S, Kime R, Endo T, Tanaka R, Kurosawa Y, Hamaoka T. Impact of brown adipose tissue vascular density on body adiposity in healthy Japanese infants and children. Obes Sci Pract 2022; 8:190-198. [PMID: 35388351 PMCID: PMC8976546 DOI: 10.1002/osp4.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Objective The importance of brown adipose tissue (BAT) is well recognized in healthy infants and children. However, information regarding age-related changes in BAT vascular density (BAT-d) and the impact of BAT-d on body adiposity are lacking. This study aimed to evaluate the normal values of BAT-d, factors influencing BAT-d, and the impact of BAT-d on body adiposity in healthy infants and children. Methods This study included 240 participants (127 girls and 113 boys) aged 1 month to 5 years. The tissue total hemoglobin concentration in the supraclavicular region adjusted according to the subcutaneous adipose tissue thickness (SAT) ([total-Hb-Adj]sup) as BAT-d. SAT in the deltoid and interscapular regions (SATdel+int), the Kaup index (body weight [g]/height or length [cm]/height or length [cm] × 10) as body adiposity, and fertilization season were also measured. Results The [total-Hb-Adj]sup of boys was higher than that of girls (r = 0.277, p = 0.009). Younger children had a significantly higher Kaup index (r = 0.495, p < 0.001) and SATdel+int (r = 0.614, p < 0.001) than older children. Children who had higher [total-Hb-Adj]sup had a significantly lower Kaup index (r = 0.495, p = 0.037) and SATdel+int (r = 0.614, p < 0.001). Conclusion The [total-Hb-Adj]sup, as a parameter of BAT-d, is negatively correlated with body adiposity in children aged 1 month to 5 years, and BAT might affect human obesity to a much greater extent than expected. To prevent or treat obesity in early childhood, the level of BAT-d should be considered when using a dietary intervention.
Collapse
Affiliation(s)
- Miyuki Kuroiwa
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Sayuri Hamaoka‐Fuse
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Shiho Amagasa
- Department of Preventive Medicine and Public HealthTokyo Medical UniversityTokyoJapan
| | - Ryotaro Kime
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Tasuki Endo
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Riki Tanaka
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| |
Collapse
|
27
|
Evidence that large vessels do affect near infrared spectroscopy. Sci Rep 2022; 12:2155. [PMID: 35140261 PMCID: PMC8828816 DOI: 10.1038/s41598-022-05863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
The influence of large vessels on near infrared spectroscopy (NIRS) measurement is generally considered negligible. Aim of this study is to test the hypothesis that changes in the vessel size, by varying the amount of absorbed NIR light, could profoundly affect NIRS blood volume indexes. Changes in haemoglobin concentration (tHb) and in tissue haemoglobin index (THI) were monitored over the basilic vein (BV) and over the biceps muscle belly, in 11 subjects (7 M - 4 F; age 31 ± 8 year) with simultaneous ultrasound monitoring of BV size. The arm was subjected to venous occlusion, according to two pressure profiles: slow (from 0 to 60 mmHg in 135 s) and rapid (0 to 40 mmHg maintained for 30 s). Both tHb and THI detected a larger blood volume increase (1.7 to 4 fold; p < 0.01) and exhibited a faster increase and a greater convexity on the BV than on the muscle. In addition, NIRS signals from BV exhibited higher correlation with changes in BV size than from muscle (r = 0.91 vs 0.55, p < 0.001 for THI). A collection of individual relevant recordings is also included. These results challenge the long-standing belief that the NIRS measurement is unaffected by large vessels and support the concept that large veins may be a major determinant of blood volume changes in multiple experimental conditions.
Collapse
|
28
|
Tsutsui A, Nakajima K, Sakaue T, Togo S, Matsuda Y, Takeda T, Fukuda K. Jaw-Clenching Intensity Effects on Masseter Oxygen Dynamics and Fatigue: A NIRS Oximetry Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:435-441. [PMID: 36527675 DOI: 10.1007/978-3-031-14190-4_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to clarify the effects of jaw-clenching intensity on masseter muscle oxygen dynamics during clenching and recovery and masseter muscle fatigue using the spatially resolved method of near-infrared spectroscopy. Pulse rate, mean power frequency from electromyography in the masseter and visual analogue scale for masseter fatigue were also examined as related items. The 25% and 50% maximum voluntary contractions were determined using electromyography before the experiment and used as visual feedback on the screen. Twenty-three healthy adult male subjects volunteered for this study. Clenching decreased oxygen and oxygenated haemoglobin, and increased deoxygenated haemoglobin in the masseter muscle. The higher the intensity of clenching, the more prominent the effect. The oxygen dynamics tended to return to normal after clenching, but the change was slower with higher clenching intensity. Pulse rate increased with clenching, and the increment was more prominent with higher clenching intensity. Clenching caused a shift of mean power frequency to a lower range, an increase in subjective fatigue, an early appearance of a breakpoint appearance time and a prolongation of a 1/2 recovery time. All of these effects were more evident with increasing clenching intensity. In conclusion, clenching intensity influenced the oxygen dynamics of the masseter muscle and fatigue state during clenching and recovery. The higher the intensity, the greater the impact.
Collapse
|
29
|
The use of muscle near-infrared spectroscopy (NIRS) to assess the aerobic training loads of world-class rowers. Biol Sport 2021; 38:713-719. [PMID: 34937982 PMCID: PMC8670802 DOI: 10.5114/biolsport.2021.103571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The objectives of this study were (1) to characterize the changes in oxygenation derived from muscle near-infrared spectroscopy (NIRS) during aerobic constant-load exercise with intensities close to Maximal Lactate Steady-State (MLSS) and (2) to establish reference values in the world-class rowers, for such workload often included in rowing training programs. Eight senior world-class rowers performed an incremental progressive submaximal exercise test and a 30-minute test on a rowing ergometer. The power corresponding to intensive aerobic training (84±1% of the anaerobic threshold) was adopted as an exercise load in the 30-minute test. The NIRS device was fixed on the vastus lateralis muscle which was active during rowing to record muscle O2 saturation (SmO2) and total hemoglobin concentration (THb) at rest and during exercise. Statistically significant increments in blood lactate (LA) and heart rate (HR) were observed, with 1.18±0.61 mmol/l and 10±5 beats/min, respectively, in 30th minute compared to 10th minute in 30-minute test. SmO2 decreased significantly by 2.9±1.4%, whereas THb did not change. The examinations may suggested the low diagnostic value of THb in constant-load exercise. In each subject, SmO2 was gradually reduced during the intense aerobic exercise. During workload close to MLSS, the SmO2 of the vastus lateralis ranged from 14.0±3.13 to 11.1±2.81% in 10 and 30 minutes respectively, with a reduction in muscle oxygenation (ΔSmO2) exceeding 50%. The non-invasive nature of the NIRS measurement and the continuous monitoring of SmO2 values are useful in the practice of monitoring training in terms of aerobic training loads.
Collapse
|
30
|
Guimarães GV, Ribeiro F, Castro RE, Roque JM, Machado ADT, Antunes-Correa LM, Ferreira SA, Bocchi EA. Effects of the exercise training on skeletal muscle oxygen consumption in heart failure patients with reduced ejection fraction. Int J Cardiol 2021; 343:73-79. [PMID: 34506822 DOI: 10.1016/j.ijcard.2021.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
AIMS Skeletal muscle dysfunction is a systemic consequence of heart failure (HF) that correlates with functional capacity. However, the impairment within the skeletal muscle is not well established. We investigated the effect of exercise training on peripheral muscular performance and oxygenation in HF patients. METHODS AND RESULTS HF patients with ejection fraction ≤40% were randomized 2:1 to exercise training or control for 12 weeks. Muscle tissue oxygen was measured noninvasively by near-infrared spectroscopy (NIRS) during rest and a symptom-limited cardiopulmonary exercise test (CPET) before and after intervention. Measurements included skeletal muscle oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, VO2 peak, VE/VCO2 slope, and heart rate. Muscle sympathetic nerve activity by microneurography, and muscle blood flow by plethysmography were also assessed at rest pre and post 12 weeks. Twenty-four participants (47.5 ± 7.4 years, 58% men, 75% no ischemic) were allocated to exercise training (ET, n = 16) or control (CG, n = 8). At baseline, no differences between groups were found. Exercise improved VO2 peak, slope VE/VCO2, and heart rate. After the intervention, significant improvements at rest were seen in the ET group in muscle sympathetic nerve activity and muscle blood flow. Concomitantly, a significant decreased in Oxy-Hb (from 29.4 ± 20.4 to 15.7 ± 9.0 μmol, p = 0.01), Deoxi-Hb (from 16.3 ± 8.2 to 12.2 ± 6.0 μmol, p = 0.003) and HbT (from 45.7 ± 27.6 to 27.7 ± 13.4 μmol, p = 0.008) was detected at peak exercise after training. No changes were observed in the control group. CONCLUSION Exercise training improves skeletal muscle function and functional capacity in HF patients with reduced ejection fraction. This improvement was associated with increased oxygenation of the peripheral muscles, increased muscle blood flow, and decreased sympathetic nerve activity.
Collapse
Affiliation(s)
| | - Fernando Ribeiro
- University of Aveiro, School of Health Sciences and Institute of Biomedicine - iBiMED, Aveiro, Portugal
| | - Rafael Ertner Castro
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | - Jean Marcelo Roque
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | | | | | - Silvia Ayub Ferreira
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| |
Collapse
|
31
|
Kurosawa Y, Nirengi S, Tabata I, Isaka T, Clark JF, Hamaoka T. Effects of Prolonged Sitting with or without Elastic Garments on Limb Volume, Arterial Blood Flow, and Muscle Oxygenation. Med Sci Sports Exerc 2021; 54:399-407. [PMID: 34711709 PMCID: PMC8830891 DOI: 10.1249/mss.0000000000002822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental digital content is available in the text. Purpose The physiological response induced by acute prolonged sitting is not fully understood. Therefore, we examined the effects of 8-h constant sitting on microcirculation and associated factors in the lower extremity among healthy males. We also evaluated the protective effects of lower-pressure thigh-length elastic compression garments on these parameters. Methods Nine healthy males (age, 22.6 ± 1.4 yr; body mass index, 22.4 ± 1.8 kg·m−2) completed the 8-h constant sitting experiment. Following baseline measurements, each subject was randomized to wear a lower-pressure elastic garment on the right or left leg from the inguinal region to the ankle joint, with the noncompressed contralateral leg as a control. Circumferences of the calf and malleolus, extracellular water contents, blood flow and shear rate of the dorsal metatarsal artery, and oxygen dynamics in the gastrocnemius muscles were measured in both extremities before and during 8-h constant sitting. Results Compared with baseline values, 8-h constant sitting caused enlargement of circumferences (calf, 2.4% ± 0.7%; malleolus, 2.7% ± 1.4%), retention of extracellular water in lower extremity muscles (10.1% ± 1.78%), deterioration of the blood flow (61.4% ± 16.2% of baseline) and shear rate of the dorsal metatarsal artery, and decrease in oxygenated hemoglobin and total hemoglobin levels in the gastrocnemius muscle (P < 0.05, respectively). When subjects wore the lower-pressure thigh-length compression garment, a significant reduction of these effects was observed (P < 0.05, for all). Conclusions Prolonged sitting for 8 h induced edema, as well as deterioration of the arterial blood flow, shear rate, and microcirculation in lower limb muscles. Conversely, application of the lower-pressure elastic garment successfully prevented the pathophysiological deterioration associated with prolonged sitting.
Collapse
Affiliation(s)
- Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan Department of Neurology, University of Cincinnati, Cincinnati, OH
| | | | | | | | | | | |
Collapse
|
32
|
Szucs B, Petrekanits M, Fekete M, Varga JT. The use of near-infrared spectroscopy for the evaluation of a 4-week rehabilitation program in patients with COPD. Physiol Int 2021; 108:427-439. [PMID: 34662293 DOI: 10.1556/2060.2021.00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/28/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) technology can evaluate muscle metabolism and oxygenation. NIRS-based oximeters can measure skeletal muscle oxygen delivery and utilization during static and dynamic work non-invasively. Our goal was to assess the value and usability of NIRS technology in chronic obstructive pulmonary disease (COPD) rehabilitation program. METHODS Forty patients with COPD participated in a 4-week inpatient rehabilitation program that included breathing exercises and personalized cycle/treadmill training adjusted to the functional capacity, physical activity and comorbidities of the patients. A NIRS muscle oxygen monitor was used to measure tissue oxygenation and hemoglobin levels. Total hemoglobin index, average muscle oxygenation, minimal and maximal muscle oxygenation were recorded before and after the rehabilitation program. RESULTS Rehabilitation resulted improvement in 6 min walking distance (6MWD:335.3 ± 110. vs. 398.3 ± 126.2 m; P < 0.01), maximal inspiratory pressure (MIP: 57.7 ± 22.7 vs. 63.6 ± 18.0 cmH2O; P < 0.01), chest wall expansion (CWE: 2.84 ± 1.26 vs, 4.00 ± 1.76 cm; P < 0.01), breath hold time (BHT: 25.8 ± 10.6 vs. 29.2 ± 11.6 s; P < 0.01) and grip strength (GS: 24.9 ± 11.9 vs. 27.0 ± 11.4 kg; P < 0.01). Quality of life improvement was monitored by COPD Assessment Test (CAT: 17.00 ± 8.49 vs. 11.89 ± 7.3, P < 0.05). Total hemoglobin index (tHb: 12.8 ± 1.3% vs. 12.8 ± 1.4), average muscle oxygenation (SmO2: 67.5 ± 14.4% vs. 65.2 ± 20.4%) showed a tendency for improvement. Maximal muscle oxygenation decreased (SmO2 max: 98.0 ± 20.5% vs. 90.1 ± 14.3%; P < 0.01). Minimal muscle oxygenation increased (SmO2 min: 42.6 ± 12.6% vs. 54.8 ± 14.3%; P < 0.01). CONCLUSIONS NIRS results showed that muscle oxygenation and microcirculation can be described as a high-risk factor in COPD patients. The 4-week rehabilitation improves functional parameters, quality of life and tissue oxygenation levels in COPD patients.
Collapse
Affiliation(s)
- Botond Szucs
- 1 PharmaFlight Research and Training Center, Debrecen, Hungary
| | - Mate Petrekanits
- 2 Institute of Exercise Physiology and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Monika Fekete
- 3 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Janos T Varga
- 4 Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Tseng SH, Liang BJ, Wang W, Tsai BX, Hu PS. Monitoring adaptation of skin tissue oxygenation during cycling ergometer exercise by frequency-domain diffuse optical spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5023-5035. [PMID: 34513240 PMCID: PMC8407841 DOI: 10.1364/boe.428207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In addition to supplying oxygen molecule O2 for metabolic functions during the adaptation to exercise, blood also plays a critical role in heat dissipation for core temperature stabilization. This study investigates the status of hemodynamic oxygenation in the forearm's skin tissue of three participants during a complete ergometer exercise from the resting to exercising, and to recovering conditions using a three-wavelength frequency-domain diffuse reflectance spectroscopy (FD DRS) alongside the monitoring of heartbeat rate and skin temperature. The FD DRS system was synchronized with radiofrequency (RF)-modulated input photon sources and the respective output to extract time-course absorption and scattering coefficients of the skin tissue, which, through the fitting of lambert's law of absorbance, can be used to determine the concentration of oxygenated/deoxygenated hemoglobin molecules, and consequentially, the oxygen saturation of skin tissue and total hemoglobin (THb) concentration. Expressly, a sudden jump in heartbeat rate at the beginning of the exercise, a temporal lag of the rising edge of skin temperature behind that of the THb concentration in the procession of step-wise incremental working intensity, and the uprising of THb in the exhaustion zone in responses to the physiological adaptation to exercise were identified. Finally, conclusive remarks were drawn that the FD DRS system is useful in extracting the hemodynamic properties of forearm skin which is often being neglected in previous exercise physiology studies by DRS-related techniques. The detailed variation of hemodynamic and optical scattering parameters of forearm skin elucidated in the studies can be applied for the analysis of athletes' physiological status, and may be a potential reference for the design of future wearable devices.
Collapse
Affiliation(s)
- Sheng-Hao Tseng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Bo-Jian Liang
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen Wang
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Bo-Xiang Tsai
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Exercise causes various dynamic changes in all body parts either in healthy subject or in heart failure (HF) patients. The present review of current knowledge about HF patients with reduced ejection fraction focuses on dynamic changes along a "metabo-hemodynamic" perspective. RECENT FINDINGS Studies on the dynamic changes occurring during exercise span many years. Thanks to the availability of advanced methods, it is nowadays possible to properly characterize respiratory, hemodynamic, and muscular function adjustments and their mismatch with the pulmonary and systemic circulations. Exercise is a dynamic event that involves several body functions. In HF patients, it is important to know at what level the limitation takes place in order to better manage these patients and to optimize therapeutic strategies.
Collapse
|
35
|
Chen YH, Huang CC, Lin HL, Cheng SL, Wu HP. Effects of high flow nasal cannula on exercise endurance in patients with chronic obstructive pulmonary disease. J Formos Med Assoc 2021; 121:381-387. [PMID: 34154893 DOI: 10.1016/j.jfma.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ventilation limitation has a significant adverse effects on cardiovascular function and tissue oxygenation during exercise in patients with chronic obstructive pulmonary disease (COPD). High flow nasal cannula (HFNC) improve ventilation by washing out the anatomical dead space and providing oxygen at constant concentration. This study aimed to examine the effects of HFNC on the exercise performance and hemodynamic status in COPD patients. METHODS Fifteen patients with COPD performed two constant load exercise tests (CLET) at the 70% of maximum workload achieved at a previous incremental exercise test on arm ergometer. The CLET were performed with HFNC and with nasal cannula (NC) in random order. The hemodynamics parameters of subjects during exercises were measured by a bioelectrical impedance device. The tissue oxygenation status (oxygenated hemoglobin, deoxygenated hemoglobin (hHb), total hemoglobin) was measured by a near infrared spectrophotometer. RESULTS The exercise duration was longer for HFNC test than NC test (962.9 ± 281.7 s, vs 823.9 ± 184.9 s, p < 0.05). At the end of CLET, the PetCO2 was lower for HFNC than NC (29.3 ± 5.1 mmHg vs 32.1 ± 5.5 mmHg, p < 0.05). There was no difference in cardiac output (NC: 7.5 ± 1.8 vs HFNC: 7.4 ± 3.0 L,p > 0.05), stroke volume (NC:73.5 ± 21.0 vs HFNC 67.5 ± 16.3 ml, p > 0.05). The changes of hHb in muscle tissues was significantly lower in HFNC test than that in NC test (p < 0.05). CONCLUSION HFNC resulted in a significant decrease in CO2 production and increase in exercise duration. The application of HFNC may improve the efficiency of exercise training by allowing patients to sustain exercise for longer time.
Collapse
Affiliation(s)
- Yen-Huey Chen
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linko, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Branch, Taiwan
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linko, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Branch, Taiwan.
| | - Hui-Ling Lin
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Branch, Taiwan
| | - Shaw-Lang Cheng
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
36
|
Paredes-Ruiz MJ, Jódar-Reverte M, Ferrer-López V, González-Moro IM. MUSCLE OXYGENATION OF THE QUADRICEPS AND GASTROCNEMIUS DURING MAXIMAL AEROBIC EFFORT. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022020_0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Near infrared spectroscopy (NIRS) is a non-invasive technique that is used in the assessment of tissue oxygenation and the monitoring of physical activity. Objective: To determine the influence of sexual, anthropometric and ergospirometric factors on muscle oxygenation of the quadriceps and gastrocnemius, obtained by NIRS during a stress test. Methods: Twenty healthy subjects participated in this study (10 women). Two Humon Hex® devices were placed on the dominant side of the quadriceps and gastrocnemius muscles to measure muscle oxygen saturation (SmO2). The stress test was performed on a treadmill with electrocardiographic control and measurement of oxygen consumption. SmO2 was obtained at rest and after maximum effort during the stress test. In addition, the height, weight, skinfold and waist contour were measured. Bioimpedance was used to obtain the percentages of fat mass and muscle mass, which were used to calculate the relative fat mass (RFM). Results: The SmO2 of both muscles at rest is higher in males than in females. At maximum effort, the SmO2 of the quadriceps is similar in both groups. The SmO2 of both muscles is positively related to height, body mass, percentage of mass muscle and waist contour, and negatively with percentage of mass fat, RFM and skinfold thickness. The negative correlation between fat percentage and oxygen saturation is more evident in females. It was observed that the variables that quantify maximum effort are not related to the SmO2 values, except for the correlation between HR max and SmO2 of the gastrocnemius muscle in males. Conclusion: The SmO2 of recreational athletes is influenced by the location of the device and the fat mass of the subjects. The biggest differences between the sexes are in the gastrocnemius muscle. Level of Evidence II; Diagnostic Studies - Investigating a Diagnostic Test .
Collapse
|
37
|
Kuroiwa M, Hamaoka-Fuse S, Sugimoto M, Kurosawa Y, Aita Y, Tomita A, Anjo M, Tanaka R, Endo T, Kime R, Hamaoka T. Correlation of Plasma Amino Acid and Anthropometric Profiles with Brown Adipose Tissue Density in Humans. J Clin Med 2021; 10:jcm10112339. [PMID: 34071816 PMCID: PMC8199240 DOI: 10.3390/jcm10112339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
This study examined the relationship between plasma amino acid (AA) concentrations, including branched-chain AAs, and brown adipose tissue density (BAT-d). One hundred and seventy-three subjects (69 men, 104 women) aged 22-68 years were recruited during the winter season. AAs were comprehensively quantified using liquid chromatography-time-of-flight-mass spectrometry. The total hemoglobin concentration in the supraclavicular region ([total-Hb]sup), an indicator of BAT-d, was assessed using near-infrared time-resolved spectroscopy. Anthropometric parameters, including age, percentage of body fat, and visceral fat, were evaluated. Factors associated with higher (≥74 µM) or lower (<74 µM) [total-Hb]sup were investigated by multiple logistic regression models that included AA concentrations alone (model 1) or AA concentrations and anthropometric parameters (model 2) as independent variables. When adjusted for the false discovery rate, [total-Hb]sup was positively correlated with glycine and asparagine levels in men and with the serine level in both men and women and was negatively correlated with the branched-chain AA concentration in men. Models 1 and 2 correlated with higher or lower BAT-d for men (r = 0.73, p = 0.015) and women (r = 0.58, p = 0.079) and for men (r = 0.82, p = 0.0070) and women (r = 0.70, p = 0.020), respectively. A combination of anthropometric parameters and plasma AA concentrations could be a reliable biomarker for higher and lower BAT-d.
Collapse
Affiliation(s)
- Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Sayuri Hamaoka-Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (M.S.); (Y.A.); (A.T.)
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Yasuko Aita
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (M.S.); (Y.A.); (A.T.)
| | - Atsumi Tomita
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan; (M.S.); (Y.A.); (A.T.)
| | - Mikiko Anjo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (M.K.); (S.H.-F.); (Y.K.); (M.A.); (R.T.); (T.E.); (R.K.)
- Correspondence:
| |
Collapse
|
38
|
Zhang C, Modlesky CM, McCully KK. Measuring tibial hemodynamics and metabolism at rest and after exercise using near-infrared spectroscopy. Appl Physiol Nutr Metab 2021; 46:1354-1362. [PMID: 34019778 DOI: 10.1139/apnm-2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bone vascular system is important, yet evaluation of bone hemodynamics is difficult and expensive. This study evaluated the utility and reliability of near-infrared spectroscopy (NIRS), a portable and relatively inexpensive device, in measuring tibial hemodynamics and metabolic rate. Eleven participants were tested twice using post-occlusive reactive hyperemia technique with the NIRS probes placed on the tibia and the medial gastrocnemius (MG) muscle. Measurements were made at rest and after 2 levels of plantarflexion exercise. The difference between oxygenated and deoxygenated hemoglobin signal could be reliably measured with small coefficients of variation (CV; range 5.7-9.8%) and high intraclass correlation coefficients (ICC; range 0.73-0.91). Deoxygenated hemoglobin rate of change, a potential marker for bone metabolism, also showed good reliability (CV range 7.5-9.8%, ICC range 0.90-0.93). The tibia was characterized with a much slower metabolic rate compared with MG (p < 0.001). While exercise significantly increased MG metabolic rate in a dose-dependent manner (all p < 0.05), no changes were observed for the tibia after exercise compared with rest (all p > 0.05). NIRS is a suitable tool for monitoring hemodynamics and metabolism in the tibia. However, the local muscle exercise protocol utilized in the current study did not influence bone hemodynamics or metabolic rate. Novelty: NIRS can be used to monitor tibial hemodynamics and metabolism with good reliability. Short-duration local muscle exercise increased metabolic rate in muscle but not in bone. High level of loading and exercise volume may be needed to elicit measurable metabolic changes in bone.
Collapse
Affiliation(s)
- Chuan Zhang
- School of Physical Education and Sport, Central China Normal University, Wuhan, Hubei, China
| | | | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
van Hooff M, Schep G, Bender M, Scheltinga M, Savelberg H. Sport-related femoral artery occlusion detected by near-infrared spectroscopy and pedal power measurements: a case report. PHYSICIAN SPORTSMED 2021; 49:241-244. [PMID: 32713244 DOI: 10.1080/00913847.2020.1796182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Approximately one in five professional cycling athletes will eventually develop a sport-related vascular problem. However, detecting such flow limitation is a diagnostic challenge as the sensitivity of the currently available standard diagnostic tools is limited. METHODS Here we present an athlete with exercise-induced pain and weakness of the left leg. During the physical examination, pulsations of the femoral artery were palpable but less prominent. He was analyzed in an ongoing research project aimed at improving methods detecting sport-related leg flow limitations. RESULTS During functional testing, the ankle-brachial index of the left leg was moderately lowered. However, results of near-infrared spectroscopy and pedal power measurements were largely abnormal suggesting a severe flow limitation. CONCLUSION Combining post-exercise ankle-brachial index, near-infrared spectroscopy, and pedal power measurements as routine diagnostic functional testing suggested a severe arterial flow inflow limitation. Conventional diagnostics encompassing duplex-Doppler echography and magnetic resonance angiography confirmed a femoral artery occlusion. CLINICAL TRIAL REGISTRATION https://www.trialregister.nl/ identifier is Trial NL8557.Abbreviations: NIRS: Near-Infrared Spectroscopy; PPM: Pedal Power Measurements; ABI: Ankle Brachial Index; PSV: Peak Systolic Velocity.
Collapse
Affiliation(s)
- Martijn van Hooff
- Department of Nutrition and Movement Science, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Sports and Exercise, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Goof Schep
- Department of Sports and Exercise, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Mart Bender
- Department of Vascular Surgery, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Marc Scheltinga
- Department of Vascular Surgery, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Hans Savelberg
- Department of Nutrition and Movement Science, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
40
|
Applegate MB, Amelard R, Gomez CA, Roblyer D. Real-Time Handheld Probe Tracking and Image Formation Using Digital Frequency-Domain Diffuse Optical Spectroscopy. IEEE Trans Biomed Eng 2021; 68:3399-3409. [PMID: 33835913 DOI: 10.1109/tbme.2021.3072036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Frequency-domain diffuse optical spectroscopic imaging (FD-DOS) is a non-invasive method for measuring absolute concentrations of tissue chromophores such as oxy- and deoxy-hemoglobin in vivo. The utility of FD-DOS for clinical applications such as monitoring chemotherapy response in breast cancer has previously been demonstrated, but challenges for further clinical translation, such as slow acquisition speed and lack of user feedback, remain. Here, we propose a new high speed FD-DOS instrument that allows users to freely acquire measurements over the tissue surface, and is capable of rapidly imaging large volumes of tissue. METHODS We utilize 3D monocular probe tracking combined with custom digital FD-DOS hardware and a high-speed data processing pipeline for the instrument. Results are displayed during scanning over the surface of the sample using a probabilistic Monte Carlo light propagation model. RESULTS We show this instrument can measure absorption and scattering coefficients with an error of 7% and 1% respectively, with 0.7 mm positional accuracy. We demonstrate the equivalence of our visualization methodology with a standard interpolation approach, and demonstrate two proof-of-concept in vivo results showing superficial vasculature in the human forearm and surface contrast in a healthy human breast. CONCLUSION Our new FD-DOS system is able to compute chromophore concentrations in real-time (1.5 Hz) in vivo. SIGNIFICANCE This method has the potential to improve the quality of FD-DOS image scans while reducing measurement times for a variety of clinical applications.
Collapse
|
41
|
Endo T, Kime R, Fuse S, Murase N, Kurosawa Y, Hamaoka T. Changes in Optical Path Length Reveal Significant Potential Errors of Muscle Oxygenation Evaluation during Exercise in Humans. Med Sci Sports Exerc 2021; 53:853-859. [PMID: 33017349 DOI: 10.1249/mss.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Near-infrared spectroscopy (NIRS), performed with a commonly available noninvasive tissue oxygenation monitoring device, is based on the modified Beer-Lambert law (MBLL). Although NIRS based on MBLL (NIRSMBLL) assumes that the optical path length (PL) is constant, the effects of changes in PL during exercise on muscle oxygenation calculated by MBLL are still incompletely understood. Thus, the purposes of this study were to examine the changes in optical properties during ramp incremental exercise and to compare muscle oxygen dynamics measured by time-resolved NIRS with those calculated based on MBLL. METHODS Twenty-two healthy young men performed ramp incremental cycling exercise until exhaustion. Optical properties (reduced scattering coefficient and PL) and absolute oxygenated, deoxygenated, and total hemoglobin and myoglobin concentrations (oxy[Hb + Mb], deoxy[Hb + Mb], and total[Hb + Mb], respectively) at the vastus lateralis were continuously monitored by a three-wavelength (763, 801, and 836) time-resolved NIRS device. The values of oxy-, deoxy-, and total[Hb + Mb] were then recalculated by assuming constant PL. RESULTS PL at all wavelengths statistically significantly shortened during exercise. In particular, PL at 763 nm was greatly shortened, and the average changes during exercise were a 9.8% ± 3.1% reduction. In addition, significant differences in the kinetics of oxy-, deoxy-, and total[Hb + Mb] between directly measuring PL and assuming constant PL were found. The average changes in measured PL and assuming constant PL-deoxy[Hb + Mb] were increases of 28.8 ± 16.0 μM and increases of 16.4 ± 9.3 μM, respectively. CONCLUSION Assuming constant PL in NIRSMBLL significantly underestimated actual muscle oxy/deoxygenation as compared with measurements obtained by real-time PL determination. The percent degree of the underestimated oxy/deoxygenation was greater than the percent degree of the changes in PL.
Collapse
Affiliation(s)
- Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, JAPAN
| | | | | | | | | | | |
Collapse
|
42
|
Wakasugi T, Morishita S, Kaida K, Ikegame K, Uchiyama Y, Domen K. Muscle oxygen extraction and lung function are related to exercise tolerance after allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2021; 29:6039-6048. [PMID: 33786668 DOI: 10.1007/s00520-021-06178-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between exercise intolerance, muscle oxidative metabolism, and cardiopulmonary function following allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a sterile isolation room setting. METHODS This was a prospective observational cohort study conducted in a single center. Fourteen patients with hematopoietic malignancies who had undergone allo-HSCT were included in this study from June 2015 to April 2020. Patients received donor HSCT after high dose-chemotherapy and total-body irradiation. Physical activity was limited during treatments. Outcome measures included body anthropometric measurements, exercise tolerance tests using the ramp protocol, pulmonary function tests, and near-infrared spectroscopy (NIRS) measurements. Data of pre- and posttransplant measurements were compared using the paired t test or nonparametric Wilcoxon U test. Associations were assessed using the Pearson or nonparametric Spearman correlations. RESULTS NIRS showed reduced muscle consumption and extraction of oxygen in the posttransplant period compared to the pretransplant period (ΔStO2 min pre: -18.6% vs. post: -13.0%, P = 0.04; ΔHHb max pre: 4.21μmol/l vs. post: 3.31μmol/l: P = 0.048). Exercise tolerance had reduced following allo-HSCT (Peak workload pre: 70.3 W vs. post: 58.0 W: P = 0.014). Furthermore, exercise intolerance was associated with pulmonary function, muscle oxygen consumption, and muscle oxygen extraction (all P <0.05). CONCLUSION This analysis revealed that exercise intolerance following allo-HSCT was associated with pulmonary dysfunction and muscle oxidative dysfunction. These findings could help identify the physical function associated with impaired tissue oxygen transport leading to exercise intolerance following allo-HSCT.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine College Hospital, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuki Uchiyama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
43
|
Take the Direct Route When Evaluating Training Effects in Lower Extremity Arterial Disease: Use Near Infrared Spectroscopy! Eur J Vasc Endovasc Surg 2021; 61:848. [PMID: 33676833 DOI: 10.1016/j.ejvs.2021.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
|
44
|
Performance, Metabolic, and Neuromuscular Consequences of Repeated Wingates in Hypoxia and Normoxia: A Pilot Study. Int J Sports Physiol Perform 2021; 16:1208–1212. [PMID: 33607624 DOI: 10.1123/ijspp.2020-0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Compared with normoxia, repeated short (5-10 s) sprints (>10 efforts) with incomplete recovery (≤30 s) in hypoxia likely cause substantial performance reduction accompanied by larger metabolic disturbances and magnitude of neuromuscular fatigue. However, the effects of hypoxia on performance of repeated long (30 s) "all-out" efforts with near complete recovery (4.5 min) and resulting metabolic and neuromuscular adjustments remain unclear. PURPOSE The intention was to compare acute performance, metabolic, and neuromuscular responses across repeated Wingates between hypoxia and normoxia. METHODS On separate visits, 6 male participants performed 4 × 30-second Wingate efforts with 4.5-minute recovery in either hypoxia (fraction of inspired oxygen: 0.145) or normoxia. Responses to exercise (muscle and arterial oxygenation trends, heart rate, and blood lactate concentration) and the integrity of neuromuscular function in the knee extensors were assessed for each exercise bout. RESULTS Mean (P = .80) and peak (P = .92) power outputs, muscle oxygenation (P = .88), blood lactate concentration (P = .72), and perceptual responses (all Ps > .05) were not different between conditions. Arterial oxygen saturation was significantly lower, and heart rate higher, in hypoxia versus normoxia (P < .001). Maximal voluntary contraction force and peripheral fatigue indices (peak twitch force and doublets at low and high frequencies) decreased across efforts (all Ps < .001) irrespective of conditions (all Ps > .05). CONCLUSION Despite heightened arterial hypoxemia and cardiovascular solicitation, hypoxic exposure during 4 repeated 30-second Wingate efforts had no effect on performance and accompanying metabolic and neuromuscular adjustments.
Collapse
|
45
|
Verhaeghe C, Lapage K, Moerman A. Quantitative assessment of cytochrome C oxidase patterns in muscle tissue by the use of near-infrared spectroscopy (NIRS) in healthy volunteers. J Clin Monit Comput 2021; 36:271-278. [PMID: 33459945 DOI: 10.1007/s10877-021-00648-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Cytochrome C oxidase (CCO) acts as final electron acceptor in the respiratory chain, possibly providing information concerning cellular oxygenation. CCO is a chromophore with a broad absorption peak in the near-infrared spectrum in its reduced state (835 nm). However, this peak overlaps with deoxygenated haemoglobin (HHb; 755 nm) which is present in much higher concentrations. NIRO-300 measures CCO signals, but did not receive FDA approval for this use due to presumed lack of independency of the measured CCO changes. However, there is no proven evidence for this assumption. We hypothesized that the NIRO-300 provides a HHb independent measurement of CCO concentration changes. In this single-center crossover randomized controlled trial in healthy volunteers, subjects were randomized to receive arterial occlusion to the left arm and venous stasis on the right arm (n = 5) or vice versa (n = 5) during 5 min. After a resting period, the second part of the cross over study was performed. We placed the NIRO-300 optodes bilateral at the level of the brachioradial muscle in order to collect NIRS data continuously. Data was analysed using a generalized additive mixed model. HHb and CCO follow a significant different trend over time during the intervention period for both arterial occlusion (F = 20.645, edf = 3.419, p < 0.001) and venous stasis (F = 9.309, edf = 4.931, p < 0.001). Our data indicate that CCO concentration changes were not affected by HHb changes, thereby proving independency.Clinical trial registration: B670201732023 on June 28, 2017.
Collapse
Affiliation(s)
- Carl Verhaeghe
- Department of Anaesthesia, UZ Ghent, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Koen Lapage
- Department of Anaesthesia, ASZ Aalst, Aalst, Belgium
| | - Anneliese Moerman
- Department of Anaesthesia, UZ Ghent, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
46
|
Morishita S, Wakasugi T, Kaida K, Itani Y, Ikegame K, Ogawa H, Fujimori Y, Domen K. Relationship Between Corticosteroid Dose and Muscle Oxygen Consumption in Recipients of Hematopoietic Stem-Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:87-93. [PMID: 33966200 DOI: 10.1007/978-3-030-48238-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION After hematopoietic stem-cell transplantation (HSCT), patients exhibit decreased muscle strength and muscle oxygen consumption. Furthermore, total corticosteroid dose affects the reduction in muscle strength after HSCT. However, to date, no studies have investigated the relationship between corticosteroid dose and muscle oxygen consumption and saturation in these patients. The purpose of this study was to investigate the relationship between steroid dose and deoxyhemoglobin (ΔHHb) and muscle oxyhemoglobin saturation (ΔSmO2) in patients undergoing HSCT. METHODS This study included 17 men with hematologic disease who underwent allogeneic HSCT. We evaluated ankle dorsiflexor muscle force, ΔHHb, and ΔSmO2 in skeletal muscles by near-infrared spectroscopy (NIRS) in patients before and after HSCT. RESULTS Peak ankle dorsiflexion, ΔHHb, and ΔSmO2 decreased significantly after transplantation as compared to measurements taken before transplantation (p < 0.01). The change in peak ankle dorsiflexion from before to after HSCT was not significantly correlated with total steroid dose. However, ΔHHb and ΔSmO2 from before to after HSCT were significantly correlated with total steroid dose (p < 0.01). CONCLUSION This study showed that higher corticosteroid doses are associated with diminished skeletal muscle O2 consumption and skeletal muscle O2 demand relative to supply. Therefore, rehabilitation staff, nurses, and physicians should take note of these findings in patients undergoing HSCT. Moreover, physiotherapists should be carefully measuring muscle oxidative metabolism on skeletal muscle when planning physical exercise in such patients.
Collapse
Affiliation(s)
- Shinichiro Morishita
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata, Japan.
- Department of Physical Medicine and Rehabilitation, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Tatsushi Wakasugi
- Department of Rehabilitation Medicine, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Itani
- Department of Rehabilitation Medicine, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshihiro Fujimori
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhisa Domen
- Department of Physical Medicine and Rehabilitation, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
47
|
Zhang C, McCully KK. The Case for Measuring Long Bone Hemodynamics With Near-Infrared Spectroscopy. Front Physiol 2020; 11:615977. [PMID: 33391034 PMCID: PMC7775486 DOI: 10.3389/fphys.2020.615977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Diseases and associated fragility of bone is an important medical issue. There is increasing evidence that bone health is related to blood flow and oxygen delivery. The development of non-invasive methods to evaluate bone blood flow and oxygen delivery promise to improve the detection and treatment of bone health in human. Near-infrared spectroscopy (NIRS) has been used to evaluate oxygen levels, blood flow, and metabolism in skeletal muscle and brain. While the limited penetration depth of NIRS restricts its application, NIRS studies have been performed on the medial aspect of the tibia and some other prominent bone sites. Two approaches using NIRS to evaluate bone health are discussed: (1) the rate of re-oxygenation of bone after a short bout of ischemia, and (2) the dynamics of oxygen levels during an intervention such as resistance exercise. Early studies have shown these approaches to have the potential to evaluate bone vascular health as well as the predicted efficacy of an intervention before changes in bone composition are detectable. Future studies are needed to fully develop and exploit the use of NIRS technology for the study of bone health.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
48
|
Bartlett MF, Oneglia A, Jaffery M, Manitowabi-Huebner S, Hueber DM, Nelson MD. Kinetic differences between macro- and microvascular measures of reactive hyperemia. J Appl Physiol (1985) 2020; 129:1183-1192. [PMID: 32940560 DOI: 10.1152/japplphysiol.00481.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postischemia reperfusion kinetics are markedly dissociated when comparing the macro- versus microvasculature. We used Doppler ultrasound and near-infrared diffuse correlation spectroscopy (NIR-DCS), an emerging technique for continuously and noninvasively quantifying relative changes in skeletal muscle microvascular perfusion (i.e., blood flow index or BFI), to measure macro- and microvascular reactive hyperemia (RH) in the nondominant arm of 16 healthy young adults. First, we manipulated the duration of limb ischemia (3 vs. 6 min) with the limb at heart level (neutral, -N). Then, we reduced/increased forearm perfusion pressure (PP) by positioning the arm above (3 min-A, 60°) or below (3 min-B, 30°) the heart. The major novel findings were twofold: first, changes in the ischemic stimulus similarly affected peak macrovascular (i.e., conduit, mL/min) and microvascular (i.e., peak NIR-DCS-derived BFI) reperfusion during reactive hyperemia (6 min-N > 3 min-N, P < 0.05, both) but did not affect the rate at which microvascular reperfusion occurs (i.e., BFI slope). Second, changing forearm PP predictably affected both peak macro- and microvascular reperfusion during RH (3 min-B > N > A, P < 0.05, all), as well as the rate at which microvascular reperfusion occurred (BFI slope; 3 min-B >N > A, P < 0.05). Together, the data suggest that kinetic differences between macro- and microvascular reperfusion are largely determined by differences in fluid mechanical energy (i.e., pressure, gravitational, and kinetic energies) between the two compartments that work in tandem to restore pressure across the arterial tree following a period of tissue ischemia.NEW & NOTEWORTHY We extend our understanding of macro- versus microvascular hemodynamics in humans, by using near-infrared diffuse correlation spectroscopy (micro-) and Doppler ultrasound (macro-) to characterize reperfusion hemodynamics following experimental manipulation of the ischemic stimulus and tissue perfusion pressure. Our results suggest kinetic differences between macro- and microvascular reperfusion are largely determined by differences in fluid mechanical energy (i.e., pressure, gravitational, and kinetic energies) between the two compartments, rather than inherent differences between the macro- and microvasculature.
Collapse
Affiliation(s)
- Miles F Bartlett
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Andrew Oneglia
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Manall Jaffery
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Shayla Manitowabi-Huebner
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | | | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
49
|
Effects of Capsinoid Intake on Brown Adipose Tissue Vascular Density and Resting Energy Expenditure in Healthy, Middle-Aged Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2020; 12:nu12092676. [PMID: 32887379 PMCID: PMC7551765 DOI: 10.3390/nu12092676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Capsinoids are some of the most promising ingredients to increase energy expenditure (EE) due to brown adipose tissue (BAT) activation. However, there is limited information regarding the effect of prolonged capsinoid ingestion (CI) on BAT activity and resting EE (REE) in healthy, middle-aged, normal to overweight subjects (Subhealthy) with distinct BAT characteristics. We examined the changes in BAT density (BAT-d), using near-infrared time-resolved spectroscopy, and REE/kg induced by daily CI. Forty Subhealthy [age, 43.8 (mean) years; BMI, 25.4 kg/m2] received either capsinoid (9 mg/day) or a placebo daily for 6 weeks in a double-blind design. Total hemoglobin concentration in the supraclavicular region ([total-Hb]sup), an indicator of BAT-d, and REE/kg were measured. The changes in post-intervention [total-Hb]sup were greater in the capsinoid group (CA-G) than in the placebo group (PL-G) [5.8 µM (+12.4%) versus 1.0 µM (+2.1%); p = 0.017]. There was a significant relationship between BAT-d and REE/kg; however, post-supplementation REE/kg was not significantly different between the two groups (p = 0.228). In the overweight subgroup, changes in REE/kg were greater in the CA-G than in the PL-G [0.6 cal/kg/min (+4.3%) versus -0.3 cal/kg/min (-2.1%); p = 0.021]. CI enhanced [total-Hb]sup, a reflection of BAT-d, showing a good correlation with REE in Subhealthy.
Collapse
|
50
|
Ghatas MP, Holman ME, Gorgey AS. Methodological considerations for near-infrared spectroscopy to assess mitochondrial capacity after spinal cord injury. J Spinal Cord Med 2020; 43:623-632. [PMID: 31233377 PMCID: PMC7534271 DOI: 10.1080/10790268.2019.1631585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Skeletal muscle mitochondrial activity is reduced by ∼ 50-60% after SCI, resulting in impaired energy expenditure, glucose utilization and insulin sensitivity. Near infra-red spectroscopy (NIRS) is a non-invasive tool that can be used to assess mitochondrial capacity. Objectives: (1) Highlight methodological limitations impacting data acquisition and analysis such as subcutaneous adipose tissue (SAT) thickness, movement artifacts, inadequate muscle stimulation, light interference, and ischemic discomfort. (2) Provide technical considerations to improve data acquisition and analysis. This may serve as guidance to other researchers and clinicians using NIRS. Study Design: cross-sectional observational design. Settings: Clinical research medical center. Participants: Sixteen men with 1 > year post motor complete SCI. Methods: NIRS signals were obtained from right vastus lateralis muscle utilizing a portable system. Signals were fit to a mono-exponential curve. Outcome Measures: Rate constant and r2 values for the fit curve, indirectly measures mitochondrial capacity. Results: Only four participants produced data with accepted rate constants of 0.002-0.013 s-1 and r2 of 0.71-0.87. Applications of studentized residuals ≥2.5 resulted in sparing data from another four participants with rate constants of 0.010-0.018 s-1and r2 values ranging from 0.86-0.99. Conclusions: Several limitations may challenge the use of NIRS to assess mitochondrial capacity after SCI. Acknowledging these limitations and applying additional data processing techniques may overcome the discussed limitations and facilitate data sparing.
Collapse
Affiliation(s)
- Mina P. Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA,Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA,Correspondence to: Ashraf S. Gorgey, Spinal Cord Injury & Disorders Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA23249, USA. ;
| |
Collapse
|