1
|
Pallod S, Aguilera Olvera R, Ghosh D, Rai L, Brimo S, DeCambra W, Sant HG, Ristich E, Singh V, Abedin MR, Chang N, Yarger JL, Lee JK, Kilbourne J, Yaron JR, Haydel SE, Rege K. Skin repair and infection control in diabetic, obese mice using bioactive laser-activated sealants. Biomaterials 2024; 311:122668. [PMID: 38908232 PMCID: PMC11562812 DOI: 10.1016/j.biomaterials.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Rodrigo Aguilera Olvera
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA
| | - Deepanjan Ghosh
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Lama Rai
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; College of Health Solutions, Arizona State University, USA
| | - Souzan Brimo
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Harsh Girish Sant
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Eron Ristich
- School of Molecular Sciences, Arizona State University, USA; School of Computing and Augmented Intelligence, Arizona State University, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Nicolas Chang
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Jung Keun Lee
- Departments of Pathology and Population Medicine, Midwestern University, College of Veterinary Medicine, 5725 West Utopia Rd., Glendale, AZ, 85308, USA
| | | | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Shelley E Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA; School of Life Sciences, Arizona State University, 501 E. Tyler Mall ECG 303, Tempe, AZ, 85287-6106, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA.
| |
Collapse
|
2
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
3
|
Jindo M, Nakamura K, Okumura H, Tsukiyama K, Kawasaki T. Application study of infrared free-electron lasers towards the development of amyloidosis therapy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1133-1140. [PMID: 36073871 PMCID: PMC9455209 DOI: 10.1107/s1600577522007330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Amyloidosis is known to be caused by the deposition of amyloid fibrils into various biological tissues; effective treatments for the disease are little established today. An infrared free-electron laser (IR-FEL) is an accelerator-based picosecond-pulse laser having tunable infrared wavelengths. In the current study, the irradiation effect of an IR-FEL was tested on an 11-residue peptide (NFLNCYVSGFH) fibril from β2-microglobulin (β2M) with the aim of applying IR-FELs to amyloidosis therapy. Infrared microspectroscopy (IRM) and scanning electron microscopy showed that a fibril of β2M peptide was clearly dissociated by IR-FEL at 6.1 µm (amide I) accompanied by a decrease of the β-sheet and an increase of the α-helix. No dissociative process was recognized at 6.5 µm (amide II) as well as at 5.0 µm (non-specific wavelength). Equilibrium molecular dynamics simulations indicated that the α-helix can exist stably and the probability of forming interchain hydrogen bonds associated with the internal asparagine residue (N4) is notably reduced compared with other amino acids after the β-sheet is dissociated by amide I specific irradiation. This result implies that N4 plays a key role for recombination of hydrogen bonds in the dissociation of the β2M fibril. In addition, the β-sheet was disrupted at temperatures higher than 340 K while the α-helix did not appear even though the fibril was heated up to 363 K as revealed by IRM. The current study gives solid evidence for the laser-mediated conversion from β-sheet to α-helix in amyloid fibrils at the molecular level.
Collapse
Affiliation(s)
- Mikiko Jindo
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1–3 Kagurazaka, Tokyo 184-8501, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University, Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Koichi Tsukiyama
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1–3 Kagurazaka, Tokyo 184-8501, Japan
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
4
|
Torii S, Rakic P. Tracking the Activation of Heat Shock Signaling in Cellular Protection and Damage. Cells 2022; 11:1561. [PMID: 35563865 PMCID: PMC9104565 DOI: 10.3390/cells11091561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023] Open
Abstract
Heat Shock (HS) signaling is activated in response to various types of cellular stress. This activation serves to protect cells from immediate threats in the surrounding environment. However, activation of HS signaling occurs in a heterogeneous manner within each cell population and can alter the epigenetic state of the cell, ultimately leading to long-term abnormalities in body function. Here, we summarize recent research findings obtained using molecular and genetic tools to track cells where HS signaling is activated. We then discuss the potential further applications of these tools, their limitations, and the necessary caveats in interpreting data obtained with these tools.
Collapse
Affiliation(s)
| | - Pasko Rakic
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA;
| |
Collapse
|
5
|
Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines (Basel) 2020; 8:vaccines8020230. [PMID: 32443425 PMCID: PMC7349925 DOI: 10.3390/vaccines8020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
Over the last few years, we have been evaluating a novel paradigm for immunization using viruses or virus-based vectors. Safety is provided not by attenuation or inactivation of vaccine viruses, but by the introduction into the viral genomes of genetic mechanisms that allow for stringent, deliberate spatial and temporal control of virus replication. The resulting replication-competent controlled viruses (RCCVs) can be activated to undergo one or, if desired, several rounds of efficient replication at the inoculation site, but are nonreplicating in the absence of activation. Extrapolating from observations that attenuated replicating viruses are better immunogens than replication-defective or inactivated viruses, it was hypothesized that RCCVs that replicate with wild-type-like efficiency when activated will be even better immunogens. The vigorous replication of the RCCVs should also render heterologous antigens expressed from them highly immunogenic. RCCVs for administration to skin sites or mucosal membranes were constructed using a virulent wild-type HSV-1 strain as the backbone. The recombinants are activated by a localized heat treatment to the inoculation site in the presence of a small-molecule regulator (SMR). Derivatives expressing influenza virus antigens were also prepared. Immunization/challenge experiments in mouse models revealed that the activated RCCVs induced far better protective immune responses against themselves as well as against the heterologous antigens they express than unactivated RCCVs or a replication-defective HSV-1 strain. Neutralizing antibody and proliferation responses mirrored these findings. We believe that the data obtained so far warrant further research to explore the possibility of developing effective RCCV-based vaccines directed to herpetic diseases and/or diseases caused by other pathogens.
Collapse
|
6
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
7
|
Forjanic T, Markelc B, Marcan M, Bellard E, Couillaud F, Golzio M, Miklavci D. Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: In Vivo Imaging and Numerical Modeling. IEEE Trans Biomed Eng 2019; 66:2671-2683. [DOI: 10.1109/tbme.2019.2894659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Voellmy R, Zürcher O, Zürcher M, de Viragh PA, Hall AK, Roberts SM. Targeted heat activation of HSP promoters in the skin of mammalian animals and humans. Cell Stress Chaperones 2018; 23:455-466. [PMID: 29417383 PMCID: PMC6045553 DOI: 10.1007/s12192-018-0875-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022] Open
Abstract
The use of highly inducible HSP promoters for exerting spatial and/or temporal control over the expression of therapeutic transgenes has long been discussed. Localized and time-limited induction of the heat shock response may potentially also be of medical interest. However, such applications would require targeted delivery of heat doses capable of activating HSP promoters in tissues or organs of interest. Accessible areas, including the skin and tissues immediately underneath it, may be most readily targeted. A few applications for heat-directed or heat-controlled therapy in the skin might involve expression of proteins to restore or protect normal skin function, protein antigens for vaccination/immunotherapy, vaccine viruses or even systemically active proteins, e.g., cytokines and chemokines. A review of the literature relating to localized heat activation of HSP promoters and HSP genes in the skin revealed that a multitude of different technologies has been explored in small animal models. In contrast, we uncovered few publications that examine HSP promoter activation in human skin. None of these publications has a therapeutic focus. We present herein two, clinically relevant, developments of heating technologies that effectively activate HSP promoters in targeted regions of human skin. The first development advances a system that is capable of reliably activating HSP promoters in human scalp, in particular in hair follicles. The second development outlines a simple, robust, and inexpensive methodology for locally activating HSP promoters in small, defined skin areas.
Collapse
Affiliation(s)
- Richard Voellmy
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Olivier Zürcher
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
| | - Manon Zürcher
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
| | - Pierre A. de Viragh
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexis K. Hall
- Department of Physical Therapy, University of Florida College of Public Health and Health Professions, Gainesville, FL 32611 USA
| | - Stephen M. Roberts
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
9
|
Tan RP, Lee BS, Chan AH, Yuen SCG, Hung J, Wise SG, Ng MK. Non-invasive tracking of injected bone marrow mononuclear cells to injury and implanted biomaterials. Acta Biomater 2017; 53:378-388. [PMID: 28167301 DOI: 10.1016/j.actbio.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
Biomaterial scaffolds enhancing the engraftment of transplanted bone-marrow mononuclear cells (BM-MNC) have enormous potential for tissue regeneration applications. However, development of appropriate materials is challenging given the precise microenvironments required to support BM-MNC engraftment and function. In this study, we have developed a non-invasive, real-time tracking model of injected BM-MNC engraftment to wounds and implanted biomaterial scaffolds. BM-MNCs, encoded with firefly luciferase and enhanced GFP reporter genes, were tail vein injected into subcutaneously wounded mice. Luciferase-dependent cell bioluminescence curves revealed our injected BM-MNCs homed to and engrafted within subcutaneous wound sites over the course of 21days. Further immunohistochemical characterization showed that these engrafted cells drove functional changes by increasing the number of immune cells present at early time points and remodelling cell phenotypes at later time points. Using this model, we subcutaneously implanted electrospun polycaprolactone (PCL) and PCL/Collagen scaffolds, to determine differences in exogenous BM-MNC response to these materials. Following BM-MNC injection, immunohistochemical analysis revealed a high exogenous BM-MNC density around the periphery of PCL scaffolds consistent with a classical foreign body response. In contrast, transplanted BM-MNCs engrafted throughout PCL/Collagen scaffolds indicating an improved biological response. Importantly, these differences were closely correlated with the real-time bioluminescence curves, with PCL/Collagen scaffolds exhibiting a∼2-fold increase in maximum bioluminescence compared with PCL scaffolds. Collectively, these results demonstrate a new longitudinal cell tracking model that can non-invasively determine transplanted BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design scaffolds that help augment current BM-MNC tissue engineering strategies. STATEMENT OF SIGNIFICANCE Tracking the dynamic behaviour of transplanted bone-marrow mononuclear cells (BM-MNCs) is a long-standing research goal. Conventional methods involving contrast and tracer agents interfere with cellular function while also yielding false signals. The use of bioluminescence addresses these shortcomings while allowing for real-time non-invasive tracking in vivo. Given the failures of transplanted BM-MNCs to engraft into injured tissue, biomaterial scaffolds capable of attracting and enhancing BM-MNC engraftment at sites of injury are highly sought in numerous tissue engineering applications. To this end, the results from this study demonstrate a new longitudinal tracking model that can non-invasively determine exogenous BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design of scaffolds with implications for countless tissue engineering applications.
Collapse
|
10
|
Davidson LM, Barkalina N, Yeste M, Jones C, Coward K. Development of a laser-activated mesoporous silica nanocarrier delivery system for applications in molecular and genetic research. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115002. [PMID: 27842157 DOI: 10.1117/1.jbo.21.11.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles have revolutionized medical research over the last decade. One notable emerging area of nanomedicine is research developments in the reproductive sciences. Since increasing evidence indicates links between abnormal gene expression and previously unexplained states of infertility, there is a strong impetus to develop tools, such as nanoparticle platforms, to elucidate the pathophysiological mechanisms underlying such states. Mesoporous silica nanoparticles (MSNPs) represent a powerful and safe delivery tool for molecular and genetic investigations. Nevertheless, ongoing progress is restricted by low efficiency and unpredictable control of cargo delivery. Here, we describe for the first time, the development of a laser-activated MSNP system with heat-responsive cargo. Data derived from human embryonic kidney cells (HEK293T) indicate that when driven by a heat-shock promoter, MSNP cargo exhibits a significantly increased expression following infrared laser stimulus to stimulate a heat-shock response, without adverse cytotoxic effects. This delivery platform, with increased efficiency and the ability to impart spatial and temporal control, is highly useful for molecular and genetic investigations. We envision that this straightforward stimuli-responsive system could play a significant role in developing efficient nanodevices for research applications, for example in reproductive medicine.
Collapse
Affiliation(s)
- Lien M Davidson
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Natalia Barkalina
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Marc Yeste
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Celine Jones
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Kevin Coward
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
11
|
Sajjadi AY, Mitra K, Grace M. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: Assessment of thermal damage and healing. Med Eng Phys 2013; 35:1406-14. [DOI: 10.1016/j.medengphy.2013.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023]
|
12
|
Echchgadda I, Roth CC, Cerna CZ, Wilmink GJ. Temporal gene expression kinetics for human keratinocytes exposed to hyperthermic stress. Cells 2013; 2:224-43. [PMID: 24709698 PMCID: PMC3972685 DOI: 10.3390/cells2020224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK) cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min) and used messenger RNA (mRNA) microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs) that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, Bldg. 3260, Fort Sam Houston, TX 78234, USA.
| | - Caleb C Roth
- Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | - Cesario Z Cerna
- General Dynamics Information Technology, Fort Sam Houston, TX 78234, USA.
| | - Gerald J Wilmink
- Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, Bldg. 3260, Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
13
|
Mackanos MA, Contag CH. Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:078002. [PMID: 21806294 DOI: 10.1117/1.3600013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress∕damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress∕injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO(2) laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.
Collapse
Affiliation(s)
- Mark A Mackanos
- Stanford University School of Medicine, Department of Pediatrics, Clark Center E-150, 318 Campus Drive, Stanford, California 94305-5427, USA
| | | |
Collapse
|
14
|
Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. SENSORS 2010; 11:180-206. [PMID: 22346573 PMCID: PMC3274065 DOI: 10.3390/s110100180] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/06/2010] [Accepted: 12/23/2010] [Indexed: 02/08/2023]
Abstract
In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.
Collapse
Affiliation(s)
- Dan M Close
- The Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|