1
|
Xia T, Umezu K, Scully DM, Wang S, Larina IV. In vivo volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography. OPTICA 2023; 10:1439-1451. [PMID: 38665775 PMCID: PMC11044847 DOI: 10.1364/optica.499927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method ex vivo and implemented it in vivo to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Deirdre M. Scully
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Ma Y, Li C, Jiang H, Zhao Y, Liu J, Yu Y, Wang Y, Shi W, Ma Z. OCT based four-dimensional cardiac imaging of a living chick embryo using an impedance signal as a gating for post-acquisition synchronization. BIOMEDICAL OPTICS EXPRESS 2022; 13:6595-6609. [PMID: 36589591 PMCID: PMC9774874 DOI: 10.1364/boe.476254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial resolution suitable for early embryonic heart imaging. However, the most commonly used OCT systems cannot provide direct 4-D imaging due to acquisition speed limitations. We proposed a retrospective gating 4-D reconstruction method based on spectral domain OCT. A special circuit was designed to measure the impedance change of chick embryos in response to the heart beating. The impedance signal was acquired simultaneously with the OCT B-scan image sequence at several different locations along the heart. The impedance signal was used as a gating for 4-D reconstruction. The reconstruction algorithm includes cardiac period calculation, interpolation from multi-cardiac cycle image sequence into one cardiac cycle, and cardiac phase synchronization among the different locations of the heart. The synchronism of the impedance signal change with the heartbeat was verified. Using the proposed method, we reconstructed the cardiac outflow tract (OFT) of chick embryos at an early stage of development (Hamburger-Hamilton stage 18). We showed that the reconstructed 4-D images correctly captured the dynamics of the OFT wall motion.
Collapse
Affiliation(s)
- Yushu Ma
- School of Computer Science and Engineering, Northeastern University, No. 311 Wenhua Road, Shenyang 110169, China
| | - Chuanxi Li
- Hangzhou Xinrui Medical Technology Co., Ltd, No. 22 Xinyan Road, Hangzhou 311100, China
| | - Huiwen Jiang
- College of Information Science and Engineering, Northeastern University, No. 311 Wenhua Road, Shenyang 110169, China
| | - Yuqian Zhao
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University, No. 143 Taishan Road, Qinhuangdao 066004, China
- School of Control Engineering, Northeastern University at Qinhuangdao, No. 143 Taishan Road, Qinhuangdao 066004, China
| | - Jian Liu
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University, No. 143 Taishan Road, Qinhuangdao 066004, China
- School of Control Engineering, Northeastern University at Qinhuangdao, No. 143 Taishan Road, Qinhuangdao 066004, China
| | - Yao Yu
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University, No. 143 Taishan Road, Qinhuangdao 066004, China
- School of Control Engineering, Northeastern University at Qinhuangdao, No. 143 Taishan Road, Qinhuangdao 066004, China
| | - Yi Wang
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University, No. 143 Taishan Road, Qinhuangdao 066004, China
- School of Control Engineering, Northeastern University at Qinhuangdao, No. 143 Taishan Road, Qinhuangdao 066004, China
| | - Wenbo Shi
- School of Computer Science and Engineering, Northeastern University, No. 311 Wenhua Road, Shenyang 110169, China
| | - Zhenhe Ma
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University, No. 143 Taishan Road, Qinhuangdao 066004, China
- School of Control Engineering, Northeastern University at Qinhuangdao, No. 143 Taishan Road, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Scully DM, Larina IV. Mouse embryo phenotyping with optical coherence tomography. Front Cell Dev Biol 2022; 10:1000237. [PMID: 36158219 PMCID: PMC9500480 DOI: 10.3389/fcell.2022.1000237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
With the explosion of gene editing tools in recent years, there has been a much greater demand for mouse embryo phenotyping, and traditional methods such as histology and histochemistry experienced a methodological renaissance as they became the principal tools for phenotyping. However, it is important to explore alternative phenotyping options to maximize time and resources and implement volumetric structural analysis for enhanced investigation of phenotypes. Cardiovascular phenotyping, in particular, is important to perform in vivo due to the dramatic structural and functional changes that occur in heart development over relatively short periods of time. Optical coherence tomography (OCT) is one of the most exciting advanced imaging techniques emerging within the field of developmental biology, and this review provides a summary of how it is currently being implemented in mouse embryo investigations and phenotyping. This review aims to provide an understanding of the approaches used in optical coherence tomography and how they can be applied in embryology and developmental biology, with the overall aim of bridging the gap between biology and technology.
Collapse
|
4
|
Lichtenegger A, Mukherjee P, Zhu L, Morishita R, Tomita K, Oida D, Leskovar K, Abd El-Sadek I, Makita S, Kirchberger S, Distel M, Baumann B, Yasuno Y. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2202-2223. [PMID: 35519284 PMCID: PMC9045912 DOI: 10.1364/boe.455876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Lida Zhu
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Rion Morishita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Kiriko Tomita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Daisuke Oida
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Konrad Leskovar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Egypt
| | - Shuichi Makita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute (CCRI), Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| |
Collapse
|
5
|
Ogoke O, Guiggey D, Mon T, Shamul C, Ross S, Rao S, Parashurama N. Spatiotemporal imaging and analysis of mouse and human liver bud morphogenesis. Dev Dyn 2021; 251:662-686. [PMID: 34665487 DOI: 10.1002/dvdy.429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The process of liver organogenesis has served as a paradigm for organ formation. However, there remains a lack of understanding regarding early mouse and human liver bud morphogenesis and early liver volumetric growth. Elucidating dynamic changes in liver volumes is critical for understanding organ development, implementing toxicological studies, and for modeling hPSC-derived liver organoid growth. New visualization, analysis, and experimental techniques are desperately needed. RESULTS Here, we combine observational data with digital resources, new 3D imaging approaches, retrospective analysis of liver volume data, mathematical modeling, and experiments with hPSC-derived liver organoids. Mouse and human liver organogenesis, characterized by exponential growth, demonstrate distinct spatial features and growth curves over time, which we mathematically modeled using Gompertz models. Visualization of liver-epithelial and septum transversum mesenchyme (STM) interactions suggests extended interactions, which together with new spatial features may be responsible for extensive exponential growth. These STM interactions are modeled with a novel in vitro human pluripotent stem cell (hPSC)-derived hepatic organoid system that exhibits cell migration. CONCLUSIONS Our methods enhance our understanding of liver organogenesis, with new 3D visualization, analysis, mathematical modeling, and in vitro models with hPSCs. Our approach highlights mouse and human differences and provides potential hypothesis for further investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Claire Shamul
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Shatoni Ross
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saroja Rao
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Center for Cell, Gene, and Tissue Engineering (CGTE), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
6
|
Patil MA, Kompella UB. Noninvasive monitoring of suprachoroidal, subretinal, and intravitreal implants using confocal scanning laser ophthalmoscope (cSLO) and optical coherence tomography (OCT). Int J Pharm 2021; 606:120887. [PMID: 34271155 DOI: 10.1016/j.ijpharm.2021.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
To address the need for noninvasive monitoring of injectable preformed drug delivery implants in the eye, we developed noninvasive methods to monitor such implants in different locations within the eye. Cylindrical polymeric poly(lactide-co-glycolide) or metal implants were injected into isolated bovine eyes at suprachoroidal, subretinal, and intravitreal locations and imaged noninvasively using the cSLO and OCT modes of a Heidelberg Spectralis HRA + OCT instrument after adjusting for the corneal curvature. Length and diameter of implants were obtained using cSLO images for all three locations, and the volume was calculated. Additionally, implant volume for suprachoroidal and subretinal location was estimated by integrating the cross-sectional bleb area over the implant length in multiple OCT images or using the maximum thickness of the implant based on thickness map along with length in cSLO image. Simultaneous cSLO and OCT imaging identified implants in different regions of the eye. Image-based measurements of implant dimensions mostly correlated well with the values prior to injection using blade micrometer. The accuracy (82-112%) and precision (1-19%) for noninvasive measurement of length was better than the diameter (accuracy 69-130%; precision 3-38%) using cSLO image for both types of implants. The accuracy for the measurement of volume of both types of implants from all three intraocular locations was better with cSLO imaging (42-152%) compared to those obtained using OCT cross-sectional bleb area integration (117-556%) or cSLO and thickness map (32-279%) methods. Suprachoroidal, subretinal, and intravitreal implants can be monitored for length, diameter, and volume using cSLO and OCT imaging. Such measurements may be useful in noninvasively monitoring implant degradation and drug release in the eye.
Collapse
Affiliation(s)
- Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
7
|
Rykiel G, López CS, Riesterer JL, Fries I, Deosthali S, Courchaine K, Maloyan A, Thornburg K, Rugonyi S. Multiscale cardiac imaging spanning the whole heart and its internal cellular architecture in a small animal model. eLife 2020; 9:e58138. [PMID: 33078706 PMCID: PMC7595733 DOI: 10.7554/elife.58138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.
Collapse
Affiliation(s)
- Graham Rykiel
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Jessica L Riesterer
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Ian Fries
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Sanika Deosthali
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | | | - Alina Maloyan
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
8
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
9
|
Desgrange A, Lokmer J, Marchiol C, Houyel L, Meilhac SM. Standardised imaging pipeline for phenotyping mouse laterality defects and associated heart malformations, at multiple scales and multiple stages. Dis Model Mech 2019; 12:dmm.038356. [PMID: 31208960 PMCID: PMC6679386 DOI: 10.1242/dmm.038356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects. Summary: Laterality defects, which combine anomalies in several visceral organs, are challenging to phenotype. We have developed here a standardised approach for multimodality 3D imaging in mice, generating quantifiable phenotypes.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Johanna Lokmer
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Carmen Marchiol
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France
| | - Lucile Houyel
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,Unité de Cardiologie Pédiatrique et Congénitale, Hôpital Necker Enfants Malades, Centre de référence des Malformations Cardiaques Congénitales Complexes-M3C, APHP, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
10
|
Lopez AL, Larina IV. Second harmonic generation microscopy of early embryonic mouse hearts. BIOMEDICAL OPTICS EXPRESS 2019; 10:2898-2908. [PMID: 31259060 PMCID: PMC6583332 DOI: 10.1364/boe.10.002898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 05/15/2023]
Abstract
The understanding of biomechanical regulation of early heart development in genetic mouse models can contribute to improved management of congenital cardiovascular defects and embryonic cardiac failures in humans. The extracellular matrix (ECM), and particularly fibrillar collagen, are central to heart biomechanics, regulating tissue strength, elasticity and contractility. Here, we explore second harmonic generation (SHG) microscopy for visualization of establishing cardiac fibers such as collagen in mouse embryos through the earliest stages of development. We detected significant increase in SHG positive fibrillar content and organization over the first 24 hours after initiation of contractions. SHG microscopy revealed regions of higher fibrillar organization in regions of higher contractility and reduced fibrillar content and organization in mouse Mlc2a model with cardiac contractility defect, suggesting regulatory role of mechanical load in production and organization of structural fibers from the earliest stages. Simultaneous volumetric SHG and two-photon excitation microscopy of vital fluorescent reporter EGFP in the heart was demonstrated. In summary, these data set SHG microscopy as a valuable non-bias imaging tool to investigate mouse embryonic cardiogenesis and biomechanics.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Liu XH, Yin HX, Zhu H, Wang ZT, Zhao PF, Lv H, Ding HY, Li J, Zhang P, Wang Z, Wang P, Wang ZC. Three-dimensional visualization of rat retina by X-ray differential phase contrast tomographic microscopy. Microsc Res Tech 2018; 81:655-662. [PMID: 29573036 DOI: 10.1002/jemt.23020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue-Huan Liu
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Hong-Xia Yin
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Hua Zhu
- Comparative Medical Center, Peking Union Medical College (PUMC) & Institute of Laboratory Animal Science; Chinese Academy of Medical Science (CAMS); Beijing China
| | - Zhen-Tian Wang
- Swiss Light Source, Paul Scherrer Institute; Villigen, 5232 Switzerland
- Institute for Biomedical Engineering; University and ETH Zurich; Zurich, 8092 Switzerland
| | - Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Peng Wang
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
12
|
Mokbul MI. Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research. J Med Eng 2017; 2017:3409327. [PMID: 29214158 PMCID: PMC5682075 DOI: 10.1155/2017/3409327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Mobin Ibne Mokbul
- Notre Dame College, Motijheel Circular Road, Arambagh, Motijheel, Dhaka 1000, Bangladesh
| |
Collapse
|
13
|
Wu C, Le H, Ran S, Singh M, Larina IV, Mayerich D, Dickinson ME, Larin KV. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. BIOMEDICAL OPTICS EXPRESS 2017; 8:4629-4639. [PMID: 29082090 PMCID: PMC5654805 DOI: 10.1364/boe.8.004629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 05/04/2023]
Abstract
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles. SPIM enables high-resolution, 3D imaging with less phototoxicity and photobleaching than laser scanning confocal microscopy (LSCM) by illuminating the sample with a focused sheet of light. Side by side comparisons are supplemented with co-registered images. The results demonstrate that SPIM and RI-OCT are highly complementary and could provide more comprehensive tissue characterization for mouse embryonic research.
Collapse
Affiliation(s)
- Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Henry Le
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - Shihao Ran
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Equal contribution
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Equal contribution
| |
Collapse
|
14
|
Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials. J Vis Exp 2017. [PMID: 28715372 PMCID: PMC5609318 DOI: 10.3791/56071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Barbara Maurer-Gesek
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna;
| |
Collapse
|
15
|
Singh M, Wu C, Mayerich D, Dickinson ME, Larina IV, Larin KV. Multimodal embryonic imaging using optical coherence tomography, selective plane illumination microscopy, and optical projection tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3922-3925. [PMID: 28269143 DOI: 10.1109/embc.2016.7591585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The murine model is commonly utilized for studying developmental diseases. Different optical techniques have been developed to image mouse embryos, but each has its own set of limitations and restrictions. In this study, we compare the performance of the well-established technique of optical coherence tomography (OCT) to the relatively new methods of selective plane illumination microscopy (SPIM) and optical projection tomography (OPT) to assess murine embryonic development. OCT can provide label free high resolution images of the mouse embryo, but suffers from light attenuation that limits visualization of deeper structures. SPIM is able to image shallow regions with great detail utilizing fluorescent contrast. OPT can provide superior imaging depth, and can also use fluorescence labels but, it requires samples to be fixed and cleared before imaging. OCT requires no modification of the embryo, and thus, can be used in vivo and in utero. In this study, we compare the efficacy of OCT, SPIM, and OPT for imaging murine embryonic development. The data demonstrate the superior capability of SPIM and OPT for imaging fine structures with high resolution while only OCT can provide structural and functional imaging of live embryos with micrometer scale resolution.
Collapse
|
16
|
Ma P, Gu S, Karunamuni GH, Jenkins MW, Watanabe M, Rollins AM. Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities. Am J Physiol Heart Circ Physiol 2016; 311:H1150-H1159. [PMID: 27542407 PMCID: PMC5130492 DOI: 10.1152/ajpheart.00188.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
Cardiac neural crest cell (CNCC) ablation creates congenital heart defects (CHDs) that resemble those observed in many syndromes with craniofacial and cardiac consequences. The loss of CNCCs causes a variety of great vessel defects, including persistent truncus arteriosus and double-outlet right ventricle. However, because of the lack of quantitative volumetric measurements, less severe defects, such as great vessel size changes and valve defects, have not been assessed. Also poorly understood is the role of abnormal cardiac function in the progression of CNCC-related CHDs. CNCC ablation was previously reported to cause abnormal cardiac function in early cardiogenesis, before the CNCCs arrive in the outflow region of the heart. However, the affected functional parameters and how they correlate with the structural abnormalities were not fully characterized. In this study, using a CNCC-ablated quail model, we contribute quantitative phenotyping of CNCC ablation-related CHDs and investigate abnormal early cardiac function, which potentially contributes to late-stage CHDs. Optical coherence tomography was used to assay early- and late-stage embryos and hearts. In CNCC-ablated embryos at four-chambered heart stages, great vessel diameter and left atrioventricular valve leaflet volumes are reduced. Earlier, at cardiac looping stages, CNCC-ablated embryos exhibit abnormally twisted bodies, abnormal blood flow waveforms, increased retrograde flow percentage, and abnormal cardiac cushions. The phenotypes observed in this CNCC-ablation model were also strikingly similar to those found in an established avian fetal alcohol syndrome model, supporting the contribution of CNCC dysfunction to the development of alcohol-induced CHDs.
Collapse
Affiliation(s)
- Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Ganga H Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
17
|
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi RE, Li A, Zhou C. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803213. [PMID: 27721647 PMCID: PMC5049888 DOI: 10.1109/jstqe.2015.2513667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.
Collapse
Affiliation(s)
- Jing Men
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jitendra Solanki
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Aneesh Alex
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
18
|
Singh M, Raghunathan R, Piazza V, Davis-Loiacono AM, Cable A, Vedakkan TJ, Janecek T, Frazier MV, Nair A, Wu C, Larina IV, Dickinson ME, Larin KV. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2295-310. [PMID: 27375945 PMCID: PMC4918583 DOI: 10.1364/boe.7.002295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/17/2023]
Abstract
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Victor Piazza
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | | | - Alex Cable
- Thorlabs, Inc., 56 Sparta Ave., Newton, 07860, USA
| | - Tegy J. Vedakkan
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Trevor Janecek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Michael V. Frazier
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
- Department of Electrical Engineering, Samara National Research University, Samara, 34 Moskovskoye sh., 443086, Russia
| |
Collapse
|
19
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|
20
|
Wu C, Sudheendran N, Singh M, Larina IV, Dickinson ME, Larin KV. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26002. [PMID: 26848543 PMCID: PMC4748608 DOI: 10.1117/1.jbo.21.2.026002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|
21
|
Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics. J Cardiovasc Dev Dis 2015; 3. [PMID: 27088080 PMCID: PMC4827265 DOI: 10.3390/jcdd3010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS) at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, USA;
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA;
| | - Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2145, Madison, WI 53706, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-419-9310; Fax: +1-503-418-9311
| |
Collapse
|
22
|
A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast. PLoS One 2015; 10:e0142974. [PMID: 26571123 PMCID: PMC4646620 DOI: 10.1371/journal.pone.0142974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.
Collapse
|
23
|
Wang S, Singh M, Lopez AL, Wu C, Raghunathan R, Schill A, Li J, Larin KV, Larina IV. Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. OPTICS LETTERS 2015; 40:4791-4. [PMID: 26469621 PMCID: PMC4849121 DOI: 10.1364/ol.40.004791] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-resolution three-dimensional (3D) imaging of cardiovascular dynamics in mouse embryos is greatly desired to study mammalian congenital cardiac defects. Here, we demonstrate direct four-dimensional (4D) imaging of the cardiovascular structure and function in live mouse embryos at a ∼43 Hz volume rate using an optical coherence tomography (OCT) system with a ∼1.5 MHz Fourier domain mode-locking swept laser source. Combining ultrafast OCT imaging with live mouse embryo culture protocols, 3D volumes of the embryo are directly and continuously acquired over time for a cardiodynamics analysis without the application of any synchronization algorithms. We present the time-resolved measurements of the heart wall motion based on the 4D structural data, report 4D speckle variance and Doppler imaging of the vascular system, and quantify spatially resolved blood flow velocity over time. These results indicate that the ultra-high-speed 4D imaging approach could be a useful tool for efficient cardiovascular phenotyping of mouse embryos.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Jiasong Li
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Samara State Aerospace University, 34 Moskovskoye Shosse, Samara 443086, Russia
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Corresponding author:
| |
Collapse
|
24
|
Goenezen S, Chivukula VK, Midgett M, Phan L, Rugonyi S. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech Model Mechanobiol 2015; 15:723-43. [PMID: 26361767 DOI: 10.1007/s10237-015-0720-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023]
Abstract
Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ly Phan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
25
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:78001. [PMID: 25581495 DOI: 10.1117/1.jbo.20.7.078001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/29/2015] [Indexed: 05/19/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United StatescUniversity of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
26
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051020. [PMID: 25581495 PMCID: PMC4405081 DOI: 10.1117/1.jbo.20.5.051020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H. Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J. Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D. Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L. West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V. Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- University of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- Address all correspondence to: Irina V. Larina, E-mail:
| |
Collapse
|
27
|
Kulkarni PM, Rey-Villamizar N, Merouane A, Sudheendran N, Wang S, Garcia M, Larina IV, Roysam B, Larin KV. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data. Quant Imaging Med Surg 2015; 5:125-35. [PMID: 25694962 PMCID: PMC4312302 DOI: 10.3978/j.issn.2223-4292.2014.11.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). METHODS In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. RESULTS Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. CONCLUSIONS Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.
Collapse
|
28
|
Filas BA, Xu G, Taber LA. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods Mol Biol 2015; 1189:3-16. [PMID: 25245683 DOI: 10.1007/978-1-4939-1164-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
29
|
Lopez AL, Wang S, Larin KV, Overbeek PA, Larina IV. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090501. [PMID: 26385422 PMCID: PMC4681392 DOI: 10.1117/1.jbo.20.9.090501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| | - Kirill V. Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston 77204, United States
- Samara State Aerospace University, 34 Moskovskoye Shosse, Samara 443086, Russia
| | - Paul A. Overbeek
- Baylor College of Medicine, Department of Molecular & Cellular Biology, One Baylor Plaza, Houston 77030, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston 77030, United States
| |
Collapse
|
30
|
Wang C, Zhang Q, Wu X, Tang T, Liu H, Zhu SW, Gao BZ, Yuan XC. Quantitative diagnosis of colorectal polyps by spectral domain optical coherence tomography. BIOMED RESEARCH INTERNATIONAL 2014; 2014:570629. [PMID: 24818145 PMCID: PMC4000955 DOI: 10.1155/2014/570629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
The principal aim of this study is to investigate the scattering coefficient of colorectal polyp tissues using an optical coherence tomography (OCT) technique. It combines the existing scattering coefficient model and spectral domain OCT to achieve method of early diagnosis of colorectal polyp in hospitals. Seventeen patients were studied, and a total of 1456 data points were extracted by curve-fitting the OCT signals into a confocal single-backscattering model. The results show that the mean scattering coefficient value for colorectal polyps is 1.91 mm(-1) (std: ± 0.54 mm(-1)), which is between the values for normal and malignant tissues. In addition, we studied the difference between adenomatous polyps (n = 15) and inflammatory polyps (n = 2) quantitatively and found that the adenomatous tissues had lower scattering coefficients than the inflammatory ones. The quantitative measurements confirmed that OCT can be used in primary diagnosis to compensate for the deficiencies in methods of pathological diagnosis, with a great potential for early diagnosis of tissues.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Modern Optics, Key Laboratory of Optical Information Science & Technology, Ministry of Education of China, Nankai University, Tianjin 300071, China
| | - Qinqin Zhang
- Institute of Modern Optics, Key Laboratory of Optical Information Science & Technology, Ministry of Education of China, Nankai University, Tianjin 300071, China
| | - Xiaojing Wu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Tao Tang
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Hong Liu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - S. W. Zhu
- Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Bruce Z. Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - X.-C. Yuan
- Institute of Micro & Nano Optics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Norris FC, Wong MD, Greene NDE, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 2013; 29:700-11. [PMID: 24035368 DOI: 10.1016/j.tig.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
Collapse
Affiliation(s)
- Francesca C Norris
- University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM. Design and implementation of a custom built optical projection tomography system. PLoS One 2013; 8:e73491. [PMID: 24023880 PMCID: PMC3762719 DOI: 10.1371/journal.pone.0073491] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm3. This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.
Collapse
Affiliation(s)
- Michael D. Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Jun Dazai
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathon R. Walls
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Nicholas W. Gale
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Kharchenko S, Adamowicz J, Wojtkowski M, Drewa T. Optical coherence tomography diagnostics for onco-urology. Review of clinical perspectives. Cent European J Urol 2013; 66:136-41. [PMID: 24579012 PMCID: PMC3936153 DOI: 10.5173/ceju.2013.02.art6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/01/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Optical coherence tomography (OCT) is being investigated widely for use in urologic pathology. The current imaging of urogenital cancers cannot be perfect, thus, routine methods demands new updates or inventions of alternative radiological scope. OCT presents so–called “live” optical biopsy. The authors aim to review this modality for uro–oncological purposes. Matherial and methods A series of 37 publications between 1989 and 2012 was selected and cited from GoogleScholar and PubMED/MEDLINE. The urogenital tract (bladder, ureter, scrotum organs and prostate) was imaged by OCT. Results The overall OCT sensitivity, specificity, accuracy, negative and positive predictive values ranged a lot on example of the urinary bladder's tumors screening. The data were 75–100%, 65–97.9%, 92%, 75%, 100%, respectively. Notwithstanding, a diagnostic importance of OCT may be comparable with urine cytology, cystoscopy, computerized tomography and magnetic resonance imaging. Conclusions OCT demonstrated its imaging potential, while till the present OCT plays role of an additional imaging. Future progress of OCT involvement in experimental and clinical once–urological diagnostics is needed under high evidence control.
Collapse
Affiliation(s)
- Sergiy Kharchenko
- The Medical Institute of Sumy State University, Faculty of Post-graduate Medical Education, Department of General, Pediatric Surgery with Oncology's Course, Glukhiv Central District Hospital, Surgical Division, Glukhiv, Ukraine
| | - Jan Adamowicz
- Nicolaus Copernicus University, Faculty of Medicine, Department Tissue Engineering, Bydgoszcz, Poland
| | - Maciej Wojtkowski
- Nicolaus Copernicus University, Institute of Physics, Department of Biophysics and Medical Physics, Toruń, Poland
| | - Tomasz Drewa
- Nicolaus Copernicus University, Faculty of Medicine, Department Tissue Engineering, Bydgoszcz, Poland ; Department of Urology Nicolaus Copernicus Hospital, Toruń, Poland
| |
Collapse
|
34
|
Sudheendran N, Bake S, Miranda RC, Larin KV. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:20506. [PMID: 23386196 PMCID: PMC3563965 DOI: 10.1117/1.jbo.18.2.020506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 05/19/2023]
Abstract
The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.
Collapse
Affiliation(s)
- Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, 2028 SERC Building, Houston, Texas 77204
| | - Shameena Bake
- TAMHSC College of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas 77807
| | - Rajesh C. Miranda
- TAMHSC College of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas 77807
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 2028 SERC Building, Houston, Texas 77204
- Saratov State University, Institute of Optics and Biophotonics, Saratov 410012, Russia
- Address all correspondence to: Kirill V. Larin, University of Houston, Department of Biomedical Engineering, 2028 SERC Building, Houston, Texas 77204. E-mail:
| |
Collapse
|
35
|
Larina IV, Syed SH, Sudheendran N, Overbeek PA, Dickinson ME, Larin KV. Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081410-1. [PMID: 23224171 PMCID: PMC3397804 DOI: 10.1117/1.jbo.17.8.081410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/18/2023]
Abstract
Mouse models of ocular diseases provide a powerful resource for exploration of molecular regulation of eye development and pre-clinical studies. Availability of a live high-resolution imaging method for mouse embryonic eyes would significantly enhance longitudinal analyses and high-throughput morphological screening. We demonstrate that optical coherence tomography (OCT) can be used for live embryonic ocular imaging throughout gestation. At all studied stages, the whole eye is within the imaging distance of the system and there is a good optical contrast between the structures. We also performed OCT eye imaging in the embryonic retinoblastoma mouse model Pax6-SV40 T-antigen, which spontaneously forms lens and retinal lesions, and demonstrate that OCT allows us to clearly differentiate between the mutant and wild type phenotypes. These results demonstrate that OCTin utero imaging is a potentially useful tool to study embryonic ocular diseases in mouse models.
Collapse
Affiliation(s)
- Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Gregg CL, Butcher JT. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 2012; 84:149-62. [PMID: 22695188 DOI: 10.1016/j.diff.2012.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Jenkins MW, Watanabe M, Rollins AM. Longitudinal Imaging of Heart Development With Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1166-1175. [PMID: 26236147 PMCID: PMC4520323 DOI: 10.1109/jstqe.2011.2166060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1-2mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects.
Collapse
Affiliation(s)
- Michael W. Jenkins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
38
|
Abstract
A phase-contrast X-ray microtomography system using the Talbot imaging has been built at the SPring-8 synchrotron radiation facility. This system has much higher density resolution than absorption-based X-ray microtomography. The tomographic sections of formalin-fixed mouse fetuses obtained with this method clearly depict various organs without any staining at a pixel resolution of up to 5 µm. Since this technique allows us to obtain three-dimensional structural information without sectioning, it will be particularly useful to examine anomalies that take place during development. It can be also used to quantitatively measure volume and mass of organs during development.
Collapse
Affiliation(s)
- Masato Hoshino
- Japan Synchrotron Radiation Research Institute , SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 , Japan
| | | | | |
Collapse
|
39
|
Larina IV, Larin KV, Justice MJ, Dickinson ME. Optical Coherence Tomography for live imaging of mammalian development. Curr Opin Genet Dev 2011; 21:579-84. [PMID: 21962442 DOI: 10.1016/j.gde.2011.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/24/2011] [Accepted: 09/06/2011] [Indexed: 02/08/2023]
Abstract
Understanding the nature and mechanism of congenital defects of the different organ systems in humans has heavily relied on the analysis of the corresponding mutant phenotypes in rodent models. Optical Coherence Tomography (OCT) has recently emerged as a powerful tool to study early embryonic development. This non-invasive optical methodology does not require labeling and allows visualization of embryonic tissues with single cell resolution. Here, we will discuss how OCT can be applied for structural imaging of early mouse and rat embryos in static culture, cardiodynamic and blood flow analysis, and in utero embryonic imaging at later stages of gestation, demonstrating how OCT can be used to assess structural and functional birth defects in mammalian models.
Collapse
Affiliation(s)
- Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| | | | | | | |
Collapse
|