1
|
Chen R, Yao L, Liu K, Cao T, Li H, Li P. Improvement of Decorrelation-Based OCT Angiography by an Adaptive Spatial-Temporal Kernel in Monitoring Stimulus-Evoked Hemodynamic Responses. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4286-4296. [PMID: 32790625 DOI: 10.1109/tmi.2020.3016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Complex decorrelation-based OCT angiography (OCTA) has the potential for monitoring hemodynamic activities in a label-free, high-resolution, and quantitative manner. To improve the measurement dynamic range and uncertainty of blood flow, an adaptive spatial-temporal (ST) kernel was proposed for decorrelation estimation and it was validated through a theoretical simulation and experimental measurements. The ensemble size in the decorrelation computation was effectively enlarged by collecting samples of the phasor pair in both the spatial and temporal dimensions. The spatial sub-kernel size was adaptively changed to suppress the influence of bulk motion in the temporal dimension by solving a maximum entropy model. Using the flow phantom, it was observed that the decorrelation dynamic range presented an increase of ~49% and the uncertainty exhibited a decrease of ~40% and ~38% in the saturation and background limits, respectively. In monitoring the stimulus-evoked hemodynamic response, the extended dynamic range enabled an improvement of ~180% in the separability between different stimulation modes. Furthermore, the suppressed uncertainty and motion artifacts allowed a reliable temporal analysis of the hemodynamic response. The proposed adaptive ST-kernel will greatly promote the development of decorrelation-based quantitative OCTA in hemodynamic studies.
Collapse
|
2
|
Erdener ŞE, Tang J, Sajjadi A, Kılıç K, Kura S, Schaffer CB, Boas DA. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab 2019; 39:886-900. [PMID: 29168661 PMCID: PMC6501506 DOI: 10.1177/0271678x17743877] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography (OCT) allows label-free imaging of red blood cell (RBC) flux within capillaries with high spatio-temporal resolution. In this study, we utilized time-series OCT-angiography to demonstrate interruptions in capillary RBC flux in mouse brain in vivo. We noticed ∼7.5% of ∼200 capillaries had at least one stall in awake mice with chronic windows during a 9-min recording. At any instant, ∼0.45% of capillaries were stalled. Average stall duration was ∼15 s but could last over 1 min. Stalls were more frequent and longer lasting in acute window preparations. Further, isoflurane anesthesia in chronic preparations caused an increase in the number of stalls. In repeated imaging, the same segments had a tendency to stall again over a period of one month. In awake animals, functional stimulation decreased the observance of stalling events. Stalling segments were located distally, away from the first couple of arteriolar-side capillary branches and their average RBC and plasma velocities were lower than nonstalling capillaries within the same region. This first systematic analysis of capillary RBC stalls in the brain, enabled by rapid and continuous volumetric imaging of capillaries with OCT-angiography, will lead to future investigations of the potential role of stalling events in cerebral pathologies.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianbo Tang
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amir Sajjadi
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kıvılcım Kılıç
- 2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chris B Schaffer
- 3 Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A Boas
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Ma Z, Ding N, Yu Y, Ma Y, Yuan X, Wang Y, Zhao Y, Luan J, Liu J. Quantification of cerebral vascular perfusion density via optical coherence tomography based on locally adaptive regional growth. APPLIED OPTICS 2018; 57:10117-10124. [PMID: 30645216 DOI: 10.1364/ao.57.010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Optical coherence tomography (OCT) angiography is a noninvasive imaging modality that produces volumetric views of blood flow perfusion in vivo with resolution at capillary level, which has been widely adopted to monitor cerebral perfusion status after stroke in experimental settings. Accurate quantification of cerebral perfusion from OCT angiograms is important for understanding the cerebral vascular pathophysiology and assessing the treatment of ischemic stroke. Quantification of blood vessels from OCT angiography faces some problems; one is uneven backscatter (which causes some blood vessels to be very bright, some very dark), and the other is that the brightness in the same blood vessel also changes due to the difference in diameter or depth. In this paper, we proposed a locally adaptive region growing algorithm to solve this problem. The algorithm, which confines the region growing process to a local region, is used to segment blood vessels in different images to cope well with the intensity changes in blood vessels. During segmentation, the initial seed pixels were selected with the aid of the Otsu algorithm, the growth criterion considered both global and local information, and the thresholds were also adjusted adaptively as local regions varied. After these processes are completed, we can calculate the percentage of segmented blood vessels across field of view of the images, named cerebral vascular perfusion density, and use it as an indicator to evaluate the cerebral blood perfusion of middle cerebral artery occlusion in mice. This paper demonstrates that the algorithm can produce satisfactory vascular segmentation results, and CVPD can be used as an effective indicator for evaluating post-ischemic injury.
Collapse
|
4
|
Chen CL, Wang RK. Optical coherence tomography based angiography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1056-1082. [PMID: 28271003 PMCID: PMC5330554 DOI: 10.1364/boe.8.001056] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography.
Collapse
Affiliation(s)
- Chieh-Li Chen
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington, 325 9th Ave, Seattle, WA 98104, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington, 325 9th Ave, Seattle, WA 98104, USA
| |
Collapse
|
5
|
Li Y, Choi WJ, Qin W, Baran U, Habenicht LM, Wang RK. Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo. J Neurosci Methods 2016; 274:164-171. [PMID: 27751893 DOI: 10.1016/j.jneumeth.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Arteriogenesis describes the active growth of the pre-existing collateral arterioles, which is a crucial tissue-saving process in occlusive vascular diseases. NEW METHOD We propose to use optical coherence tomography (OCT)-based microangiography (OMAG) to monitor arteriogenesis following artery transection in mouse ear and focal stroke in mouse brain. RESULTS Our longitudinal mouse ear study shows that the growth phase of arteriogenesis, indicated by changes in collateral vessel diameter and velocity, occurs between 12 and 24h after vessel transection. Additionally, the magnitude of local inflammation is consistent with the time course of arteriogenesis, judging by the tissue thickness measurement and lymphatic vessel signals in OCT. In the mouse brain study, collateral vessel morphology, blood flow velocity and directionality are identified, and an activation of the collateral flow at the arteriolo-arteriolar anastomoses (AAA) is observed during stroke. COMPARISON WITH EXISTING METHODS In comparison with histology and fluorescence imaging, OCT/OMAG is completely non-invasive and capable of producing consistent results of longitudinal changes in collateral vessel morphology and vasodynamics. CONCLUSION OCT/OMAG is a promising imaging tool for longitudinal study of collateral vessel remodeling in small animals. This technique can be applied in guiding the in vivo experiments of arteriogenesis stimulation to treat occlusive vascular diseases, including stroke.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Woo June Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Wan Qin
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Utku Baran
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Lauren M Habenicht
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Choi WJ, Qin W, Chen CL, Wang J, Zhang Q, Yang X, Gao BZ, Wang RK. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. BIOMEDICAL OPTICS EXPRESS 2016; 7:2709-28. [PMID: 27446700 PMCID: PMC4948624 DOI: 10.1364/boe.7.002709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/17/2023]
Abstract
Optical microangiography (OMAG) is a powerful optical angio-graphic tool to visualize micro-vascular flow in vivo. Despite numerous demonstrations for the past several years of the qualitative relationship between OMAG and flow, no convincing quantitative relationship has been proven. In this paper, we attempt to quantitatively correlate the OMAG signal with flow. Specifically, we develop a simplified analytical model of the complex OMAG, suggesting that the OMAG signal is a product of the number of particles in an imaging voxel and the decorrelation of OCT (optical coherence tomography) signal, determined by flow velocity, inter-frame time interval, and wavelength of the light source. Numerical simulation with the proposed model reveals that if the OCT amplitudes are correlated, the OMAG signal is related to a total number of particles across the imaging voxel cross-section per unit time (flux); otherwise it would be saturated but its strength is proportional to the number of particles in the imaging voxel (concentration). The relationship is validated using microfluidic flow phantoms with various preset flow metrics. This work suggests OMAG is a promising quantitative tool for the assessment of vascular flow.
Collapse
Affiliation(s)
- Woo June Choi
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
- These authors contributed equally to this work
| | - Wan Qin
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
- These authors contributed equally to this work
| | - Chieh-Li Chen
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Jingang Wang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| | - Xiaoqi Yang
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - Bruce Z. Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th NE, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Liu J, Ma Y, Dou S, Wang Y, La D, Liu J, Ma Z. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75014. [PMID: 27469083 DOI: 10.1117/1.jbo.21.7.075014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/11/2016] [Indexed: 05/14/2023]
Abstract
A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.
Collapse
Affiliation(s)
- Jian Liu
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| | - Yushu Ma
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| | - Shidan Dou
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| | - Yi Wang
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| | - Dongsheng La
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| | - Jianghong Liu
- Capital Medical University, Department of Neurology, Xuan Wu Hospital, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhenhe Ma
- Northeastern University, School of Information Science and Engineering, No. 11 Lane Three Culture Road, Heping Area, Shenyang 110819, China
| |
Collapse
|
8
|
Baran U, Wang RK. Review of optical coherence tomography based angiography in neuroscience. NEUROPHOTONICS 2016; 3:010902. [PMID: 26835484 PMCID: PMC4719095 DOI: 10.1117/1.nph.3.1.010902] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 05/09/2023]
Abstract
The brain is a complex ecosystem, consisting of multiple layers and tissue compartments. To facilitate the understanding of its function and its response to neurological insults, a fast in vivo imaging tool with a micron-level resolution, which can provide a field of view at a few millimeters, is desirable. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution ([Formula: see text]) and without a need for contrast agents. Recent development of OCT-based angiography has started to shed some new light on cerebral hemodynamics in neuroscience. We give an overview of the recent developments of OCT-based imaging techniques for neuroscience applications in rodents. We summarize today's technological alternatives for OCT-based angiography for neuroscience and provide a discussion of challenges and opportunities. Moreover, a summary of OCT angiography studies for stroke, traumatic brain injury, and subarachnoid hemorrhage cases on rodents is provided.
Collapse
Affiliation(s)
- Utku Baran
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
- University of Washington, Department of Electrical Engineering, 185 Stevens Way, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
9
|
Detecting Blood Flow Response to Stimulation of the Human Eye. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121973. [PMID: 26504775 PMCID: PMC4609341 DOI: 10.1155/2015/121973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Retinal blood supply is tightly regulated under a variety of hemodynamic considerations in order to satisfy a high metabolic need and maintain both vessel structure and function. Simulation of the human eye can induce hemodynamics alterations, and attempt to assess the vascular reactivity response has been well documented in the scientific literature. Advancements in noninvasive imaging technologies have led to the characterization of magnitude and time course in retinal blood flow response to stimuli. This allowed for a better understanding of the mechanism in which blood flow is regulated, as well as identifying functional impairments in the diseased eye. Clinically, the ability to detect retinal blood flow reactivity during stimulation of the eye offers potential for the detection, differentiation, and diagnosis of diseases.
Collapse
|
10
|
Dziennis S, Qin J, Shi L, Wang RK. Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain. Sci Rep 2015; 5:10051. [PMID: 25941797 PMCID: PMC4419594 DOI: 10.1038/srep10051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
The ability to non-invasively monitor and quantify hemodynamic responses down to the capillary level is important for improved diagnosis, treatment and management of neurovascular disorders, including stroke. We developed an integrated multi-functional imaging system, in which synchronized dual wavelength laser speckle contrast imaging (DWLS) was used as a guiding tool for optical microangiography (OMAG) to test whether detailed vascular responses to experimental stroke in male mice can be evaluated with wide range sensitivity from arteries and veins down to the capillary level. DWLS enabled rapid identification of cerebral blood flow (CBF), prediction of infarct area and hemoglobin oxygenation over the whole mouse brain and was used to guide the OMAG system to hone in on depth information regarding blood volume, blood flow velocity and direction, vascular architecture, vessel diameter and capillary density pertaining to defined regions of CBF in response to ischemia. OMAG-DWLS is a novel imaging platform technology to simultaneously evaluate multiple vascular responses to ischemic injury, which can be useful in improving our understanding of vascular responses under pathologic and physiological conditions, and ultimately facilitating clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases.
Collapse
Affiliation(s)
- Suzan Dziennis
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Jia Qin
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Lei Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Zhang A, Wang RK. Feature space optical coherence tomography based micro-angiography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1919-28. [PMID: 26137391 PMCID: PMC4467717 DOI: 10.1364/boe.6.001919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 05/04/2023]
Abstract
Current optical coherence tomography (OCT) based micro-angiography is prone to noise that arises from static background. This work presents a novel feature space based optical micro-angiography (OMAG) method (fsOMAG) that can effectively differentiate flow signal from static background in the feature space. fsOMAG consists of two steps. In the first step a classification map is generated that provides criterion for classification in the second step to extract functional blood flow from experimental data set. The performance of fsOMAG is examined through phantom experiments and in-vivo human retinal imaging, and compared with the existing OMAG. The results indicate its potential for clinical applications.
Collapse
|
12
|
Baran U, Li Y, Wang RK. Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke. NEUROPHOTONICS 2015; 2:025006. [PMID: 26158010 PMCID: PMC4478965 DOI: 10.1117/1.nph.2.2.025006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 05/18/2023]
Abstract
Changes in blood perfusion in highly interconnected pial arterioles provide important insights about the vascular response to ischemia within brain. The functional role of arteriolo-arteriolar anastomosis (AAA) in regulating blood perfusion through penetrating arterioles is yet to be discovered. We apply a label-free optical microangiography (OMAG) technique to evaluate the changes in vessel lumen diameter and red blood cell velocity among a large number of pial and penetrating arterioles within AAA abundant region overlaying the penumbra in the parietal cortex after a middle cerebral artery occlusion (MCAO). In comparison with two-photon microscopy, the OMAG technique makes it possible to image a large number of vessels in a short period of time without administering exogenous contrast agents during a time-constrained MCAO experiment. We compare vasodynamics in penetrating arterioles at various locations. The results show that the MCA connected penetrating arterioles close to a strong AAA dilate, while those belonging to a region away from AAAs constrict in various degrees. These results suggest AAAs play a major role in supporting the active dilation of the penetrating arterioles, thus compensating a significant amount of blood to the ischemic region, whereas the poor blood perfusion occurs at the regions away from AAA connections, leading to ischemia.
Collapse
Affiliation(s)
- Utku Baran
- University of Washington, Department of Bioengineering, 3720 NE 15th Avenue, Seattle, Washington 98195, United States
- University of Washington, Department of Electrical Engineering, 185 Stevens Way, Seattle, Washington 98195, United States
| | - Yuandong Li
- University of Washington, Department of Bioengineering, 3720 NE 15th Avenue, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, 3720 NE 15th Avenue, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
13
|
Wang H, Baran U, Wang RK. In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography. JOURNAL OF BIOPHOTONICS 2015; 8:265-72. [PMID: 24659511 PMCID: PMC4308563 DOI: 10.1002/jbio.201400012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 05/03/2023]
Abstract
Vasculature response is a hallmark for most inflammatory skin disorders. Tape stripping on human skin causes a minor inflammation which leads to changes in microvasculature. In this study, optical microangiography (OMAG), noninvasive volumetric microvasculature in vivo imaging method, has been used to track the vascular responses after tape stripping. Vessel density has been quantified and used to correlate with the degree of skin irritation. The proved capability of OMAG technique in visualizing the microvasculature network under inflamed skin condition can play an important role in clinical trials of treatment and diagnosis of inflammatory skin disorders.
Collapse
Affiliation(s)
- Hequn Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Utku Baran
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Baran U, Shi L, Wang RK. Capillary blood flow imaging within human finger cuticle using optical microangiography. JOURNAL OF BIOPHOTONICS 2015; 8:46-51. [PMID: 25590582 PMCID: PMC4304076 DOI: 10.1002/jbio.201300154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 05/19/2023]
Abstract
We report non-invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra-high sensitive optical microangiography (UHS-OMAG) techniques. Wide velocity range DOMAG method is applied to provide red blood cell (RBC) axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS-OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising to facilitate clinical trials of treatment and diagnosis of various diseases such as diabetes, Raynaud's phenomenon, and connective tissue diseases by quantifying cutaneous blood flow changes within human finger cuticle.
Collapse
Affiliation(s)
- Utku Baran
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Lei Shi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Li Y, Baran U, Wang RK. Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography. PLoS One 2014; 9:e113658. [PMID: 25426632 PMCID: PMC4245213 DOI: 10.1371/journal.pone.0113658] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022] Open
Abstract
In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Utku Baran
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Electrical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Reif R, Baran U, Wang RK. Motion artifact and background noise suppression on optical microangiography frames using a naïve Bayes mask. APPLIED OPTICS 2014; 53:4164-71. [PMID: 25089975 PMCID: PMC4303031 DOI: 10.1364/ao.53.004164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optical coherence tomography (OCT) is a technique that allows for the three-dimensional (3D) imaging of small volumes of tissue (a few millimeters) with high resolution (∼10 μm). Optical microangiography (OMAG) is a method of processing OCT data, which allows for the extraction of the tissue vasculature with capillary resolution from the OCT images. Cross-sectional B-frame OMAG images present the location of the patent blood vessels; however, the signal-to-noise-ratio of these images can be affected by several factors such as the quality of the OCT system and the tissue motion artifact. This background noise can appear in the en face projection view image. In this work we propose to develop a binary mask that can be applied on the cross-sectional B-frame OMAG images, which will reduce the background noise while leaving the signal from the blood vessels intact. The mask is created by using a naïve Bayes (NB) classification algorithm trained with a gold standard image which is manually segmented by an expert. The masked OMAG images present better contrast for binarizing the image and quantifying the result without the influence of noise. The results are compared with a previously developed frequency rejection filter (FRF) method which is applied on the en face projection view image. It is demonstrated that both the NB and FRF methods provide similar vessel length fractions. The advantage of the NB method is that the results are applicable in 3D and that its use is not limited to periodic motion artifacts.
Collapse
Affiliation(s)
- Roberto Reif
- Department of Bioengineering, University of Washington, 3720 15 Ave. NE, Seattle WA 98195, USA
| | - Utku Baran
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Seattle WA 98195, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15 Ave. NE, Seattle WA 98195, USA
- Corresponding author:
| |
Collapse
|
17
|
Yousefi S, Zhi Z, Wang RK. Label-free optical imaging of lymphatic vessels within tissue beds in vivo. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2014; 20:6800510. [PMID: 25642129 PMCID: PMC4307825 DOI: 10.1109/jstqe.2013.2278073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis.
Collapse
Affiliation(s)
- Siavash Yousefi
- Bioengineering Department, University of Washington, Seattle, WA 98195 USA
| | - Zhongwei Zhi
- Bioengineering Department, University of Washington, Seattle, WA 98195 USA
| | - Ruikang K. Wang
- Bioengineering and Ophthalmology Department, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
18
|
Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D. Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J Neurosurg 2013; 120:628-38. [PMID: 24266544 DOI: 10.3171/2013.10.jns13918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. The authors hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. They further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex. METHODS Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain's endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area. RESULTS Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared with control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour (mean ± SEM). CONCLUSIONS The findings of this study suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. The authors conclude that their model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a noninvasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yousefi S, Qin J, Zhi Z, Wang RK. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:86004. [PMID: 23922124 PMCID: PMC3734368 DOI: 10.1117/1.jbo.18.8.086004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.
Collapse
Affiliation(s)
- Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Jia Qin
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Zhongwei Zhi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
- Address all correspondence to: Ruikang K. Wang, University of Washington, Department of Bioengineering, Seattle, Washington 98195. Tel: 206 6165025; Fax: 206 6853300; E-mail:
| |
Collapse
|
20
|
Yousefi S, Qin J, Zhi Z, Wang RK. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization. Quant Imaging Med Surg 2013; 3:5-17. [PMID: 23482880 DOI: 10.3978/j.issn.2223-4292.2013.01.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/24/2013] [Indexed: 11/14/2022]
Abstract
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
Collapse
Affiliation(s)
- Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
21
|
Daly SM, Leahy MJ. 'Go with the flow ': a review of methods and advancements in blood flow imaging. JOURNAL OF BIOPHOTONICS 2013; 6:217-55. [PMID: 22711377 DOI: 10.1002/jbio.201200071] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 05/25/2023]
Abstract
Physics has delivered extraordinary developments in almost every facet of modern life. From the humble thermometer and stethoscope to X-Ray, CT, MRI, ultrasound, PET and radiotherapy, our health has been transformed by these advances yielding both morphological and functional metrics. Recently high resolution label-free imaging of the microcirculation at clinically relevant depths has become available in the research domain. In this paper, we present a comprehensive review on current imaging techniques, state-of-the-art advancements and applications, and general perspectives on the prospects for these modalities in the clinical realm.
Collapse
Affiliation(s)
- Susan M Daly
- Biophotonics Research Facility, Department of Physics & Energy, University of Limerick, Ireland.
| | | |
Collapse
|
22
|
Yousefi S, Qin J, Zhi Z, Wang RK. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization. Quant Imaging Med Surg 2013; 3:5-17. [PMID: 23482880 DOI: 10.3978/2fj.issn.2223-4292.2013.01.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/24/2013] [Indexed: 05/22/2023]
Abstract
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
Collapse
Affiliation(s)
- Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
23
|
Dziennis S, Reif R, Zhi Z, Nuttall AL, Wang RK. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:106003. [PMID: 23224002 PMCID: PMC3461130 DOI: 10.1117/1.jbo.17.10.106003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Reduced cochlear blood flow (CoBF) is a main contributor to hearing loss. Studying CoBF has remained a challenge due to the lack of available tools. Doppler optical microangiography (DOMAG), a method to quantify single-vessel absolute blood flow, and laser Doppler flowmetry (LDF), a method for measuring the relative blood flow within a large volume of tissue, were used for determining the changes in CoBF due to systemic hypoxia in mice. DOMAG determined the change in blood flow in the apical turn (AT) with single-vessel resolution, while LDF averaged the change in the blood flow within a large volume of the cochlea (hemisphere with ∼1 to 1.5 mm radius). Hypoxia was induced by decreasing the concentration of oxygen-inspired gas, so that the oxygen saturation was reduced from >95% to ∼80%. DOMAG determined that during hypoxia the blood flow in two areas of the AT near and far from the helicotrema were increased and decreased, respectively. The LDF detected a decrease in blood flow within a larger volume of the cochlea (several turns averaged together). Therefore, the use of DOMAG as a tool for studying cochlear blood flow due to its ability to determine absolute flow values with single-vessel resolution was proposed.
Collapse
Affiliation(s)
- Suzan Dziennis
- University of Washington, Department of Bioengineering, 3720 15th Avenue N.E., Seattle, Washington 98195
| | - Roberto Reif
- University of Washington, Department of Bioengineering, 3720 15th Avenue N.E., Seattle, Washington 98195
| | - Zhongwei Zhi
- University of Washington, Department of Bioengineering, 3720 15th Avenue N.E., Seattle, Washington 98195
| | - Alfred L. Nuttall
- Oregon Health and Science University, Oregon Hearing Research Center, School of Medicine, Portland, Oregon 97239
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, 3720 15th Avenue N.E., Seattle, Washington 98195
- Address all correspondence to: Ruikang K. Wang, University of Washington, Department of Bioengineering, 3720 15th Avenue N.E., Seattle, Washington 98195. Tel: 206 616 5025; Fax: 206 685 3300; E-mail:
| |
Collapse
|
24
|
Zhi Z, Cepurna WO, Johnson EC, Morrison JC, Wang RK. Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography. BIOMEDICAL OPTICS EXPRESS 2012; 3:2220-33. [PMID: 23024915 PMCID: PMC3447563 DOI: 10.1364/boe.3.002220] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/13/2012] [Indexed: 05/21/2023]
Abstract
In this paper, we demonstrate the use of optical coherence tomography/optical microangiography (OCT/OMAG) to image and measure the effects of acute intraocular pressure (IOP) elevation on retinal, choroidal and optic nerve head (ONH) perfusion in the rat eye. In the experiments, IOP was elevated from 10 to 100 mmHg in 10 mmHg increments. At each IOP level, three-dimensional data volumes were captured using an ultrahigh sensitive (UHS) OMAG scanning protocol for 3D volumetric perfusion imaging, followed by repeated B-scans for Doppler OMAG analysis to determine blood flow velocity. Velocity and vessel diameter measurements were used to calculate blood flow in selected retinal blood vessels. Choroidal perfusion was calculated by determining the peripapillary choroidal filling at each pressure level and calculating this as a percentage of area filling at baseline (10 mmHg). ONH blood perfusion was calculated as the percentage of blood flow area over a segmented ONH area to a depth 150 microns posterior to the choroidal opening. We show that volumetric blood flow reconstructions revealed detailed 3D maps, to the capillary level, of the retinal, choroidal and ONH microvasculature, revealing retinal arterioles, capillaries and veins, the choroidal opening and a consistent presence of the central retinal artery inferior to the ONH. While OCT structural images revealed a reversible compression of the ONH and vasculature with elevated IOP, OMAG successfully documented changes in retinal, choroidal and ONH blood perfusion and allowed quantitative measurements of these changes. Starting from 30 mm Hg, retinal blood flow (RBF) diminished linearly with increasing IOP and was nearly extinguished at 100 mm Hg, with full recovery after return of IOP to baseline. Choroidal filling was unaffected until IOP reached 60 mmHg, then decreased to 20% of baseline at IOP 100 mmHg, and normalized when IOP returned to baseline. A reduction in ONH blood perfusion at higher IOP's was also observed, but shadow from overlying retinal vessels at lower IOP's limited precise measurements of changes in ONH capillary perfusion compared to baseline. Therefore, OCT/OMAG can be a useful tool to image and measure blood flow in the retina, choroidal and ONH of the rat eye as well as document the effects of elevated IOP on blood flow in these vascular beds.
Collapse
Affiliation(s)
- Zhongwei Zhi
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - William O. Cepurna
- Dept. of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elaine C. Johnson
- Dept. of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - John C. Morrison
- Dept. of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Li P, Yin X, Shi L, Rugonyi S, Wang RK. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:96006-1. [PMID: 23085907 PMCID: PMC3434623 DOI: 10.1117/1.jbo.17.9.096006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 05/22/2023]
Abstract
During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.
Collapse
Affiliation(s)
- Peng Li
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Xin Yin
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Liang Shi
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Sandra Rugonyi
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
- Address all correspondence to: Ruikang K. Wang, University of Washington, Department of Bioengineering, Seattle, Washington 98195. E-mail:
| |
Collapse
|
26
|
Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging 2012; 2012:509783. [PMID: 22792084 PMCID: PMC3389716 DOI: 10.1155/2012/509783] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/13/2012] [Indexed: 02/07/2023] Open
Abstract
The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG) is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density) is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.
Collapse
|
27
|
Li P, Liu A, Shi L, Yin X, Rugonyi S, Wang RK. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography. Phys Med Biol 2011; 56:7081-92. [PMID: 22016198 DOI: 10.1088/0031-9155/56/22/006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We present a method to assess the in vivo radial strain and strain rate of the myocardial wall, which is of great importance to understand the biomechanics of cardiac development, using tissue Doppler optical coherence tomography (tissue-DOCT). Combining the structure and velocity information acquired from tissue-DOCT, the velocity distribution in the myocardial wall is plotted, from which the radial strain and strain rate are evaluated. The results demonstrate that tissue-DOCT can be used as a useful tool to describe tissue deformation, especially, the biomechanical characteristics of the embryonic heart.
Collapse
Affiliation(s)
- Peng Li
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|