1
|
Patton HN, Zhang H, Wood GA, Guragain B, Nagahawatte ND, Nisbet LA, Cheng LK, Walcott GP, Rogers JM. Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach. Am J Physiol Gastrointest Liver Physiol 2024; 327:G765-G782. [PMID: 39189971 PMCID: PMC11684892 DOI: 10.1152/ajpgi.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Gastric peristalsis is governed by electrical "slow waves" generally assumed to travel from proximal to distal stomach (antegrade propagation) in symmetric rings. Although alternative slow-wave patterns have been correlated with gastric disorders, their mechanisms and how they alter contractions remain understudied. Optical electromechanical mapping, a developing field in cardiac electrophysiology, images electrical and mechanical physiology simultaneously. Here, we translate this technology to the in vivo porcine stomach. Stomachs were surgically exposed and a fluorescent dye (di-4-ANEQ(F)PTEA) that transduces the membrane potential (Vm) was injected through the right gastroepiploic artery. Fluorescence was excited by LEDs and imaged with one or two 256 × 256 pixel cameras. Motion artifact was corrected using a marker-based motion-tracking method and excitation ratiometry, which cancels common-mode artifact. Tracking marker displacement also enabled gastric deformation to be measured. We validated detection of electrical activation and Vm morphology against alternative nonoptical technologies. Nonantegrade slow waves and propagation direction differences between the anterior and posterior stomach were commonly present in our data. However, sham experiments suggest they were a feature of the animal preparation and not an artifact of optical mapping. In experiments to demonstrate the method's capabilities, we found that repolarization did not always follow at a fixed time behind activation "wavefronts," which could be a factor in dysrhythmia. Contraction strength and the latency between electrical activation and contraction differed between antegrade and nonantegrade propagation. In conclusion, optical electromechanical mapping, which simultaneously images electrical and mechanical activity, enables novel questions regarding normal and abnormal gastric physiology to be explored.NEW & NOTEWORTHY This article introduces a novel method for imaging gastric electrophysiology and mechanical function simultaneously in anesthetized, open-abdomen pigs. We demonstrate it by observing propagating slow-wave depolarization and repolarization along with the strength, spatial distribution, and direction of contractions. In addition, we observe that in this animal preparation, slow waves often do not propagate from the proximal to distal stomach and are frequently asymmetric between the anterior and posterior sides of the stomach.
Collapse
Affiliation(s)
- Haley N Patton
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Garrett A Wood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bijay Guragain
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Linley A Nisbet
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gregory P Walcott
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Zhang H, Patton HN, Wood GA, Yan P, Loew LM, Acker CD, Walcott GP, Rogers JM. Optical mapping of cardiac electromechanics in beating in vivo hearts. Biophys J 2023; 122:4207-4219. [PMID: 37775969 PMCID: PMC10645561 DOI: 10.1016/j.bpj.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Optical mapping has been widely used in the study of cardiac electrophysiology in motion-arrested, ex vivo heart preparations. Recent developments in motion artifact mitigation techniques have made it possible to optically map beating ex vivo hearts, enabling the study of cardiac electromechanics using optical mapping. However, the ex vivo setting imposes limitations on optical mapping such as altered metabolic states, oversimplified mechanical loads, and the absence of neurohormonal regulation. In this study, we demonstrate optical electromechanical mapping in an in vivo heart preparation. Swine hearts were exposed via median sternotomy. Voltage-sensitive dye, either di-4-ANEQ(F)PTEA or di-5-ANEQ(F)PTEA, was injected into the left anterior descending artery. Fluorescence was excited by alternating green and amber light for excitation ratiometry. Cardiac motion during sinus and paced rhythm was tracked using a marker-based method. Motion tracking and excitation ratiometry successfully corrected most motion artifact in the membrane potential signal. Marker-based motion tracking also allowed simultaneous measurement of epicardial deformation. Reconstructed membrane potential and mechanical deformation measurements were validated using monophasic action potentials and sonomicrometry, respectively. Di-5-ANEQ(F)PTEA produced longer working time and higher signal/noise ratio than di-4-ANEQ(F)PTEA. In addition, we demonstrate potential applications of the new optical mapping system including electromechanical mapping during vagal nerve stimulation, fibrillation/defibrillation. and acute regional ischemia. In conclusion, although some technical limitations remain, optical mapping experiments that simultaneously image electrical and mechanical function can be conducted in beating, in vivo hearts.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haley N Patton
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Garrett A Wood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Gregory P Walcott
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Zhang H, Patton HN, Wood GA, Yan P, Loew LM, Acker CD, Walcott GP, Rogers JM. Di-5-ANEQ(F)PTEA Offers Better Performance than Di-4-ANEQ(F)PTEA for In-Situ Cardiac Optical Mapping . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082915 DOI: 10.1109/embc40787.2023.10340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cardiac optical mapping has traditionally been performed in ex-vivo, motion-arrested hearts. Recently, in-situ cardiac optical mapping has been made possible by both motion correction techniques and long-wavelength voltage sensitive dyes (VSDs). However, VSDs have been observed to wash out quickly from blood-perfused in-situ hearts. In this study, we evaluate the performance of a newly developed VSD, di-5-ANEQ(F)PTEA, relative to an earlier VSD, di-4-ANEQ(F)PTEA. We find that di-5-ANEQ(F)PTEA persists over 3 times longer, produces improved signal-to-noise ratio, and does not prolong loading unacceptably.Clinical Relevance-Optical mapping has provided many insights into cardiac arrhythmias, but has traditionally been limited to ex-vivo preparations. The present findings extend the utility of optical mapping in the more realistic in-vivo setting and may eventually enable its use in patients.
Collapse
|
5
|
Kappadan V, Sohi A, Parlitz U, Luther S, Uzelac I, Fenton F, Peters NS, Christoph J, Ng FS. Optical mapping of contracting hearts. J Physiol 2023; 601:1353-1370. [PMID: 36866700 PMCID: PMC10952556 DOI: 10.1113/jp283683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Optical mapping is a widely used tool to record and visualize the electrophysiological properties in a variety of myocardial preparations such as Langendorff-perfused isolated hearts, coronary-perfused wedge preparations, and cell culture monolayers. Motion artifact originating from the mechanical contraction of the myocardium creates a significant challenge to performing optical mapping of contracting hearts. Hence, to minimize the motion artifact, cardiac optical mapping studies are mostly performed on non-contracting hearts, where the mechanical contraction is removed using pharmacological excitation-contraction uncouplers. However, such experimental preparations eliminate the possibility of electromechanical interaction, and effects such as mechano-electric feedback cannot be studied. Recent developments in computer vision algorithms and ratiometric techniques have opened the possibility of performing optical mapping studies on isolated contracting hearts. In this review, we discuss the existing techniques and challenges of optical mapping of contracting hearts.
Collapse
Affiliation(s)
- Vineesh Kappadan
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Anies Sohi
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Ulrich Parlitz
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Stefan Luther
- Biomedical Physcis GroupMax Planck Institute for Dynamics and Self‐OrganizationGöttingenGermany
| | - Ilija Uzelac
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Flavio Fenton
- School of PhysicsGeorgia Institute of TechnologyAtlantaGAUSA
| | - Nicholas S Peters
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | - Jan Christoph
- Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
| | - Fu Siong Ng
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| |
Collapse
|
6
|
Heinson YW, Han JL, Entcheva E. Portable low-cost macroscopic mapping system for all-optical cardiac electrophysiology. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:016001. [PMID: 36636698 PMCID: PMC9830584 DOI: 10.1117/1.jbo.28.1.016001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 05/10/2023]
Abstract
Significance All-optical cardiac electrophysiology enables the visualization and control of key parameters relevant to the detection of cardiac arrhythmias. Mapping such responses in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is of great interest for cardiotoxicity and personalized medicine applications. Aim We introduce and validate a very low-cost compact mapping system for macroscopic all-optical electrophysiology in layers of hiPSC-CMs. Approach The system uses oblique transillumination, low-cost cameras, light-emitting diodes, and off-the-shelf components (total < $ 15 , 000 ) to capture voltage, calcium, and mechanical waves under electrical or optical stimulation. Results Our results corroborate the equivalency of electrical and optogenetic stimulation of hiPSC-CMs, andV m - [ Ca 2 + ] i similarity in conduction under pacing. Green-excitable optical sensors are combinable with blue optogenetic actuators (chanelrhodopsin2) only under very low green light ( < 0.05 mW / mm 2 ). Measurements in warmer culture medium yield larger spread of action potential duration and higher conduction velocities compared to Tyrode's solution at room temperature. Conclusions As multiple optical sensors and actuators are combined, our results can help handle the "spectral congestion" and avoid parameter distortion. We illustrate the utility of the system for uncovering the action of cellular uncoupling agents and show extensibility to an epi-illumination mode for future imaging of thicker native or engineered tissues.
Collapse
Affiliation(s)
- Yuli W. Heinson
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| | - Julie L. Han
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| | - Emilia Entcheva
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| |
Collapse
|
7
|
Lebert J, Ravi N, Kensah G, Christoph J. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking. Front Cardiovasc Med 2022; 9:787627. [PMID: 35686036 PMCID: PMC9172765 DOI: 10.3389/fcvm.2022.787627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
Optical mapping of action potentials or calcium transients in contracting cardiac tissues are challenging because of the severe sensitivity of the measurements to motion. The measurements rely on the accurate numerical tracking and analysis of fluorescence changes emitted by the tissue as it moves, and inaccurate or no tracking can produce motion artifacts and lead to imprecise measurements that can prohibit the analysis of the data. Recently, it was demonstrated that numerical motion-tracking and -stabilization can effectively inhibit motion artifacts, allowing highly detailed simultaneous measurements of electrophysiological phenomena and tissue mechanics. However, the field of electromechanical optical mapping is still young and under development. To date, the technique is only used by a few laboratories, the processing of the video data is time-consuming and performed offline post-acquisition as it is associated with a considerable demand for computing power. In addition, a systematic review of numerical motion tracking algorithms applicable to optical mapping data is lacking. To address these issues, we evaluated 5 open-source numerical motion-tracking algorithms implemented on a graphics processing unit (GPU) and compared their performance when tracking and compensating motion and measuring optical traces in voltage- or calcium-sensitive optical mapping videos of contracting cardiac tissues. Using GPU-accelerated numerical motion tracking, the processing times necessary to analyze optical mapping videos become substantially reduced. We demonstrate that it is possible to track and stabilize motion and create motion-compensated optical maps in real-time with low-resolution (128 x 128 pixels) and high resolution (800 x 800 pixels) optical mapping videos acquired at 500 and 40 fps, respectively. We evaluated the tracking accuracies and motion-stabilization capabilities of the GPU-based algorithms on synthetic optical mapping videos, determined their sensitivity to fluorescence signals and noise, and demonstrate the efficacy of the Farnebäck algorithm with recordings of contracting human cardiac cell cultures and beating hearts from 3 different species (mouse, rabbit, pig) imaged with 4 different high-speed cameras. GPU-accelerated processing provides a substantial increase in processing speed, which could open the path for more widespread use of numerical motion tracking and stabilization algorithms during routine optical mapping studies.
Collapse
Affiliation(s)
- Jan Lebert
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
| | - Namita Ravi
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - George Kensah
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
- Department for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Christoph
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- German Center for Cardiovascular Research (DZHK e.V.), Göttingen, Germany
| |
Collapse
|
8
|
Kuruppu S, Cheng LK, Nielsen PMF, Gamage TPB, Avci R, Angeli TR, Paskaranandavadivel N. High-Resolution Spatiotemporal Quantification of Intestinal Motility with Free-Form Deformation. IEEE Trans Biomed Eng 2021; 69:2077-2086. [PMID: 34910629 DOI: 10.1109/tbme.2021.3135855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To develop a method to quantify strain fields from in vivo intestinal motility recordings that mitigate accumulation of tracking error. METHODS The deforming geometry of the intestine in video sequences was modeled by a biquadratic B-spline mesh. Green-Lagrange strain fields were computed to quantify the surface deformations from motility. A nonlinear optimization scheme was applied to mitigate the accumulation of tracking error associated with image registration. RESULTS The optimization scheme maintained the RMS strain error under 1% and reduced the rate of strain error by 97% during synthetic tests. The algorithm was applied to map 64 segmental, 12 longitudinal, and 23 propagating circular contractions in the jejunum. Coordinated activity of the two muscle layers could be identified and the strain fields were able to map and quantify the anisotropic contractions of the intestine. Frequency and velocity were also quantified, from which two types of propagating circular contractions were identified: (i) -0:360:04 strain contractions that originated spontaneously and propagated at 31 mm/s in two pigs, and (ii) cyclic propagating contractions of -0:170:02 strain occurred at 11:00:6 cpm and propagated at 164 mm/s in a rabbit. CONCLUSION The algorithm simultaneously mapped the circular, longitudinal activity of the intestine with high spatial resolution and quantified anisotropic contractions and relaxations. SIGNIFICANCE The proposed algorithm can now be used to define the interactions of muscle layers during motility patterns. It can be integrated with high-resolution bioelectrical recordings to investigate the regulatory mechanisms of motility.
Collapse
|
9
|
Cooper BL, Gloschat C, Swift LM, Prudencio T, McCullough D, Jaimes R, Posnack NG. KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species. Front Physiol 2021; 12:752940. [PMID: 34777017 PMCID: PMC8586513 DOI: 10.3389/fphys.2021.752940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States
| | - Chris Gloschat
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States.,Department of Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
10
|
Kappadan V, Telele S, Uzelac I, Fenton F, Parlitz U, Luther S, Christoph J. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts. Front Physiol 2020; 11:464. [PMID: 32528304 PMCID: PMC7264405 DOI: 10.3389/fphys.2020.00464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Optical mapping is a high-resolution fluorescence imaging technique, that uses voltage- or calcium-sensitive dyes to visualize electrical excitation waves on the heart surface. However, optical mapping is very susceptible to the motion of cardiac tissue, which results in so-called motion artifacts in the fluorescence signal. To avoid motion artifacts, contractions of the heart muscle are typically suppressed using pharmacological excitation-contraction uncoupling agents, such as Blebbistatin. The use of pharmacological agents, however, may influence cardiac electrophysiology. Recently, it has been shown that numerical motion tracking can significantly reduce motion-related artifacts in optical mapping, enabling the simultaneous optical measurement of cardiac electrophysiology and mechanics. Here, we combine ratiometric optical mapping with numerical motion tracking to further enhance the robustness and accuracy of these measurements. We evaluate the method's performance by imaging and comparing cardiac restitution and ventricular fibrillation (VF) dynamics in contracting, non-working vs. Blebbistatin-arrested Langendorff-perfused rabbit hearts (N = 10). We found action potential durations (APD) to be, on average, 25 ± 5% shorter in contracting hearts compared to hearts uncoupled with Blebbistatin. The relative shortening of the APD was found to be larger at higher frequencies. VF was found to be significantly accelerated in contracting hearts, i.e., 9 ± 2Hz with Blebbistatin and 15 ± 4Hz without Blebbistatin, and maintained a broader frequency spectrum. In contracting hearts, the average number of phase singularities was NPS = 11 ± 4 compared to NPS = 6 ± 3 with Blebbistatin during VF on the anterior ventricular surface. VF inducibility was reduced with Blebbistatin. We found the effect of Blebbistatin to be concentration-dependent and reversible by washout. Aside from the electrophysiological characterization, we also measured and analyzed cardiac motion. Our findings may have implications for the interpretation of optical mapping data, and highlight that physiological conditions, such as oxygenation and metabolic demand, must be carefully considered in ex vivo imaging experiments.
Collapse
Affiliation(s)
- Vineesh Kappadan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Saba Telele
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany
| | - Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Flavio Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ulrich Parlitz
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Christoph
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partnersite Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Nesmith HW, Zhang H, Rogers JM. Optical mapping of electromechanics in intact organs. Exp Biol Med (Maywood) 2019; 245:368-373. [PMID: 31842618 DOI: 10.1177/1535370219894942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Optical mapping has become a widely used and important method in cardiac electrophysiology. The method typically uses voltage-sensitive fluorescent dyes and high-speed cameras to image propagation of electrical waves. However, signals are highly susceptible to artifact caused by motion of the target organ. Consequently, cardiac optical mapping is traditionally performed in isolated, perfused organs whose contraction has been pharmacologically arrested. This has prevented optical mapping from being used to study interactions between electrical and mechanical motion. However, recently, a number of groups have developed methods to implement cardiac optical mapping in the presence of motion. These methods employ two basic strategies: (1) compensate for motion by measuring it or (2) ratiometry. In ratiometry, two signals are recorded from each site. The signals have differing sensitivity to membrane potential, but common motion artifact, which can be cancelled by taking the ratio of the two signals. Some methods use both of these strategies. Methods that measure motion have the additional advantage that this information can be used to quantify the organ’s mechanical function. Doing so enables combined “electromechanical mapping,” which allows optical study of electromechanical interactions. By allowing recording in the presence of motion, the new methods open the door to optical recording in in-vivo preparations. In addition, it is possible to implement electromechanical optical mapping techniques in organ systems other than the heart. For example, it was recently shown that optical mapping of slow wave propagation in the swine stomach is feasible. Such studies have the potential to uncover new information on the role of dysrhythmic slow wave propagation in gastric motility disorders. Impact statement Electrical and mechanical functions in the heart are bidirectionally coupled, yet are usually studied separately because of the different instrumentation technologies that are used in the two areas. Optical mapping is a powerful and widespread tool for imaging electrical propagation, but has traditionally required mechanical function to be arrested. Recently new methods have been devised that enable optical mapping to be performed in beating hearts and also to simultaneously quantify mechanical function. These new technologies promise to yield new information about electromechanical interactions in normal and pathological settings. They are also beginning to find application in other organ systems such as the gastrointestinal tract where they may provide new insight into motility disorders.
Collapse
Affiliation(s)
- Haley W Nesmith
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Cathey B, Obaid S, Zolotarev AM, Pryamonosov RA, Syunyaev RA, George SA, Efimov IR. Open-Source Multiparametric Optocardiography. Sci Rep 2019; 9:721. [PMID: 30679527 PMCID: PMC6346041 DOI: 10.1038/s41598-018-36809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.
Collapse
Affiliation(s)
- Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sofian Obaid
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alexander M Zolotarev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Roman A Pryamonosov
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Roman A Syunyaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
13
|
Christoph J, Luther S. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts. Front Physiol 2018; 9:1483. [PMID: 30450053 PMCID: PMC6224482 DOI: 10.3389/fphys.2018.01483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022] Open
Abstract
Optical mapping is a high-resolution fluorescence imaging technique, which provides highly detailed visualizations of the electrophysiological wave phenomena, which trigger the beating of the heart. Recent advancements in optical mapping have demonstrated that the technique can now be performed with moving and contracting hearts and that motion and motion artifacts, once a major limitation, can now be overcome by numerically tracking and stabilizing the heart's motion. As a result, the optical measurement of electrical activity can be obtained from the moving heart surface in a co-moving frame of reference and motion artifacts can be reduced substantially. The aim of this study is to assess and validate the performance of a 2D marker-free motion tracking algorithm, which tracks motion and non-rigid deformations in video images. Because the tracking algorithm does not require markers to be attached to the tissue, it is necessary to verify that it accurately tracks the displacements of the cardiac tissue surface, which not only contracts and deforms, but also fluoresces and exhibits spatio-temporal physiology-related intensity changes. We used computer simulations to generate synthetic optical mapping videos, which show the contracting and fluorescing ventricular heart surface. The synthetic data reproduces experimental data as closely as possible and shows electrical waves propagating across the deforming tissue surface, as seen during voltage-sensitive imaging. We then tested the motion tracking and motion-stabilization algorithm on the synthetic as well as on experimental data. The motion tracking and motion-stabilization algorithm decreases motion artifacts approximately by 80% and achieves sub-pixel precision when tracking motion of 1–10 pixels (in a video image with 100 by 100 pixels), effectively inhibiting motion such that little residual motion remains after tracking and motion-stabilization. To demonstrate the performance of the algorithm, we present optical maps with a substantial reduction in motion artifacts showing action potential waves propagating across the moving and strongly deforming ventricular heart surface. The tracking algorithm reliably tracks motion if the tissue surface is illuminated homogeneously and shows sufficient contrast or texture which can be tracked or if the contrast is artificially or numerically enhanced. In this study, we also show how a reduction in dissociation-related motion artifacts can be quantified and linked to tracking precision. Our results can be used to advance optical mapping techniques, enabling them to image contracting hearts, with the ultimate goal of studying the mutual coupling of electrical and mechanical phenomena in healthy and diseased hearts.
Collapse
Affiliation(s)
- Jan Christoph
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - Stefan Luther
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany.,Department of Pharmacology, University Medical Center, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Kay MW, Efimov IR. Optical Mapping of Cardiac Electromechanics. Biophys J 2018; 111:269-270. [PMID: 27463128 DOI: 10.1016/j.bpj.2016.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Matthew W Kay
- Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Igor R Efimov
- Biomedical Engineering, George Washington University, Washington, District of Columbia.
| |
Collapse
|
15
|
Ruiz M, Comtois P. The heart in lack of oxygen? A revisited method to improve cardiac performance ex vivo. Am J Physiol Heart Circ Physiol 2018; 314:H776-H779. [PMID: 29351474 DOI: 10.1152/ajpheart.00699.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Matthieu Ruiz
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada.,Department of Nutrition, Université de Montréal , Montreal, Quebec , Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada.,Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec , Canada.,Institute of Biomedical Engineering, Université de Montréal , Montreal, Quebec , Canada
| |
Collapse
|
16
|
Christoph J, Chebbok M, Richter C, Schröder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton FH, Hasenfuß G, Gilmour RF, Luther S. Electromechanical vortex filaments during cardiac fibrillation. Nature 2018; 555:667-672. [PMID: 29466325 DOI: 10.1038/nature26001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
Abstract
The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.
Collapse
Affiliation(s)
- J Christoph
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - M Chebbok
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - C Richter
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - J Schröder-Schetelig
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - P Bittihn
- BioCircuits Institute, University of California San Diego, La Jolla, California, USA
| | - S Stein
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| | - I Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - F H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Hasenfuß
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Department for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - R F Gilmour
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - S Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany.,Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Zhang H, Iijima K, Huang J, Walcott GP, Rogers JM. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts. Biophys J 2017; 111:438-451. [PMID: 27463145 DOI: 10.1016/j.bpj.2016.03.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022] Open
Abstract
Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenichi Iijima
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jian Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory P Walcott
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
18
|
Rodriguez MP, Nygren A. Motion Estimation in Cardiac Fluorescence Imaging With Scale-Space Landmarks and Optical Flow: A Comparative Study. IEEE Trans Biomed Eng 2015; 62:774-82. [DOI: 10.1109/tbme.2014.2364959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Khwaounjoo P, Rutherford SL, Svrcek M, LeGrice IJ, Trew ML, Smaill BH. Image-Based Motion Correction for Optical Mapping of Cardiac Electrical Activity. Ann Biomed Eng 2014; 43:1235-46. [DOI: 10.1007/s10439-014-1172-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
20
|
Klimas A, Entcheva E. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:080701. [PMID: 25117076 PMCID: PMC4161000 DOI: 10.1117/1.jbo.19.8.080701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/17/2014] [Indexed: 05/13/2023]
Abstract
The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Emilia Entcheva
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
- Stony Brook University, Department of Physiology and Biophysics, Stony Brook, New York 11794, United States
- Stony Brook University, Institute for Molecular Cardiology, Stony Brook, New York 11794, United States
- Address all correspondence to: Emilia Entcheva, E-mail:
| |
Collapse
|
21
|
Seo K, Inagaki M, Hidaka I, Fukano H, Sugimachi M, Hisada T, Nishimura S, Sugiura S. Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:129-39. [PMID: 25084395 DOI: 10.1016/j.pbiomolbio.2014.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/19/2014] [Indexed: 12/27/2022]
Abstract
Stretch-induced arrhythmias are multi-scale phenomena in which alterations in channel activities and/or calcium handling lead to the organ level derangement of the heart rhythm. To understand how cellular mechano-electric coupling (MEC) leads to stretch-induced arrhythmias at the organ level, we developed stretching devices and optical voltage/calcium measurement techniques optimized to each cardiac level. This review introduces these experimental techniques of (1) optical voltage measurement coupled with a carbon-fiber technique for single isolated cardiomyocytes, (2) optical voltage mapping combined with motion tracking technique for myocardial tissue/whole heart preparations and (3) real-time calcium imaging coupled with a laser optical trap technique for cardiomyocytes. Following the overview of each methodology, results are presented. We conclude that individual MEC in cardiomyocytes can be heterogeneous at the ventricular level, especially when moderate amplitude mechanical stretches are applied to the heart, and that this heterogeneous MEC can evoke focal excitation that develops into re-entrant arrhythmias.
Collapse
Affiliation(s)
- Kinya Seo
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-0873, Japan.
| | - Ichiro Hidaka
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Hana Fukano
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-0873, Japan.
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Satoshi Nishimura
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; Department of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| |
Collapse
|
22
|
Abstract
In the past decade, optical mapping provided crucial mechanistic insight into electromechanical function and the mechanism of ventricular fibrillation. Therefore, to date, optical mapping dominates experimental cardiac electrophysiology. The first cardiac measurements involving optics were done in the early 1900s using the fast cinematograph that later evolved into methods for high-resolution activation and repolarization mapping and stimulation of specific cardiac cell types. The field of "optocardiography," therefore, emerged as the use of light for recording or interfering with cardiac physiology. In this review, we discuss how optocardiography developed into the dominant research technique in experimental cardiology. Furthermore, we envision how optocardiographic methods can be used in clinical cardiology.
Collapse
|
23
|
Yan J, Kong W, Zhang Q, Beyer EC, Walcott G, Fast VG, Ai X. c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. Cardiovasc Res 2012; 97:589-97. [PMID: 23241357 DOI: 10.1093/cvr/cvs366] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS c-Jun N-terminal kinase (JNK) activation is implicated in cardiovascular diseases and ageing, which are linked to enhanced propensity to atrial fibrillation (AF). However, the contribution of JNK to AF remains unknown. Thus, we assessed the role of JNK in remodelling of gap junction connexin43 (Cx43) and development of AF. METHODS AND RESULTS AF induction, optical mapping, and biochemical assays were performed in young and aged New Zealand white rabbit left atria (LA) and cultured HL-1 atrial cells. In aged rabbit LA, pacing-induced atrial arrhythmias were dramatically increased and conduction velocity (CV) was significantly slower compared with young controls. Aged rabbit LA contained 120% more activated JNK and 54% less Cx43 than young LA. Young rabbits treated with JNK activator anisomycin also exhibited increased pacing-induced atrial arrhythmias and reduced Cx43 (by 34%), similar to that found in aged LA. In HL-1 cell cultures, anisomycin treatment for 16 h led to 42% reduction in Cx43, 24% reduction in CV, and an increased incidence of irregular rapid spontaneous activities. These effects were prevented by a specific JNK inhibitor, SP600125. Moreover, a 63% reduction in Cx43 after anisomycin treatment for 24 h led to further slowed CV (by 41%) along with dramatically increased irregular rapid spontaneous activity and highly discontinuous conduction. These JNK-induced functional abnormalities were completely reversed by overexpressed exogenous wild-type Cx43, but not by inactive Cx43. CONCLUSION JNK activation contributes to Cx43 reductions that promote development of AF. Modulation of JNK may be a potential novel therapeutic approach to prevent and treat AF.
Collapse
Affiliation(s)
- Jiajie Yan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Laughner JI, Zhang S, Li H, Shao CC, Efimov IR. Mapping cardiac surface mechanics with structured light imaging. Am J Physiol Heart Circ Physiol 2012; 303:H712-20. [PMID: 22796539 DOI: 10.1152/ajpheart.00269.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.
Collapse
Affiliation(s)
- Jacob I Laughner
- Department of Biomedical Engineering, Washington University in Saint Louis, Missouri, USA
| | | | | | | | | |
Collapse
|