1
|
Joven ZE, Raj P, Barman I. Material-agnostic characterization of spatially offset Raman spectroscopy in turbid media via Monte Carlo simulations. Analyst 2024; 149:5463-5475. [PMID: 39397651 DOI: 10.1039/d4an01044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Spatially offset Raman spectroscopy (SORS) is a transformative method for probing subsurface chemical compositions in turbid media. This systematic study of Monte Carlo simulations provides closed-form characterizations of key SORS parameters, such as the distribution of spatial origins of collected Raman photons and optimal SORS geometry to selectively interrogate a subsurface region of interest. These results are unified across an extensive range of material properties by multiplying spatial dimensions by the medium's effective attenuation coefficient, which can be calculated when the absorption and reduced scattering coefficients are known from the literature or experimentation. This method of spatial nondimensionalization is validated via goodness-of-fit analysis on the aggregate models and by training a subsurface sample localization model on a heterogeneous population of materials. The findings reported here advance the understanding of SORS phenomena while providing a quantitative and widely applicable foundation for designing and interpreting SORS experiments, facilitating its application in disciplines such as biomedical, materials science, and cultural heritage fields.
Collapse
Affiliation(s)
- Zuriel Erikson Joven
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Kim MS, An J, Lee JH, Lee SH, Min S, Kim YB, Song M, Park SH, Nam KY, Park HJ, Kim KS, Oh SH, Hahn D, Moon J, Park JW, Park JS, Kim TS, Kim BJ, Lee KJ. Clinical Validation of Face-Fit Surface-Lighting Micro Light-Emitting Diode Mask for Skin Anti-Aging Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411651. [PMID: 39439130 DOI: 10.1002/adma.202411651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Photobiomodulation therapy based on micro light-emitting diodes (µLEDs) holds remarkable potential for the beauty industry. Here, a cosmetically effective face-fit surface-lighting µLED mask for skin anti-aging is introduced. The face-conformable mask enables deep tissue treatment through proximal light irradiation, with a 3D origami structure capable of adapting to complex facial contours with closed adherence. A blister-assisted laser transfer achieves rapid and accurate µLEDs transfer at a high throughput of 50 chips per second, facilitating a mass-producible and large-area process. Finally, clinical trials demonstrate significant improvements in elasticity, sagging, and wrinkles across six facial areas, with a maximum enhancement of 340% in deep skin elasticity of the perioral area compared to the conventional LED mask group.
Collapse
Affiliation(s)
- Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jae Hee Lee
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Seongwook Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Ki Yun Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Hong Jin Park
- BSP Co., Ltd, 170 Burim-ro, Dongan-Gu, Anyang-Si, Gyeonggi-Do, 14055, Republic of Korea
| | - Ki Soo Kim
- Fronics Co., Ltd, 754, Seolleung-Ro, Gangnam-gu, Seoul, 06062, Republic of Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dongseon Hahn
- PACIFICTECH Co., Ltd, 100, Hangang-Daero, Yongsan-Gu, Seoul, 02751, Republic of Korea
| | - Jongsoo Moon
- PACIFICTECH Co., Ltd, 100, Hangang-Daero, Yongsan-Gu, Seoul, 02751, Republic of Korea
| | - June Whan Park
- Research and Innovation Center, AMOREPACIFIC, 1920, Yonggu-Daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 17074, Republic of Korea
| | - Jae Sung Park
- Yonsei Myview Clinic, 301, Sadang-Ro, Dongjak-Gu, Seoul, 07008, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-Ro, Dongjak-Gu, Seoul, 06973, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Li Y, Lin Y, Li B, Feng T, Li D, Li Y, Wu Y, Ta D. Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm. JOURNAL OF BIOPHOTONICS 2024:e202400203. [PMID: 39438435 DOI: 10.1002/jbio.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO2) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO2 estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO2 estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yi Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Boyi Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ting Feng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Dan Li
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
4
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
5
|
Wolff A, Klingner N, Thompson W, Zhou Y, Lin J, Xiao Y. A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1197-1207. [PMID: 39355300 PMCID: PMC11443649 DOI: 10.3762/bjnano.15.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.
Collapse
Affiliation(s)
- Annalena Wolff
- Kavli Nanoscience Institute, California Institute of Technology (Caltech), Pasadena CA91125, USA
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
| | - Nico Klingner
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | | | - Yinghong Zhou
- School of Dentistry, The University of Queensland Brisbane QLD 4006, Australia
| | - Jinying Lin
- Department of Implantology, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast QLD 4222, Australia
| |
Collapse
|
6
|
Boamfa A, Coverstone C, Abdalsalam O, de Almeida Barreto AF, Wei A, de Wolf JR, Schoustra SM, O'Sullivan TD, Bosschaart N. Diffuse optical spectroscopy of lactating and non-lactating human mammary physiology. BIOMEDICAL OPTICS EXPRESS 2024; 15:5429-5441. [PMID: 39296405 PMCID: PMC11407238 DOI: 10.1364/boe.527944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/21/2024]
Abstract
Breastfeeding provides widely recognized advantages for infant and maternal health. Unfortunately, many women experience trouble with breastfeeding. Nevertheless, few suitable imaging modalities are available to study human lactation and determine the possible causes of breastfeeding problems. In this study, we apply broadband, quantitative diffuse optical spectroscopy (DOS) for this purpose. We present a study of fourteen lactating and eight similarly aged, premenopausal, non-lactating women to investigate the feasibility of DOS to study the optical and physiological differences between 1) lactating and non-lactating breasts, 2) the areolar and non-areolar region within the breast, and 3) lactating breasts before and after milk extraction. Our study shows that i) the median total hemoglobin concentration [tHb] of the lactating breast is 51% higher than for the non-lactating breast. ii) the median [tHb] of the lactating breast is 37% higher in the areolar region compared to the non-areolar region. iii) lactating breasts exhibit a positive median difference of 8% in [tHb] after milk extraction. Our findings are consistent with the expected physiological changes that occur during the lactation period. Importantly, we show that DOS provides unique insight into breast tissue composition and physiology, serving as a foundation for future application of the technique in lactation research.
Collapse
Affiliation(s)
- Ana Boamfa
- University of Twente, TechMed Centre, Biomedical Photonic Imaging Group, Drienerlolaan 5, Enschede, The Netherlands
| | - Caitlin Coverstone
- University of Notre Dame, Dept. of Electrical Engineering, 275 Fitzpatrick Hall, Notre Dame, IN, USA
| | - Ola Abdalsalam
- University of Notre Dame, Dept. of Electrical Engineering, 275 Fitzpatrick Hall, Notre Dame, IN, USA
| | | | - Alicia Wei
- University of Notre Dame, Dept. of Electrical Engineering, 275 Fitzpatrick Hall, Notre Dame, IN, USA
| | - Johanna Rebecca de Wolf
- University of Twente, TechMed Centre, Biomedical Photonic Imaging Group, Drienerlolaan 5, Enschede, The Netherlands
| | - Sjoukje M Schoustra
- University of Twente, TechMed Centre, Biomedical Photonic Imaging Group, Drienerlolaan 5, Enschede, The Netherlands
| | - Thomas D O'Sullivan
- University of Notre Dame, Dept. of Electrical Engineering, 275 Fitzpatrick Hall, Notre Dame, IN, USA
| | - Nienke Bosschaart
- University of Twente, TechMed Centre, Biomedical Photonic Imaging Group, Drienerlolaan 5, Enschede, The Netherlands
| |
Collapse
|
7
|
Raj P, Wu L, Almeida C, Conway L, Tanwar S, Middendorf J, Barman I. Shining Light on Osteoarthritis: Spatially Offset Raman Spectroscopy as a Window into Cartilage Health. ACS Sens 2024; 9:3794-3804. [PMID: 38976969 DOI: 10.1021/acssensors.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Articular cartilage is a complex tissue, and early detection of osteoarthritis (OA) is crucial for effective treatment. However, current imaging modalities lack molecular specificity and primarily detect late-stage changes. In this study, we propose the use of spatially offset Raman spectroscopy (SORS) for noninvasive, depth-dependent, and molecular-specific diagnostics of articular cartilage. We demonstrate the potential of SORS to penetrate deep layers of cartilage, providing a comprehensive understanding of disease progression. Our SORS measurements were characterized and validated through mechanical and histological techniques, revealing strong correlations between spectroscopic measurements and both Young's modulus and depth of cartilage damage. By longitudinally monitoring enzymatically degraded condyles, we further developed a depth-dependent damage-tracking method. Our analysis revealed distinct components related to sample depth and glycosaminoglycan (GAG) changes, offering a comprehensive picture of cartilage health. Collectively, these findings highlight the potential of SORS as a valuable tool for enhancing OA management and improving patient outcomes.
Collapse
Affiliation(s)
- Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig Almeida
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lauren Conway
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jill Middendorf
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
8
|
Zheng S, Lu L, Yingsa H, Meichen S. Deep learning framework for three-dimensional surface reconstruction of object of interest in photoacoustic tomography. OPTICS EXPRESS 2024; 32:6037-6061. [PMID: 38439316 DOI: 10.1364/oe.507476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Photoacoustic tomography (PAT) is a non-ionizing hybrid imaging technology of clinical importance that combines the high contrast of optical imaging with the high penetration of ultrasonic imaging. Two-dimensional (2D) tomographic images can only provide the cross-sectional structure of the imaging target rather than its overall spatial morphology. This work proposes a deep learning framework for reconstructing three-dimensional (3D) surface of an object of interest from a series of 2D images. It achieves end-to-end mapping from a series of 2D images to a 3D image, visually displaying the overall morphology of the object. The framework consists of four modules: segmentation module, point cloud generation module, point cloud completion module, and mesh conversion module, which respectively implement the tasks of segmenting a region of interest, generating a sparse point cloud, completing sparse point cloud and reconstructing 3D surface. The network model is trained on simulation data sets and verified on simulation, phantom, and in vivo data sets. The results showed superior 3D reconstruction performance both visually and on the basis of quantitative evaluation metrics compared to the state-of-the-art non-learning and learning approaches. This method potentially enables high-precision 3D surface reconstruction from the tomographic images output by the preclinical PAT system without changing the imaging system. It provides a general deep learning scheme for 3D reconstruction from tomographic scanning data.
Collapse
|
9
|
Erdenedalai K, Maltais-Tariant R, Dehaes M, Boudoux C. MCOCT: an experimentally and numerically validated, open-source Monte Carlo simulator for optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:624-640. [PMID: 38404350 PMCID: PMC10890866 DOI: 10.1364/boe.504061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/27/2024]
Abstract
Here, we present MCOCT, a Monte Carlo simulator for optical coherence tomography (OCT), incorporating a Gaussian illumination scheme and bias to increase backscattered event collection. MCOCT optical fluence was numerically compared and validated to an established simulator (MCX) and showed concordance at the focus while diverging slightly with distance to it. MCOCT OCT signals were experimentally compared and validated to OCT signals acquired in tissue-mimicking phantoms with known optical properties and showed a similar attenuation pattern with increasing depth while diverging beyond 1.5 mm and proximal to layer interfaces. MCOCT may help in the design of OCT systems for a wide range of applications.
Collapse
Affiliation(s)
- Khaliun Erdenedalai
- Polytechnique Montreal, Department of Engineering Physics, H3T 1J4, Montreal, Canada
| | | | - Mathieu Dehaes
- University of Montreal, Department of Radiology, Radio-oncology and Nuclear Medicine, H3T 1J4, Montreal, Canada
- Sainte-Justine University Hospital Center, Research Center, H3T 1C5, Montreal, Canada
- University of Montreal, Institute of Biomedical Engineering, H3T 1J4, Montreal, Canada
| | - Caroline Boudoux
- Polytechnique Montreal, Department of Engineering Physics, H3T 1J4, Montreal, Canada
- Sainte-Justine University Hospital Center, Research Center, H3T 1C5, Montreal, Canada
- Castor Optics, H3T 2B1, Montreal, Canada
| |
Collapse
|
10
|
Losch MS, Heintz JD, Edström E, Elmi-Terander A, Dankelman J, Hendriks BHW. Fiber-Optic Pedicle Probes to Advance Spine Surgery through Diffuse Reflectance Spectroscopy. Bioengineering (Basel) 2024; 11:61. [PMID: 38247938 PMCID: PMC10813258 DOI: 10.3390/bioengineering11010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Diffuse Reflectance Spectroscopy (DRS) can provide tissue feedback for pedicle screw placement in spine surgery, yet the integration of fiber optics into the tip of the pedicle probe, a device used to pierce through bone, is challenging, since the optical probing depth and signal-to-noise ratio (SNR) are affected negatively compared to those of a blunt DRS probe. Through Monte Carlo simulations and optical phantom experiments, we show how differences in the shape of the instrument tip influence the acquired spectrum. Our findings demonstrate that a single bevel with an angle of 30∘ offers a solution to anticipate cortical breaches during pedicle screw placement. Compared to a blunt probe, the optical probing depth and SNR of a cone tip are reduced by 50%. The single bevel tip excels with 75% of the optical probing depth and a SNR remaining at approximately ⅔, facilitating the construction of a surgical instrument with integrated DRS.
Collapse
Affiliation(s)
- Merle S. Losch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 CD Delft, The Netherlands (J.D.)
| | - Justin D. Heintz
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 CD Delft, The Netherlands (J.D.)
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Capio Spine Center, 115 26 Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Capio Spine Center, 115 26 Stockholm, Sweden
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 CD Delft, The Netherlands (J.D.)
| | - Benno H. W. Hendriks
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 CD Delft, The Netherlands (J.D.)
- Image Guided Therapy and Ultrasound Devices and System Department, Philips Research, Royal Philips NV, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
11
|
Gao Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. 4D spectral-spatial computational photoacoustic dermoscopy. PHOTOACOUSTICS 2023; 34:100572. [PMID: 38058749 PMCID: PMC10696115 DOI: 10.1016/j.pacs.2023.100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Photoacoustic dermoscopy (PAD) is an emerging non-invasive imaging technology aids in the diagnosis of dermatological conditions by obtaining optical absorption information of skin tissues. Despite advances in PAD, it remains unclear how to obtain quantitative accuracy of the reconstructed PAD images according to the optical and acoustic properties of multilayered skin, the wavelength and distribution of excitation light, and the detection performance of ultrasound transducers. In this work, a computing method of four-dimensional (4D) spectral-spatial imaging for PAD is developed to enable quantitative analysis and optimization of structural and functional imaging of skin. This method takes the optical and acoustic properties of heterogeneous skin tissues into account, which can be used to correct the optical field of excitation light, detectable ultrasonic field, and provide accurate single-spectrum analysis or multi-spectral imaging solutions of PAD for multilayered skin tissues. A series of experiments were performed, and simulation datasets obtained from the computational model were used to train neural networks to further improve the imaging quality of the PAD system. All the results demonstrated the method could contribute to the development and optimization of clinical PADs by datasets with multiple variable parameters, and provide clinical predictability of photoacoustic (PA) data for human skin.
Collapse
Affiliation(s)
- Yang Gao
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Ting Feng
- Fudan University, Academy for Engineering and Technology, Shanghai 200433, China
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qian Chen
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Chao Zuo
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Haigang Ma
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| |
Collapse
|
12
|
Kim D, Kim H. Analysis of temperature behavior in biological tissue in photothermal therapy according to laser irradiation angle. Bioengineered 2023; 14:2252668. [PMID: 37661750 PMCID: PMC10478739 DOI: 10.1080/21655979.2023.2252668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 09/05/2023] Open
Abstract
The type of death of biological tissue varies with temperature and is broadly classified as apoptosis and necrosis. A new treatment called photothermal therapy is being studied on this basis. Photothermal therapy is a treatment technique based on photothermal effects and has the advantage of not requiring incisions and, therefore, no bleeding. In this study, a numerical analysis of photothermal therapy for squamous cell carcinoma was performed. Photothermal agents used were gold nanoparticles, and the photothermal therapy effect was confirmed by changing the angle of the laser irradiating the tumor tissue. The effectiveness of photothermal therapy was quantitatively assessed on the basis of three apoptotic variables. Further, the volume fraction of gold nanoparticles in the tumor tissue and laser intensity with optimal therapeutic effect for different laser irradiation angles were studied. Thus, the findings of this study can aid the practical implementation of photothermal therapy in the future.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
13
|
Clennell A, Nguyen V, Yakovlev VV, Doronin A. Neu(t)ralMC: energy-efficient open source Monte Carlo algorithm for assessing photon transport in turbid media. OPTICS EXPRESS 2023; 31:30921-30931. [PMID: 37710624 PMCID: PMC10544956 DOI: 10.1364/oe.496516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Light propagation in turbid mediums such as atmosphere, fluids, and biological tissues is a challenging problem which necessitates accurate simulation techniques to account for the effects of multiple scattering. The Monte Carlo method has long established itself as a gold standard and is widely adopted for simulating light transport, however, its computationally intensive nature often requires significant processing power and energy consumption. In this paper a novel, open source Monte Carlo algorithm is introduced which is specifically designed for use with energy-efficient processors, effectively addressing those challenges, while maintaining the accuracy/compatibility and outperforming existing solutions. The proposed implementation optimizes photon transport simulations by exploiting the unique capabilities of Apple's low-power, high-performance M-family of chips. The developed method has been implemented in an open-source software package, enabling seamless adaptation of developed algorithms for specific applications. The accuracy and performance are validated using comprehensive comparison with existing solvers commonly used for biomedical imaging. The results demonstrate that the new algorithm achieves comparable accuracy levels to those of existing techniques while significantly reducing computational time and energy consumption.
Collapse
Affiliation(s)
- Abigail Clennell
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Vinh Nguyen
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, USA
| | - Alexander Doronin
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
14
|
Samolis PD, Sander MY, Hong MK, Erramilli S, Narayan O. Thermal transport across membranes and the Kapitza length from photothermal microscopy. J Biol Phys 2023; 49:365-381. [PMID: 37477759 PMCID: PMC10397174 DOI: 10.1007/s10867-023-09636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green's function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.
Collapse
Affiliation(s)
- Panagis D Samolis
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Michelle Y Sander
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Mi K Hong
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Shyamsunder Erramilli
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- The Photonics Center, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| | - Onuttom Narayan
- Department of Physics, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
15
|
Huo H, Deng H, Gao J, Duan H, Ma C. Mitigating Under-Sampling Artifacts in 3D Photoacoustic Imaging Using Res-UNet Based on Digital Breast Phantom. SENSORS (BASEL, SWITZERLAND) 2023; 23:6970. [PMID: 37571753 PMCID: PMC10422607 DOI: 10.3390/s23156970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
In recent years, photoacoustic (PA) imaging has rapidly grown as a non-invasive screening technique for breast cancer detection using three-dimensional (3D) hemispherical arrays due to their large field of view. However, the development of breast imaging systems is hindered by a lack of patients and ground truth samples, as well as under-sampling problems caused by high costs. Most research related to solving these problems in the PA field were based on 2D transducer arrays or simple regular shape phantoms for 3D transducer arrays or images from other modalities. Therefore, we demonstrate an effective method for removing under-sampling artifacts based on deep neural network (DNN) to reconstruct high-quality PA images using numerical digital breast simulations. We constructed 3D digital breast phantoms based on human anatomical structures and physical properties, which were then subjected to 3D Monte-Carlo and K-wave acoustic simulations to mimic acoustic propagation for hemispherical transducer arrays. Finally, we applied a 3D delay-and-sum reconstruction algorithm and a Res-UNet network to achieve higher resolution on sparsely-sampled data. Our results indicate that when using a 757 nm laser with uniform intensity distribution illuminated on a numerical digital breast, the imaging depth can reach 3 cm with 0.25 mm spatial resolution. In addition, the proposed DNN can significantly enhance image quality by up to 78.4%, as measured by MS-SSIM, and reduce background artifacts by up to 19.0%, as measured by PSNR, even at an under-sampling ratio of 10%. The post-processing time for these improvements is only 0.6 s. This paper suggests a new 3D real time DNN method addressing the sparse sampling problem based on numerical digital breast simulations, this approach can also be applied to clinical data and accelerate the development of 3D photoacoustic hemispherical transducer arrays for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Haoming Huo
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Handi Deng
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jianpan Gao
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Hanqing Duan
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Ma
- Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
- Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Kim D, Paik J, Kim H. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy. Sci Rep 2023; 13:12135. [PMID: 37495612 PMCID: PMC10371995 DOI: 10.1038/s41598-023-39040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Lasers are used in various fields, however, in the medical field, they are mainly used for incision or chemotherapy. Photothermal therapy (PTT) is an anti-cancer treatment technique that uses lasers and the photothermal effect to increase the temperature of tumor tissue and induce its death. In this study, the therapeutic effect of PTT using gold nanoparticles as a photothermal converter was analyzed numerically for the occurrence of squamous cell carcinoma inside a skin section consisting four layers. Numerical modeling was implemented to calculate the temperature distribution inside the biological tissue while varying the distribution radius of gold nanoparticles in the tumor tissue, the number of injections, and the intensity of the irradiating laser. For the given situation, the optimal treatment effect was observed when the distribution radius ratio of the injected gold nanoparticles (GNPs) was 1, the number of injections was 7, and the intensity of the irradiated laser was 52 mW. Three apoptotic variables were used to quantitively evaluate the effect of PTT in each case and thus suggest the optimal treatment effect. However, although the temperature range at which apoptosis occurs is known, the maintenance of that temperature range is still under research and the temporal influence of apoptosis remains to be determined.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea
| | - Jeeyong Paik
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-Do, Suwon-Si, 16499, Korea.
| |
Collapse
|
17
|
Shimojo Y, Sudo K, Nishimura T, Ozawa T, Tsuruta D, Awazu K. Transient simulation of laser ablation based on Monte Carlo light transport with dynamic optical properties model. Sci Rep 2023; 13:11898. [PMID: 37488156 PMCID: PMC10366136 DOI: 10.1038/s41598-023-39026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Laser ablation is a minimally invasive therapeutic technique to denature tumors through coagulation and/or vaporization. Computational simulations of laser ablation can evaluate treatment outcomes quantitatively and provide numerical indices to determine treatment conditions, thus accelerating the technique's clinical application. These simulations involve calculations of light transport, thermal diffusion, and the extent of thermal damage. The optical properties of tissue, which govern light transport through the tissue, vary during heating, and this affects the treatment outcomes. Nevertheless, the optical properties in conventional simulations of coagulation and vaporization remain constant. Here, we propose a laser ablation simulation based on Monte Carlo light transport with a dynamic optical properties (DOP) model. The proposed simulation is validated by performing optical properties measurements and laser irradiation experiments on porcine liver tissue. The DOP model showed the replicability of the changes in tissue optical properties during heating. Furthermore, the proposed simulation estimated coagulation areas that were comparable to experimental results at low-power irradiation settings and provided more than 2.5 times higher accuracy when calculating coagulation and vaporization areas than simulations using static optical properties at high-power irradiation settings. Our results demonstrate the proposed simulation's applicability to coagulation and vaporization region calculations in tissue for retrospectively evaluating the treatment effects of laser ablation.
Collapse
Affiliation(s)
- Yu Shimojo
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi 5-3-1, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Kazuma Sudo
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Takahiro Nishimura
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| | - Toshiyuki Ozawa
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Joo MG, Lim DH, Park KK, Baek J, Choi JM, Baac HW. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO 2 Measurement with High Sensitivity and Low Power Consumption. BIOSENSORS 2023; 13:711. [PMID: 37504110 PMCID: PMC10377640 DOI: 10.3390/bios13070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
In this study, we demonstrated a Monte Carlo simulation to model a finger structure and to calculate the intensity of photons passing through tissues, in order to determine optimal angular separation between a photodetector (PD) and a light-emitting diode (LED), to detect SpO2. Furthermore, our model was used to suggest a mirror-coated ring-type pulse oximeter to improve the sensitivity by up to 80% and improve power consumption by up to 65% compared to the mirror-uncoated structure. A ring-type pulse oximeter (RPO) is widely used to detect photoplethysmography (PPG) signals for SpO2 measurement during sleep and health-status monitoring. Device sensitivity and the power consumption of an RPO, which are key performance indicators, vary greatly with the geometrical arrangement of PD and LED within the inner surface of an RPO. We propose a reflection-boosted design of an RPO to achieve both high sensitivity and low power consumption, and determine an optimal configuration of a PD and LED by performing a 3D Monte Carlo simulation and confirming its agreement with experimental measurement. In order to confirm the reflection-boosted performance in terms of signal-to-noise ratio, R ratio, and perfusion index (PI), RPOs were fabricated with and without a highly reflective coating, and then used for SpO2 measurement from eight participants. Our simulation allows the numerical calculation of the intensity of photon passing and scattering through finger tissues. The reflection-boosted RPO enables reliable measurement with high sensitivity, resulting in less power consumption for the LED and longer device usage than conventional RPOs without any reflective coating, in order to maintain the same level of SNR and PI. Compared to the non-reflective reference RPO, the reflection-boosted RPO design greatly enhanced both detected light intensity (67% in dc and 322% in ac signals at a wavelength λ1 = 660 nm, and also 81% and 375% at λ2 = 940 nm, respectively) and PI (23.3% at λ1 and 25.5% at λ2). Thus, the reflection-boosted design not only enhanced measurement reliability but also significantly improved power consumption, i.e., by requiring only 36% and 30% power to drive the LED sources with λ1 and λ2, respectively, to produce the device performance of a non-reflective RPO reference. It is expected that our proposed RPO provides long-term monitoring capability with low power consumption and an enhanced PI for SpO2 measurement.
Collapse
Affiliation(s)
- Min Gyu Joo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae Hyeong Lim
- Department of Digital Media Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Health H/W R&D Group, Samsung Electronics, Suwon 16677, Republic of Korea
| | - Kyu-Kwan Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Baek
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Min Choi
- Health H/W R&D Group, Samsung Electronics, Suwon 16677, Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Quantitative Analysis of Photothermal Therapy of Tumor Tissue Using Various Gold Nanoparticle Injection Schemes. Pharmaceutics 2023; 15:pharmaceutics15030911. [PMID: 36986772 PMCID: PMC10054082 DOI: 10.3390/pharmaceutics15030911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Photothermal therapy is a new chemotherapy technique using photothermal effects, a phenomenon in which light energy is converted into thermal energy. Since the treatment technique is performed without surgical incision, it does not cause bleeding and patients are expected to make rapid recoveries, which are significant advantages. In this study, photothermal therapy with direct injection of gold nanoparticles into tumor tissue was simulated through numerical modeling. The treatment effect resulting from changing the intensity of the irradiated laser, volume fraction of the injected gold nanoparticles, and number of gold nanoparticle injections was quantitatively evaluated. The discrete dipole approximation method was applied to calculate the optical properties of the entire medium, and the Monte Carlo method was applied to identify the absorption and scattering behavior of lasers in tissue. In addition, by confirming the temperature distribution of the entire medium through the calculated light absorption distribution, the treatment effect of photothermal therapy was evaluated, and the optimal treatment conditions were suggested. This is expected to accelerate the popularization of photothermal therapy in the future.
Collapse
|
20
|
Jacques SL. Tutorial on Monte Carlo simulation of photon transport in biological tissues [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:559-576. [PMID: 36874486 PMCID: PMC9979671 DOI: 10.1364/boe.477237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
A tutorial introduction to Monte Carlo (MC) simulation of light propagation in biological tissues. MC statistical sampling is introduced, the basic design of a MC program is explained, and examples of application in biomedicine are presented.
Collapse
Affiliation(s)
- Steven L. Jacques
- Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195-5061, USA
| |
Collapse
|
21
|
Losch MS, Kardux F, Dankelman J, Hendriks BHW. Diffuse reflectance spectroscopy of the spine: improved breach detection with angulated fibers. BIOMEDICAL OPTICS EXPRESS 2023; 14:739-750. [PMID: 36874502 PMCID: PMC9979673 DOI: 10.1364/boe.471725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Accuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches. Difference in intensity magnitude between cancellous and cortical spectra increased with the fiber angle, suggesting that outward angulated fibers are beneficial in acute breach scenarios. Proximity to the cortical bone could be detected best with fibers angulated at θ f = 45 ∘ for impending breaches between θ p = 0 ∘ and θ p = 45 ∘ . An orthopedic surgical device comprising a third fiber perpendicular to the device axis could thus cover the full impending breach range from θ p = 0 ∘ to θ p = 90 ∘ .
Collapse
Affiliation(s)
- Merle S. Losch
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Famke Kardux
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Benno H. W. Hendriks
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Image Guided Therapy and Ultrasound Devices
and System Department, Philips Research,
Royal Philips NV, Eindhoven, The
Netherlands
| |
Collapse
|
22
|
Parilov E, Beeson K, Potasek M, Zhu T, Sun H, Sourvanos D. A Monte Carlo simulation for Moving Light Source in Intracavity PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:1235903. [PMID: 37206985 PMCID: PMC10194003 DOI: 10.1117/12.2649538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We developed a simulation method for modeling the light fluence delivery in intracavity Photodynamic Therapy (icav-PDT) for pleural lung cancer using a moving light source. Due to the large surface area of the pleural lung cavity, the light source needs to be moved to deliver a uniform dose around the entire cavity. While multiple fixed detectors are used for dosimetry at a few locations, an accurate simulation of light fluence and fluence rate is still needed for the rest of the cavity. We extended an existing Monte Carlo (MC) based light propagation solver to support moving light sources by densely sampling the continuous light source trajectory and assigning the proper number of photon packages launched along the way. The performance of Simphotek GPU CUDA-based implementation of the method - PEDSy-MC - has been demonstrated on a life-size lung-shaped phantom, custom printed for testing icav-PDT navigation system at the Perlman School of Medicine (PSM) - calculations completed under a minute (for some cases) and within minutes have been achieved. We demonstrate results within a 5% error of the analytic solution for multiple detectors in the phantom. PEDSy-MC is accompanied by a dose-cavity visualization tool that allows real-time inspection of dose values of the treated cavity in 2D and 3D, which will be expanded to ongoing clinical trials at PSM. PSM has developed a technology to measure 8-detectors in a pleural cavity phantom using Photofrin-mediated PDT that has been used during validation.
Collapse
Affiliation(s)
| | - Karl Beeson
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Mary Potasek
- Simphotek, Inc., 211 Warren St., Newark, NJ 07103
| | - Timothy Zhu
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjing Sun
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat Commun 2022; 13:7757. [PMID: 36522334 PMCID: PMC9755152 DOI: 10.1038/s41467-022-35455-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic patches, based on various mechanisms, allow continuous and noninvasive monitoring of biomolecules on the skin surface. However, to date, such devices are unable to sense biomolecules in deep tissues, which have a stronger and faster correlation with the human physiological status than those on the skin surface. Here, we demonstrate a photoacoustic patch for three-dimensional (3D) mapping of hemoglobin in deep tissues. This photoacoustic patch integrates an array of ultrasonic transducers and vertical-cavity surface-emitting laser (VCSEL) diodes on a common soft substrate. The high-power VCSEL diodes can generate laser pulses that penetrate >2 cm into biological tissues and activate hemoglobin molecules to generate acoustic waves, which can be collected by the transducers for 3D imaging of the hemoglobin with a high spatial resolution. Additionally, the photoacoustic signal amplitude and temperature have a linear relationship, which allows 3D mapping of core temperatures with high accuracy and fast response. With access to biomolecules in deep tissues, this technology adds unprecedented capabilities to wearable electronics and thus holds significant implications for various applications in both basic research and clinical practice.
Collapse
|
24
|
Study on the Optimal Treatment Condition Control of Photothermal Therapy under Various Cooling Time Ratios of Lasers. Int J Mol Sci 2022; 23:ijms232214266. [PMID: 36430744 PMCID: PMC9695643 DOI: 10.3390/ijms232214266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Photothermal therapy is a treatment technique that has attracted attention as an alternative to conventional surgical techniques. It is based on the photothermal effect, wherein light energy is converted into thermal energy, and facilitates rapid recovery after treatment. This study employed various laser irradiation conditions and presented conditions with the optimal treatment effects through a numerical analysis based on heat transfer. A skin layer comprising four stages containing squamous cell carcinoma was targeted, and the treatment effect was confirmed by varying the heating conditions of the laser and volume fraction of gold nanoparticles. The therapeutic effect was confirmed through both the apoptosis retention ratio, which quantitatively estimated the degree of maintenance of the apoptosis temperature range within the tumor, and the thermal hazard retention value, which quantitatively calculates the amount of thermal damage to the surrounding normal tissues. Finally, the optimal treatment conditions were determined based on the laser intensity, cooling time ratio, and volume fraction of injected gold nanoparticles through numerical analysis.
Collapse
|
25
|
Giglio NC, Fried NM. Nondestructive optical feedback systems for use during infrared laser sealing of blood vessels. Lasers Surg Med 2022; 54:875-882. [PMID: 35391495 PMCID: PMC9276627 DOI: 10.1002/lsm.23548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES High-power infrared lasers are capable of sealing blood vessels during surgery. A real-time diagnostic feedback system utilizing diffuse optical transmission is characterized by nondestructive identification of vessel seals. MATERIALS AND METHODS For real-time diffuse optical transmission experiments, two approaches were studied. First, a low-power (1.2 mW) visible aiming beam (635 nm) was used for diagnostics, co-aligned with the therapeutic high-power infrared beam (1470 nm). Second, the 1470 nm beam was used simultaneously for both therapy and diagnostics. For both studies, the 1470-nm laser delivered 5 W for 5 seconds for unsuccessful seals (control) versus 30 W for 5 seconds for successful seals, using a linear beam profile (8.4 × 2 mm). Diffuse optical transmission signals were correlated with vessel burst pressures measured using a standard burst pressure setup. RESULTS Diffuse optical transmission studies using the low-power, 635-nm aiming beam were promising. A decrease in the visible transmitted signal of 59 ± 11% was measured for successful seals versus 23 ± 8% for failed seals (p = 5.4E-8). The use of the high-power, 1470-nm infrared laser for simultaneous therapeutics and diagnostics proved inconsistent and unreliable, due in part to the dynamic and rapid changes in water content and absorption during the seal. CONCLUSIONS A low-power, visible aiming beam, integrated with the therapeutic high-power infrared diode laser, may be used as a real-time diagnostic system for indicating successful laser seals, based on significant changes in optical scattering and diffuse optical transmission between native and coagulated compressed vessels. With further development, this simple and inexpensive optical feedback system may be integrated into a laparoscopic device for laser de-activation upon successful vessel sealing.
Collapse
Affiliation(s)
- Nicholas C. Giglio
- Department of Physics and Optical ScienceUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Nathaniel M. Fried
- Department of Physics and Optical ScienceUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| |
Collapse
|
26
|
McMillan L, Bruce GD, Dholakia K. Meshless Monte Carlo radiation transfer method for curved geometries using signed distance functions. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210394SSRRR. [PMID: 35927789 PMCID: PMC9350858 DOI: 10.1117/1.jbo.27.8.083003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/20/2022] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Monte Carlo radiation transfer (MCRT) is the gold standard for modeling light transport in turbid media. Typical MCRT models use voxels or meshes to approximate experimental geometry. A voxel-based geometry does not allow for the precise modeling of smooth curved surfaces, such as may be found in biological systems or food and drink packaging. Mesh-based geometry allows arbitrary complex shapes with smooth curved surfaces to be modeled. However, mesh-based models also suffer from issues such as the computational cost of generating meshes and inaccuracies in how meshes handle reflections and refractions. AIM We present our algorithm, which we term signedMCRT (sMCRT), a geometry-based method that uses signed distance functions (SDF) to represent the geometry of the model. SDFs are capable of modeling smooth curved surfaces precisely while also modeling complex geometries. APPROACH We show that using SDFs to represent the problem's geometry is more precise than voxel and mesh-based methods. RESULTS sMCRT is validated against theoretical expressions, and voxel and mesh-based MCRT codes. We show that sMCRT can precisely model arbitrary complex geometries such as microvascular vessel network using SDFs. In comparison with the current state-of-the-art in MCRT methods specifically for curved surfaces, sMCRT is more precise for cases where the geometry can be defined using combinations of shapes. CONCLUSIONS We believe that SDF-based MCRT models are a complementary method to voxel and mesh models in terms of being able to model complex geometries and accurately treat curved surfaces, with a focus on precise simulation of reflections and refractions. sMCRT is publicly available at https://github.com/lewisfish/signedMCRT.
Collapse
Affiliation(s)
- Lewis McMillan
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
- Address all correspondence to Lewis McMillan,
| | - Graham D. Bruce
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
| | - Kishan Dholakia
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
- Yonsei University, College of Science, Department of Physics, Seoul, South Korea
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Jacques SL. History of Monte Carlo modeling of light transport in tissues using mcml.c. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-22-0516. [PMID: 35854412 PMCID: PMC9295704 DOI: 10.1117/1.jbo.27.8.083002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Monte Carlo simulation called mcml.c was written and shared on-line since 1992. This perspective summarizes the contributions by the people involved in the development of mcml.c, and work by others extending the code.
Collapse
Affiliation(s)
- Steven L. Jacques
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Steven L. Jacques,
| |
Collapse
|
28
|
Kim D, Kim H. Optimization of Photothermal Therapy Treatment Effect under Various Laser Irradiation Conditions. Int J Mol Sci 2022; 23:ijms23115928. [PMID: 35682607 PMCID: PMC9180462 DOI: 10.3390/ijms23115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The photothermal effect refers to a phenomenon in which light energy is converted into heat energy, and in the medical field, therapeutics based on this phenomenon are used for anticancer treatment. A new treatment technique called photothermal therapy kills tumor tissue through a temperature increase and has the advantages of no bleeding and fast recovery. In this study, the results of photothermal therapy for squamous cell carcinoma in the skin layer were analyzed numerically for different laser profiles, intensities, and radii and various concentrations of gold nanoparticles (AuNPs). According to the heat-transfer theory, the temperature distribution in the tissue was calculated for the conditions under which photothermal therapy was performed, and the therapeutic effect was quantitatively confirmed through three apoptotic variables. In addition, the laser intensity and the volume fraction of AuNPs were optimized, and the results provide useful criteria for optimizing the treatment effects in photothermal therapy.
Collapse
|
29
|
Vidallon MLP, Salimova E, Crawford SA, Teo BM, Tabor RF, Bishop AI. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. ULTRASONICS SONOCHEMISTRY 2022; 86:106041. [PMID: 35617883 PMCID: PMC9136156 DOI: 10.1016/j.ultsonch.2022.106041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.
Collapse
Affiliation(s)
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
30
|
Rapid Quantification of Tissue Perfusion Properties with a Two-Stage Look-Up Table. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Tissue perfusion properties reveal crucial information pertinent to clinical diagnosis and treatment. Multispectral spatial frequency domain imaging (SFDI) is an emerging imaging technique that has been widely used to quantify tissue perfusion properties. However, slow processing speed limits its usefulness in real-time imaging applications. In this study, we present a two-stage look-up table (LUT) approach that accurately and rapidly quantifies optical (absorption and reduced scattering maps) and perfusion (total hemoglobin and oxygen saturation maps) properties using stage-1 and stage-2 LUTs, respectively, based on reflectance images at 660 and 850 nm. The two-stage LUT can be implemented on both CPU and GPU computing platforms. Quantifying tissue perfusion properties using the simulated diffuse reflectance images, we achieved a quantification speed of 266, 174, and 74 frames per second for three image sizes 512 × 512, 1024 × 1024, and 2048 × 2048 pixels, respectively. Quantification of tissue perfusion properties was highly accurate with only 3.5% and 2.5% error for total hemoglobin and oxygen saturation quantification, respectively. The two-stage LUT has the potential to be integrated with dual-sensor cameras to enable real-time quantification of tissue hemodynamics.
Collapse
|
31
|
Arnold A, Fichera L. Identification of tissue optical properties during thermal laser-tissue interactions: An ensemble Kalman filter-based approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3574. [PMID: 35088944 DOI: 10.1002/cnm.3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In this article, we propose a computational framework to estimate the physical properties that govern the thermal response of laser-irradiated tissue. We focus in particular on two quantities, the absorption and scattering coefficients, which describe the optical absorption of light in the tissue and whose knowledge is vital to correctly plan medical laser treatments. To perform the estimation, we utilize an implementation of the ensemble Kalman filter (EnKF), a type of Bayesian filtering algorithm for data assimilation. Unlike prior approaches, in this work, we estimate the tissue optical properties based on observations of the tissue thermal response to laser irradiation. This method has the potential for straightforward implementation in a clinical setup, as it would only require a simple thermal sensor, for example, a miniaturized infrared camera. Because the optical properties of tissue can undergo shifts during laser exposure, we employ a variant of EnKF capable of tracking time-varying parameters. Through simulated experimental studies, we demonstrate the ability of the proposed technique to identify the tissue optical properties and track their dynamic changes during laser exposure, while simultaneously tracking changes in the tissue temperature at locations beneath the surface. We further demonstrate the framework's capability in estimating additional unknown tissue properties (i.e., the volumetric heat capacity and thermal conductivity) along with the optical properties of interest.
Collapse
Affiliation(s)
- Andrea Arnold
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Loris Fichera
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
32
|
Bürmen M, Pernuš F, Naglič P. MCDataset: a public reference dataset of Monte Carlo simulated quantities for multilayered and voxelated tissues computed by massively parallel PyXOpto Python package. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210365SSRRR. [PMID: 35437973 PMCID: PMC9016074 DOI: 10.1117/1.jbo.27.8.083012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
SIGNIFICANCE Current open-source Monte Carlo (MC) method implementations for light propagation modeling are many times tedious to build and require third-party licensed software that can often discourage prospective researchers in the biomedical optics community from fully utilizing the light propagation tools. Furthermore, the same drawback also limits rigorous cross-validation of physical quantities estimated by various MC codes. AIM Proposal of an open-source tool for light propagation modeling and an easily accessible dataset to encourage fruitful communications amongst researchers and pave the way to a more consistent comparison between the available implementations of the MC method. APPROACH The PyXOpto implementation of the MC method for multilayered and voxelated tissues based on the Python programming language and PyOpenCL extension enables massively parallel computation on numerous OpenCL-enabled devices. The proposed implementation is used to compute a large dataset of reflectance, transmittance, energy deposition, and sampling volume for various source, detector, and tissue configurations. RESULTS The proposed PyXOpto agrees well with the original MC implementation. However, further validation reveals a noticeable bias introduced by the random number generator used in the original MC implementation. CONCLUSIONS Establishing a common dataset is highly important for the validation of existing and development of MC codes for light propagation in turbid media.
Collapse
Affiliation(s)
- Miran Bürmen
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
- Sensum d.o.o., Ljubljana, Slovenia
| | - Peter Naglič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
- Address all correspondence to Peter Naglič,
| |
Collapse
|
33
|
Zhang S, Li C, Cao L, Moser MAJ, Zhang W, Qian Z, Zhang B. Modeling and ex vivo experimental validation of liver tissue carbonization with laser ablation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106697. [PMID: 35180678 DOI: 10.1016/j.cmpb.2022.106697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The purpose of this study was to model the process of liver tissue carbonization with laser ablation (LA). METHODS A dynamic heat source model was proposed and combined with the light distribution model as well as bioheat transfer model to predict the development of tissue carbonization with laser ablation (LA) using an ex vivo porcine liver tissue model. An ex vivo laser ablation experiment with porcine liver tissues using a custom-made 1064 nm bare fiber was then used to verify the simulation results at 3, 5, and 7 W laser administrations for 5 min. The spatiotemporal temperature distribution was monitored by measuring the temperature changes at three points close the fiber during LA. Both the experiment and simulation of the temperature, tissue carbonization zone, and ablation zone were then compared. RESULTS Four stages were recognized in the development of liver tissue carbonization during LA. The growth of the carbonization zone along the fiber axial and radial directions were different in the four stages. The carbonization zone along the fiber axial direction (L2) grew in the four stages with a sharp increase in the initial period and a minor increase in Stage 4. However, the change in the carbonization zone along the fiber radial direction (D2) increased dramatically (Stage 1) to a long-time plateau (Stages 2 and 3) followed by a slow growth in Stage 4. An acceptable agreement between the computer simulation and ex vivo experiment in the temperature changes at the three points was found at all three testing laser administrations. A similar result was also obtained for the dimensions of coagulation zone and ablation zone between the computer simulation and ex vivo experiment (carbonization zone: 2.99± 0.10 vs. 2.78 mm2, 67.39± 0.09 vs. 63.53 mm2, and 90.53± 0.11 vs. 85.15 mm2; ablation zone: 68.95± 0.28 vs. 65.29 mm2, 182.11± 0.24 vs. 213.81 mm2, and 244.80± 0.06 vs. 251.79 mm2 at 3, 5, and 7 W, respectively). CONCLUSION This study demonstrates that the proposed dynamic heat source model combined with the light distribution model as well as bioheat transfer model can predict the development of liver tissue carbonization with an acceptable accuracy. This study contributes to an improved understanding of the LA process in the treatment of liver tumors.
Collapse
Affiliation(s)
- Shiguang Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunlei Li
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201024, China
| | - Lin Cao
- Department of Automatic Control and Systems Engineering, the University of Sheffield, Sheffield, UK
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Zhiqin Qian
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bing Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
34
|
Capart A, Metwally K, Bastiancich C, Da Silva A. Multiphysical numerical study of photothermal therapy of glioblastoma with photoacoustic temperature monitoring in a mouse head. BIOMEDICAL OPTICS EXPRESS 2022; 13:1202-1223. [PMID: 35414964 PMCID: PMC8973158 DOI: 10.1364/boe.444193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
This paper presents a multiphysical numerical study of a photothermal therapy performed on a numerical phantom of a mouse head containing a glioblastoma. The study has been designed to be as realistic as possible. Heat diffusion simulations were performed on the phantom to understand the temperature evolution in the mouse head and therefore in the glioblastoma. The thermal dose has been calculated and lesions caused by heat are shown. The thermal damage on the tumor has also been quantified. To improve the effectiveness of the therapy, the photoabsorber's concentration was increased locally, at the tumor site, to mimic the effect of using absorbing contrast agents such as nanoparticles. Photoacoustic simulations were performed in order to monitor temperature in the phantom: as the Grüneisen parameter changes with the temperature, the photoacoustic signal undergoes changes that can be linked to temperature evolution. These photoacoustic simulations were performed at different instants during the therapy and the evolution of the photoacoustic signal as a function of the spatio-temporal distribution of the temperature in the phantom was observed and quantified. We have developed in this paper a numerical tool that can be used to help defining key parameters of a photothermal therapy.
Collapse
Affiliation(s)
- Antoine Capart
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
35
|
Quantitative Photoacoustic Reconstruction of the Optical Properties of Intervertebral Discs Using a Gradient Descent Scheme. PHOTONICS 2022. [DOI: 10.3390/photonics9020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intervertebral discs (IVD) are among the essential organs of the human body, ensuring the mobility of the spine. These organs possess a high proportion of water. However, as the discs age, this content decreases, which can potentially lead to various diseases called degenerative disc diseases. This water content is therefore an important indicator of the well-being of the disc. In this paper, we propose photoacoustic imaging as a means of probing a disc and quantitatively recovering its molecular composition, which should allow concluding on its state. An adjoint-assisted gradient descent scheme is implemented to recover the optical absorption coefficient in the disc, from which, if spectroscopic measurements are performed, the molecular composition can be deduced. The algorithm was tested on synthetic measurements. A realistic numerical phantom was built from magnetic resonance imaging of an actual IVD of a pig. A simplified experiment, with a single laser source, was performed. Results show the feasibility of using photoacoustics imaging to probe IVDs. The influences of exact and approximate formulations of the gradient are studied. The impact of noise on the reconstructions is also evaluated.
Collapse
|
36
|
Mostafavi SM, Amjadian M, Kavehvash Z, Shabany M. Fourier photoacoustic microscope improved resolution on single-pixel imaging. APPLIED OPTICS 2022; 61:1219-1228. [PMID: 35201175 DOI: 10.1364/ao.442628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A new single-pixel Fourier photoacoustic microscopy (PAM), to the best of our knowledge, is proposed to improve the resolution and region of interest (ROI) of an acquired image. In the previous structure of single-pixel Fourier PAM, called spatially invariant resolution PAM (SIR-PAM), the lateral resolution and ROI are limited by the digital micromirror device (DMD) pixel size and the number of pixels. This limitation is overcome here through illuminating fixed angle interfering plane waves, changing the fringe frequency via varying the frequency of the laser source. Given that the fringe sinusoidal patterns here can be produced by two mirrors, the DMD usage can be omitted. In this way, the fringe frequency can be changed in a wider spectrum, making it possible to capture a wider spectral bandwidth and thus a higher-resolution image. Also, the removal of the ROI limitation results in a high-resolution frequency-swept PAM structure. Monte Carlo simulations show 1.7 times improvement in lateral resolution compared to SIR-PAM based on the point-spread function and full-width-at-half-maximum.
Collapse
|
37
|
Fang Q, Yan S. MCX Cloud-a modern, scalable, high-performance and in-browser Monte Carlo simulation platform with cloud computing. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210206SSR. [PMID: 34989198 PMCID: PMC8728956 DOI: 10.1117/1.jbo.27.8.083008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Despite the ample progress made toward faster and more accurate Monte Carlo (MC) simulation tools over the past decade, the limited usability and accessibility of these advanced modeling tools remain key barriers to widespread use among the broad user community. AIM An open-source, high-performance, web-based MC simulator that builds upon modern cloud computing architectures is highly desirable to deliver state-of-the-art MC simulations and hardware acceleration to general users without the need for special hardware installation and optimization. APPROACH We have developed a configuration-free, in-browser 3D MC simulation platform-Monte Carlo eXtreme (MCX) Cloud-built upon an array of robust and modern technologies, including a Docker Swarm-based cloud-computing backend and a web-based graphical user interface (GUI) that supports in-browser 3D visualization, asynchronous data communication, and automatic data validation via JavaScript Object Notation (JSON) schemas. RESULTS The front-end of the MCX Cloud platform offers an intuitive simulation design, fast 3D data rendering, and convenient simulation sharing. The Docker Swarm container orchestration backend is highly scalable and can support high-demand GPU MC simulations using MCX over a dynamically expandable virtual cluster. CONCLUSION MCX Cloud makes fast, scalable, and feature-rich MC simulations readily available to all biophotonics researchers without overhead. It is fully open-source and can be freely accessed at http://mcx.space/cloud.
Collapse
Affiliation(s)
- Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Qianqian Fang,
| | - Shijie Yan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| |
Collapse
|
38
|
Punnoose J, Nachman H, Ashkenazi S. Oxygen Imaging for Non-Invasive Metastasis Detection. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010237. [PMID: 35009780 PMCID: PMC8749708 DOI: 10.3390/s22010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 05/16/2023]
Abstract
Sentinel lymph node (SLN) biopsy is an integral part of treatment planning for a variety of cancers as it evaluates whether a tumor has metastasized, an event that significantly reduces survival probability. However, this invasive procedure is associated with patient morbidity, and misses small metastatic deposits, resulting in the removal of additional nodes for tumors with high metastatic probability despite a negative SLN biopsy. To prevent this over-treatment and its associated morbidities for patients that were truly negative, we propose a tissue oxygen imaging method called Photoacoustic Lifetime Imaging (PALI) as an alternative or supplementary tool for SLN biopsy. As the hyper-metabolic state of cancer cells significantly depresses tissue oxygenation compared to normal tissue even for small metastatic deposits, we hypothesize that PALI can sensitively and specifically detect metastases. Before this hypothesis is tested, however, PALI's maximum imaging depth must be evaluated to determine the cancer types for which it is best suited. To evaluate imaging depth, we developed and simulated a phantom composed of tubing in a tissue-mimicking, optically scattering liquid. Our simulation and experimental results both show that PALI's maximum imaging depth is 16 mm. As most lymph nodes are deeper than 16 mm, ways to improve imaging depth, such as directly delivering light to the node using penetrating optical fibers, must be explored.
Collapse
Affiliation(s)
- Joshua Punnoose
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Henry Nachman
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Shai Ashkenazi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
39
|
Ajmal, Boonya-Ananta T, Rodriguez AJ, Du Le VN, Ramella-Roman JC. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal. BIOMEDICAL OPTICS EXPRESS 2021; 12:7445-7457. [PMID: 35003845 PMCID: PMC8713672 DOI: 10.1364/boe.439893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 08/23/2023]
Abstract
Commercially available wearable devices have been used for fitness and health management and their demand has increased over the last ten years. These "general wellness" and heart-rate monitoring devices have been cleared by the Food and Drug Administration for over-the-counter use, yet anecdotal and more systematic reports seem to indicate that their error is higher when used by individuals with elevated skin tone and high body mass index (BMI). In this work, we used Monte Carlo modeling of a photoplethysmography (PPG) signal to study the theoretical limits of three different wearable devices (Apple Watch series 5, Fitbit Versa 2 and Polar M600) when used by individuals with a BMI range of 20 to 45 and a Fitzpatrick skin scale 1 to 6. Our work shows that increased BMI and skin tone can induce a relative loss of signal of up to 61.2% in Fitbit versa 2, 32% in Apple S5 and 32.9% in Polar M600 when considering the closest source-detector pair configuration in these devices.
Collapse
Affiliation(s)
- Ajmal
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Tananant Boonya-Ananta
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Andres J. Rodriguez
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - V. N. Du Le
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Jessica C. Ramella-Roman
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
- Herbert Wertheim College of Medicine,
Florida International University, 11200 SW
8th St, Miami, FL 33199, USA
| |
Collapse
|
40
|
Al Mukaddim R, Ahmed R, Varghese T. Improving Minimum Variance Beamforming with Sub-Aperture Processing for Photoacoustic Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2879-2882. [PMID: 34891848 PMCID: PMC8908882 DOI: 10.1109/embc46164.2021.9630278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Minimum variance (MV) beamforming improves resolution and reduces sidelobes when compared to delay-and-sum (DAS) beamforming for photoacoustic imaging (PAI). However, some level of sidelobe signal and incoherent clutter persist degrading MV PAI quality. Here, an adaptive beamforming algorithm (PSAPMV) combining MV formulation and sub-aperture processing is proposed. In PSAPMV, the received channel data are split into two complementary nonoverlapping sub-apertures and beamformed using MV. A weighting matrix based on similarity between sub-aperture beamformed images was derived and multiplied with the full aperture MV image resulting in suppression of sidelobe and incoherent clutter in the PA image. Numerical simulation experiments with point targets, diffuse inclusions and microvasculature networks are used to validate PSAPMV. Quantitative evaluation was done in terms of main-lobe-to-side-lobe ratio, full width at half maximum (FWHM), contrast ratio (CR) and generalized contrast-to-noise ratio (gCNR). PSAPMV demonstrated improved beamforming performance both qualitatively and quantitatively. PSAPMV had higher resolution (FWHM =0.19 mm) than MV (0.21 mm) and DAS (0.22mm) in point target simulations, better target detectability (gCNR =0.99) than MV (0.89) and DAS (0.84) for diffuse inclusions and improved contrast (CR in microvasculature simulation, DAS = 15.38, MV = 22.42, PSAPMV = 51.74 dB).
Collapse
|
41
|
Abbasi H, Mostafavi SM, Kavehvash Z. Fast wavelet-based photoacoustic microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1673-1680. [PMID: 34807029 DOI: 10.1364/josaa.437862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach (about 47% better peak signal-to-noise ratio) compared to the latest structures in this field, achieving a high-resolution and high-quality image.
Collapse
|
42
|
Kim D, Kim H. Induction of Apoptotic Temperature in Photothermal Therapy under Various Heating Conditions in Multi-Layered Skin Structure. Int J Mol Sci 2021; 22:ijms222011091. [PMID: 34681748 PMCID: PMC8538441 DOI: 10.3390/ijms222011091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, photothermal therapy has attracted attention as an alternative treatment to conventional surgical techniques because it does not lead to bleeding and patients quickly recover after treatment compared to incisional surgery. Photothermal therapy induces tumor cell death through an increase in the temperature using the photothermal effect, which converts light energy into thermal energy. This study was conducted to perform numerical analysis based on heat transfer to induce apoptosis of tumor tissue under various heating conditions in photothermal therapy. The Monte Carlo method was applied to evaluate a multi-layered skin structure containing squamous cell carcinoma. Tissue-equivalent phantom experiments verified the numerical model. Based on the effective apoptosis retention ratio, the numerical analysis results showed the quantitative correlation for the laser intensity, volume fraction of gold nanorods injected into the tumor, and cooling time. This study reveals optimal conditions for maximizing apoptosis within tumor tissue while minimizing thermal damage to surrounding tissues under various heating conditions. This approach may be useful as a standard treatment when performing photothermal therapy.
Collapse
|
43
|
Wojtkiewicz S, Liebert A. Parallel, multi-purpose Monte Carlo code for simulation of light propagation in segmented tissues. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Caratenuto A, Zheng Y. Piston-Type Optical Modulator for Dynamic Thermal Radiation Tuning Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4372. [PMID: 34442893 PMCID: PMC8401391 DOI: 10.3390/ma14164372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
This study introduces a movable piston-like structure that provides a simple and cost-effective avenue for dynamically tuning thermal radiation. This structure leverages two materials with dissimilar optical responses-graphite and aluminum-to modulate from a state of high reflectance to a state of high absorptance. A cavity is created in the graphite to house an aluminum cylinder, which is displaced to actuate the device. In its raised state, the large aluminum surface area promotes a highly reflective response, while in its lowered state, the expanded graphite surface area and blackbody cavity-like interactions significantly enhance absorptance. By optimizing the area ratio, reflectance tunability of over 30% is achieved for nearly the entire ultraviolet, visible, and near-infrared wavelength regions. Furthermore, a theoretical analysis postulates wavelength-dependent effectivenesses as high as 0.70 for this method, indicating that tunabilities approaching 70% can be achieved by exploiting near-ideal absorbers and reflectors. The analog nature of this control method allows for an infinitely variable optical response between the upper and lower bounds of the device. These valuable characteristics would enable this material structure to serve practical applications, such as reducing cost and energy requirements for environmental temperature management operations.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Yi Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
45
|
Giglio NC, Fried NM. Computational Simulations for Infrared Laser Sealing and Cutting of Blood Vessels. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:1-8. [PMID: 33746498 PMCID: PMC7978229 DOI: 10.1109/jstqe.2020.3045912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blood vessel burst pressures were simulated and predicted for sealing and cutting of vessels in a two-step process, using low (<25 W), medium (~100 W), and high (200 W) power lasers at a wavelength of 1470 nm. Monte Carlo optical transport, heat transfer, Arrhenius integral tissue damage simulations, and vessel pressure equations were utilized. The purpose of these studies was to first validate the numerical model by comparison with experimental results (for low and medium power) and then to use the model to simulate parameters that could not be experimentally tested (for high power). The goal was to reduce the large range of parameters (power, irradiation time, and linear beam dimensions) to be tested in future experiments, for achieving short vessel sealing/cutting times, minimal bifurcated seal zones (BSZ), and high vessel burst pressures. Blood vessels were compressed to 400 μm thickness. A wide range of linear beam profiles (1-5 mm widths and 8-9.5 mm lengths), incident powers (20-200 W) and clinically relevant irradiation times (0.5-5.0 s) were simulated and peak seal and cut temperatures as well as thermal seal zones, ablation zones, and BSZ computed. A simplistic mathematical expression was used to estimate vessel burst pressures based on seal width. Optimal low-power parameters were: 24W/5s/8×2mm (sealing) and 24W/5s/8×1mm (cutting), yielding a BSZ of 0.4 mm, corresponding to experimental burst pressures of ~450 mmHg. Optimal medium-power parameters were: 90W/1s/9.5×3mm (sealing) and 90W/1s/9.5×1mm (cutting), yielding a BSZ of 0.9 mm for burst pressures of ~1300 mmHg. Simulated only optimal high-power parameters were: 200W/0.5s/9×3 mm (sealing) and 200W/0.5s/9×1mm (cutting), yielding a BSZ of 0.9 mm and extrapolated to predict a seal strength of ~1300 mmHg. All lasers produced seal zones between 0.4-1.5 mm, corresponding to high vessel burst pressures of 300-1300 mmHg (well above normal systolic blood pressure of 120 mmHg). Higher laser powers enable shorter sealing/cutting times and higher vessel strengths.
Collapse
Affiliation(s)
- Nicholas C Giglio
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Nathaniel M Fried
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
46
|
Mukaddim RA, Ahmed R, Varghese T. Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2336-2350. [PMID: 33606629 PMCID: PMC8330397 DOI: 10.1109/tuffc.2021.3060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS CF ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS CF , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS CF in vasculature simulations) and improved clutter suppression.
Collapse
|
47
|
Annular Fiber Probe for Interstitial Illumination in Photoacoustic Guidance of Radiofrequency Ablation. SENSORS 2021; 21:s21134458. [PMID: 34209996 PMCID: PMC8271966 DOI: 10.3390/s21134458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Unresectable liver tumors are commonly treated with percutaneous radiofrequency ablation (RFA). However, this technique is associated with high recurrence rates due to incomplete tumor ablation. Accurate image guidance of the RFA procedure contributes to successful ablation, but currently used imaging modalities have shortcomings in device guidance and treatment monitoring. We explore the potential of using photoacoustic (PA) imaging combined with conventional ultrasound (US) imaging for real-time RFA guidance. To overcome the low penetration depth of light in tissue, we have developed an annular fiber probe (AFP), which can be inserted into tissue enabling interstitial illumination of tissue. The AFP is a cannula with 72 optical fibers that allows an RFA device to slide through its lumen, thereby enabling PA imaging for RFA device guidance and ablation monitoring. We show that the PA signal from interstitial illumination is not affected by absorber-to-surface depth compared to extracorporeal illumination. We also demonstrate successful imaging of the RFA electrodes, a blood vessel mimic, a tumor-mimicking phantom, and ablated liver tissue boundaries in ex vivo chicken and bovine liver samples. PA-assisted needle guidance revealed clear needle tip visualization, a notable improvement to current US needle guidance. Our probe shows potential for RFA device guidance and ablation detection, which potentially aids in real-time monitoring.
Collapse
|
48
|
Torres VC, Li C, Brankov JG, Tichauer KM. Model-based system matrix for iterative reconstruction in sub-diffuse angular-domain fluorescence optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:1248-1262. [PMID: 33796351 PMCID: PMC7984804 DOI: 10.1364/boe.414404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with "truth" was improved from 0.15 ± 1.2 × 10-3 to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1 variance in µs ) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).
Collapse
Affiliation(s)
- Veronica C. Torres
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn Street, Chicago, IL 60616, USA
| | - Chengyue Li
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn Street, Chicago, IL 60616, USA
| | - Jovan G. Brankov
- Electrical and Computer Engineering, Illinois Institute of Technology, 3901 S Dearborn Street, Chicago, IL 60616, USA
| | - Kenneth M. Tichauer
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn Street, Chicago, IL 60616, USA
| |
Collapse
|
49
|
Bao Y, Deng H, Wang X, Zuo H, Ma C. Development of a digital breast phantom for photoacoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:1391-1406. [PMID: 33796361 PMCID: PMC7984796 DOI: 10.1364/boe.416406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 05/18/2023]
Abstract
Photoacoustic (PA) imaging provides morphological and functional information about angiogenesis and thus is potentially suitable for breast cancer diagnosis. However, the development of PA breast imaging has been hindered by inadequate patients and a lack of ground truth images. Here, we report a digital breast phantom with realistic acoustic and optical properties, with which a digital PA-ultrasound imaging pipeline is developed to create a diverse pool of virtual patients with three types of masses: ductal carcinoma in situ, invasive breast cancer, and fibroadenoma. The experimental results demonstrate that our model is realistic, flexible, and can be potentially useful for accelerating the development of PA breast imaging technology.
Collapse
Affiliation(s)
- Youwei Bao
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Handi Deng
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuanhao Wang
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongzhi Zuo
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Ma
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Innovation Center for Future Chip, Beijing, 100084, China
- Corresponding author:
| |
Collapse
|
50
|
Giglio NC, Fried NM. Sealing and Bisection of Blood Vessels using a 1470 nm Laser: Optical, Thermal, and Tissue Damage Simulations. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11621. [PMID: 34305258 DOI: 10.1117/12.2576795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A 1470-nm laser previously demonstrated faster sealing and cutting of blood vessels with lower thermal spread than radiofrequency and ultrasonic surgical devices. This study simulates laser sealing and cutting of vessels in a sequential two-step process, for low (< 25 W), medium (~ 100 W), and high (200 W) power lasers. Optical transport, heat transfer, and tissue damage simulations were conducted. The blood vessel was assumed to be compressed to 400 μm thickness, matching previous experimental studies. A wide range of linear beam profiles (1-5 mm widths and 8-9.5 mm lengths), incident powers (20-200 W) and irradiation times (0.5-5.0 s), were simulated. Peak seal and cut temperatures and bifurcated thermal seal zones were also simulated and compared with experimental results for model validation. Optimal low power laser parameters were: 24W/5s/8×2mm for sealing and 24W/5s/8×1mm for cutting, yielding thermal spread of 0.4 mm and corresponding to experimental vessel burst pressures (BP) of ~450 mmHg. Optimal medium-power laser parameters were: 90 W/1s/9.5×3mm for sealing and 90W/1s/9.5×1mm for cutting, yielding thermal spread of 0.9 mm for BP of ~1300 mmHg. Optimal high-power laser parameters were: 200W/0.5s/9×3mm for sealing and 200W/0.5s/9×1mm for cutting, yielding thermal spread of 0.9 mm and extrapolated to have BP of ~1300 mmHg. All lasers produced seal zones between 0.4-1.5 mm, correlating to high BP of 300-1300 mmHg. Higher laser powers enable shorter sealing and cutting times and higher vessel seal strengths.
Collapse
Affiliation(s)
- Nicholas C Giglio
- Department of Physics and Optical Science, University of North Carolina at Charlotte, NC
| | - Nathaniel M Fried
- Department of Physics and Optical Science, University of North Carolina at Charlotte, NC
| |
Collapse
|