1
|
Svenskaya YI, Verkhovskii RA, Zaytsev SM, Lademann J, Genina EA. Current issues in optical monitoring of drug delivery via hair follicles. Adv Drug Deliv Rev 2025; 217:115477. [PMID: 39615632 DOI: 10.1016/j.addr.2024.115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive in vivo methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.
Collapse
Affiliation(s)
| | | | - Sergey M Zaytsev
- CRAN UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elina A Genina
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| |
Collapse
|
2
|
Krolopp Á, Fésűs L, Szipőcs G, Wikonkál N, Szipőcs R. A 20 MHz Repetition Rate, Sub-Picosecond Ti-Sapphire Laser for Fiber Delivery in Nonlinear Microscopy of the Skin. Life (Basel) 2024; 14:231. [PMID: 38398740 PMCID: PMC10889949 DOI: 10.3390/life14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Nonlinear microscopy (NM) enables us to investigate the morphology or monitor the physiological processes of the skin through the use of ultrafast lasers. Fiber (or fiber-coupled) lasers are of great interest because they can easily be combined with a handheld, scanning nonlinear microscope. This latter feature greatly increases the utility of NM for pre-clinical applications and in vivo tissue imaging. Here, we present a fiber-coupled, sub-ps Ti-sapphire laser system being optimized for in vivo, stain-free, 3D imaging of skin alterations with a low thermal load of the skin. The laser is pumped by a low-cost, 2.1 W, 532 nm pump laser and delivers 0.5-1 ps, high-peak-power pulses at a ~20 MHz repetition rate. The spectral bandwidth of the laser is below 2 nm, which results in a low sensitivity for dispersion during fiber delivery. The reduction in the peak intensity due to the increased pulse duration is compensated by the lower repetition rate of our laser. In our proof-of-concept imaging experiments, a ~1.8 m long, commercial hollow-core photonic bandgap fiber was used for fiber delivery. Fresh and frozen skin biopsies of different skin alterations (e.g., adult hemangioma, basal cell cancer) and an unaffected control were used for high-quality, two-photon excitation fluorescence microscopy (2PEF) and second-harmonic generation (SHG) z-stack (3D) imaging.
Collapse
Affiliation(s)
- Ádám Krolopp
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - Luca Fésűs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, H-1085 Budapest, Hungary
| | - Gergely Szipőcs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - Norbert Wikonkál
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, H-1085 Budapest, Hungary
| | - Róbert Szipőcs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
3
|
Wang Z, Chen Y, Pan S, Zhang W, Guo Z, Wang Y, Yang S. Quantitative classification of melasma with photoacoustic microscopy: a pilot study. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11504. [PMID: 37927370 PMCID: PMC10624224 DOI: 10.1117/1.jbo.29.s1.s11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Significance The classification of melasma is critical for correct clinical diagnosis, treatment selection, and postoperative measures. However, preoperative quantitative determination of melasma type remains challenging using conventional Wood's lamp and optical dermoscopy techniques. Aim Using photoacoustic microscopy (PAM) to simultaneously obtain the two diagnostic indicators of melanin and blood vessels for melasma classification and perform quantitative analysis to finally achieve accurate classification, rather than relying solely on physicians' experience. Approach First, the patients were classified by experienced dermatologists with Wood's lamp and optical dermoscopy. Next, the patients were examined in vivo using the PAM imaging system. Further, the horizontal section images (X - Y plane) of epidermal melanin and dermal vascular involvement were extracted from the 3D photoacoustic imaging results, which are important basis for PAM to quantitatively classify melasma. Results PAM can quantitatively reveal epidermal thickness and dermal vascular morphology in each case and obtain the quantitative diagnostic indicators of melanin and blood vessels. The mean vascular diameter in lesional skin (223.2 μ m ) of epidermal M+V-type was much larger than that in non-lesional skin (131.6 μ m ), and the mean vascular density in lesional skin was more than three times that in non-lesional skin. Importantly, vascular diameter and density are important parameters for distinguishing M type from M+V type. Conclusions PAM can obtain the data of epidermal thickness, pigment depth, subcutaneous vascular diameter, and vascular density, and realize the dual standard quantitative melasma classification by combining the parameters of melanin and blood vessels. In addition, PAM can provide new diagnostic information for uncertain melasma types and further refine the typing.
Collapse
Affiliation(s)
- Zhiyang Wang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Yuying Chen
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Shu Pan
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Wuyu Zhang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd., Foshan, China
| | - Ziwei Guo
- Zhujiang Hospital of Southern Medical University, Department of Plastic Surgery, Guangzhou, China
| | - Yuzhi Wang
- General Hospital of Southern Theater Command, Department of Burns and Plastic Surgery, Guangzhou, China
| | - Sihua Yang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| |
Collapse
|
4
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
5
|
Saidi S, Shtrahman M. Evaluation of compact pulsed lasers for two-photon microscopy using a simple method for measuring two-photon excitation efficiency. NEUROPHOTONICS 2023; 10:044303. [PMID: 38076726 PMCID: PMC10704185 DOI: 10.1117/1.nph.10.4.044303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 02/12/2024]
Abstract
Significance Two-photon (2p) microscopy has historically relied on titanium sapphire pulsed lasers that are expensive and have a large footprint. Recently, several manufacturers have developed less expensive compact pulsed lasers optimized for 2p excitation of green fluorophores. However, quantitative evaluation of their quality is lacking. Aim We describe a simple approach to systematically evaluate 2p excitation efficiency, an empiric measure of the quality of a pulsed laser and its ability to elicit 2p induced fluorescence. Approach By measuring pulse width, repetition rate, and fluorescence output, we calculated a measure of 2p excitation efficiency η , which we compared for four commercially available compact pulsed lasers in the 920 to 930 nm wavelength range. Results 2p excitation efficiency varied substantially among tested lasers. The Coherent Axon exhibited the best 2p excitation efficiency (1.09 ± 0.03 ), exceeding that of a titanium sapphire reference laser (defined to have efficiency = 1). However, its measured fluorescence was modest due to its long pulse width. Of the compact lasers, the Toptica Femtofiber Ultra exhibited the best combination of measured fluorescence (0.75 ± 0.01 ) and 2p excitation efficiency (0.86 ± 0.01 ). Conclusions We describe a simple method that both laser developers and end users can use to benchmark the 2p excitation efficiency of lasers used for 2p microscopy.
Collapse
Affiliation(s)
- Samir Saidi
- University of California, San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, California, United States
| | - Matthew Shtrahman
- University of California, San Diego, Department of Neurosciences, La Jolla, California, United States
| |
Collapse
|
6
|
Chen KJ, Han Y, Wang ZY, Cui Y. Submicron resolution techniques: Multiphoton microscopy in skin disease. Exp Dermatol 2023; 32:1613-1623. [PMID: 37522747 DOI: 10.1111/exd.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Non-invasive optical examination plays a crucial role in various aspects of dermatology, such as diagnosis, management and research. Multiphoton microscopy uses a unique submicron technology to stimulate autofluorescence (AF), allowing for the observation of cellular structure, assessment of redox status and quantification of collagen fibres. This advanced imaging technique offers dermatologists novel insights into the skin's structure, positioning it as a promising 'stethoscope' for future development in the field. This review provides an overview of multiphoton microscopy's principles, technology and application in studying normal skin, tumour and inflammatory diseases, as well as collagen-related and pigmentary diseases.
Collapse
Affiliation(s)
- Ke-Jun Chen
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Han
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Yi Wang
- Department of Dermatology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Hou G, Dong Z, Qin Y, Zhang Z, Liu M, Xia Y. Imaging and component analysis of pumpkin stem tissue with simultaneous SF-CARS and TPEF microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4862-4874. [PMID: 37791252 PMCID: PMC10545196 DOI: 10.1364/boe.497260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023]
Abstract
A multimodal nonlinear optical imaging platform based on a single femtosecond oscillator is built for simultaneous TPEF and SF-CARS imaging. TPEF microscopy and SF-CARS microscopy is utilized for mapping the distribution of the lignin component and the polysaccharide component, respectively. Visualization of vessel structure is realized. And the relative distribution of lignin and polysaccharide of vessel structure is mapped. Two pumpkin stem tissue areas with different degrees of lignification are observed with simultaneous TPEF and SF-CARS imaging, and two types of cell walls are identified. The different distribution patterns of lignin and polysaccharide in these two types of cell walls, induced by different degrees of lignification, are analyzed in detail.
Collapse
Affiliation(s)
- Guozhong Hou
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| | - Zhiwei Dong
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
| | - Yifan Qin
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Ze Zhang
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| | - Meng Liu
- Hebei University of Technology, School of Science, Tianjin, 300401, China
| | - Yuanqin Xia
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| |
Collapse
|
8
|
Chen J, Li Z, Han Z, Kang D, Ma J, Yi Y, Fu F, Guo W, Zheng L, Xi G, He J, Qiu L, Li L, Zhang Q, Wang C, Chen J. Prognostic value of tumor necrosis based on the evaluation of frequency in invasive breast cancer. BMC Cancer 2023; 23:530. [PMID: 37296414 DOI: 10.1186/s12885-023-10943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Tumor necrosis (TN) was associated with poor prognosis. However, the traditional classification of TN ignored spatial intratumor heterogeneity, which may be associated with important prognosis. The purpose of this study was to propose a new method to reveal the hidden prognostic value of spatial heterogeneity of TN in invasive breast cancer (IBC). METHODS Multiphoton microscopy (MPM) was used to obtain multiphoton images from 471 patients. According to the relative spatial positions of TN, tumor cells, collagen fibers and myoepithelium, four spatial heterogeneities of TN (TN1-4) were defined. Based on the frequency of individual TN, TN-score was obtained to investigate the prognostic value of TN. RESULTS Patients with high-risk TN had worse 5-year disease-free survival (DFS) than patients with no necrosis (32.5% vs. 64.7%; P < 0.0001 in training set; 45.8% vs. 70.8%; P = 0.017 in validation set), while patients with low-risk TN had a 5-year DFS comparable to patients with no necrosis (60.0% vs. 64.7%; P = 0.497 in training set; 59.8% vs. 70.8%; P = 0.121 in validation set). Furthermore, high-risk TN "up-staged" the patients with IBC. Patients with high-risk TN and stage I tumors had a 5-year DFS comparable to patients with stage II tumors (55.6% vs. 62.0%; P = 0.565 in training set; 62.5% vs. 66.3%; P = 0.856 in validation set), as well as patients with high-risk TN and stage II tumors had a 5-year DFS comparable to patients with stage III tumors (33.3% vs. 24.6%; P = 0.271 in training set; 44.4% vs. 39.3%; P = 0.519 in validation set). CONCLUSIONS TN-score was an independent prognostic factor for 5-year DFS. Only high-risk TN was associated with poor prognosis. High-risk TN "up-staged" the patients with IBC. Incorporating TN-score into staging category could improve its performance to stratify patients.
Collapse
Affiliation(s)
- Jianhua Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhijun Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yu Yi
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Gangqin Xi
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Jiajia He
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, 350108, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
9
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
10
|
Galli R, Siciliano T, Aust D, Korn S, Kirsche K, Baretton GB, Weitz J, Koch E, Riediger C. Label-free multiphoton microscopy enables histopathological assessment of colorectal liver metastases and supports automated classification of neoplastic tissue. Sci Rep 2023; 13:4274. [PMID: 36922643 PMCID: PMC10017791 DOI: 10.1038/s41598-023-31401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
As the state of resection margins is an important prognostic factor after extirpation of colorectal liver metastases, surgeons aim to obtain negative margins, sometimes elaborated by resections of the positive resection plane after intraoperative frozen sections. However, this is time consuming and results sometimes remain unclear during surgery. Label-free multimodal multiphoton microscopy (MPM) is an optical technique that retrieves morpho-chemical information avoiding all staining and that can potentially be performed in real-time. Here, we investigated colorectal liver metastases and hepatic tissue using a combination of three endogenous nonlinear signals, namely: coherent anti-Stokes Raman scattering (CARS) to visualize lipids, two-photon excited fluorescence (TPEF) to visualize cellular patterns, and second harmonic generation (SHG) to visualize collagen fibers. We acquired and analyzed over forty thousand MPM images of metastatic and normal liver tissue of 106 patients. The morphological information with biochemical specificity produced by MPM allowed discriminating normal liver from metastatic tissue and discerning the tumor borders on cryosections as well as formalin-fixed bulk tissue. Furthermore, automated tissue type classification with a correct rate close to 95% was possible using a simple approach based on discriminant analysis of texture parameters. Therefore, MPM has the potential to increase the precision of resection margins in hepatic surgery of metastases without prolonging surgical intervention.
Collapse
Affiliation(s)
- Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Tiziana Siciliano
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sandra Korn
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jürgen Weitz
- National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Carina Riediger
- National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
11
|
Potapov AL, Sirotkina MA, Matveev LA, Dudenkova VV, Elagin VV, Kuznetsov SS, Karabut MM, Komarova AD, Vagapova NN, Safonov IK, Kuznetsova IA, Radenska-Lopovok SG, Zagaynova EV, Gladkova ND. Multiphoton microscopy assessment of the structure and variability changes of dermal connective tissue in vulvar lichen sclerosus: A pilot study. JOURNAL OF BIOPHOTONICS 2022; 15:e202200036. [PMID: 35652856 DOI: 10.1002/jbio.202200036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses. Each of the degrees has a characteristic set of quantitatively expressed features. We focus on the identification and description of early, initial changes of the dermis as the least specific. The results obtained by us and the proposed classification of the degrees of the disease can be used to objectify the dynamics of tissue changes during treatment.
Collapse
Affiliation(s)
| | | | - Lev A Matveev
- Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | | | - Vadim V Elagin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Sergey S Kuznetsov
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - Maria M Karabut
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anastasia D Komarova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Nailya N Vagapova
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - Ivan K Safonov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Irina A Kuznetsova
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | | | - Elena V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
12
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
13
|
High-Resolution Phosphorescence Lifetime Imaging (PLIM) of Bones. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the first time, the time-resolved two-photon excited autophosphorescence of non-labeled biological specimens was investigated by phosphoresce lifetime imaging with microscopic spatial resolution. A modified multiphoton tomograph was employed to record both photoluminescence contributions, autofluorescence and autophosphorescence, simultaneously, induced by two-photon excitation using an 80 MHz near infrared femtosecond-pulse-laser scanning beam, an acousto-optic modulator, and a time-correlated single-photon counting module for lifetime measurements from the picosecond to the microsecond range. In particular, the two-photon-excited luminescence of thermally altered bones was imaged. A strong dependence of the phosphorescence intensity on exposure temperature, with a maximum emission for an exposure temperature of approximately 600 °C was observed. Furthermore, the phosphorescence lifetime data indicated a bi-exponential signal decay with both a faster few µs decay time in the range of 3–10 µs and a slower one in the range of 30–60 µs. The recording of fluorescence and phosphorescence allowed deriving the relative signal proportion as an unbiased measure of the temperature dependence. The measurements on thermally altered bones are of particular interest for application to forensic and archeological investigations.
Collapse
|
14
|
Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021; 146:6379-6393. [PMID: 34596653 PMCID: PMC8543123 DOI: 10.1039/d1an00954k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
15
|
Jartarkar SR, Patil A, Wollina U, Gold MH, Stege H, Grabbe S, Goldust M. New diagnostic and imaging technologies in dermatology. J Cosmet Dermatol 2021; 20:3782-3787. [PMID: 34652880 DOI: 10.1111/jocd.14499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diagnosis of dermatological disorders is primarily based on clinical examination in combination with histopathology. However, clinical findings alone may not be sufficient for accurate diagnosis and cutaneous biopsies are being associated with morbidity. OBJECTIVE The objective of this article is to review the newer technologies along with their applications, limitation and future prospectus. METHODOLOGY Comprehensive literature search was performed using electronic online databases "PubMed" and "Google Scholar". Articles published in English language were considered for the review. RESULTS In order to improve and/or widen the armamentarium in dermatologic disease diagnosis and therapy, newer emerging technologies are being made available which aid in diagnosis and management. New emerging technologies include confocal microscopy, digital photographic imaging, optical coherence tomography, high frequency ultrasonography, and artificial intelligence. There have been advancements in the dermoscopes. CONCLUSION Significant progress is seen in the diagnostic methods and imaging technologies in dermatology, each having its advantages and limitations. Artificial intelligence/machine-based learning software may have a great scope to influence the dermatological practice.
Collapse
Affiliation(s)
- Shishira R Jartarkar
- Department of Dermatology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - Michael H Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| | - Henner Stege
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Gongalsky MB, Muftieva DA, Saarinen JKS, Isomaki A, Pervushin NV, Kopeina GS, Peltonen LJ, Strachan CJ, Zhivotovsky B, Santos HA, Osminkina LA. Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomater Sci Eng 2021; 8:4185-4195. [PMID: 34553922 DOI: 10.1021/acsbiomaterials.1c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS), a nonlinear optical method for rapid visualization of biological objects, represents a progressive tool in biology and medicine to explore cells and tissue structures in living systems and biopsies. In this study, we report efficient nonresonant CARS imaging of silicon nanoparticles (SiNPs) in human cells as a proof of concept. As both bulk and porous silicon exhibit a high third-order nonlinear susceptibility, χ(3), which is responsible for the CARS intensity, it is possible to visualize the SiNPs without specific labels. Porous and solid SiNPs were obtained from layers of porous and nonporous silicon nanowires and mesoporous silicon. Electron microscopy and Raman spectroscopy showed that porous SiNPs consisted of ∼3 nm silicon nanocrystals (nc-Si) and pores, whereas solid nanoparticles comprised ∼30 nm nc-Si. All types of SiNPs were nontoxic at concentrations up to 500 μg/mL after 24 h of incubation with cells. We demonstrated that although nc-Si possesses a distinguished narrow Raman band of about 520 cm-1, it is possible to detect a high CARS signal from SiNPs in the epi-direction even in a nonresonant regime. 3D CARS images showed that all types of studied SiNPs were visualized as bright spots inside the cytoplasm of cells after 3-6 h of incubation because of the contrast provided by the high third-order nonlinear susceptibility of SiNPs, which is 1 × 104 to 1 × 105 times higher than that of water and typical biological media. Overall, CARS microscopy can provide localization of SiNPs within biological structures at the cellular level and can be a powerful tool for in vitro monitoring of silicon-based drug delivery systems or use SiNPs as labels to monitor various bioprocesses inside living cells.
Collapse
Affiliation(s)
- Maxim B Gongalsky
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Daniela A Muftieva
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Jukka K S Saarinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Antti Isomaki
- Biomedicum Imaging Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), Helsinki 00014, Finland
| | - Nikolay V Pervushin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Gelina S Kopeina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Leena J Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Boris Zhivotovsky
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland
| | - Liubov A Osminkina
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, Moscow 119991, Russian Federation.,Institute for Biological Instrumentation of Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russian Federation
| |
Collapse
|
17
|
Prinke P, Haueisen J, Klee S, Rizqie MQ, Supriyanto E, König K, Breunig HG, Piątek Ł. Automatic segmentation of skin cells in multiphoton data using multi-stage merging. Sci Rep 2021; 11:14534. [PMID: 34267247 PMCID: PMC8282875 DOI: 10.1038/s41598-021-93682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023] Open
Abstract
We propose a novel automatic segmentation algorithm that separates the components of human skin cells from the rest of the tissue in fluorescence data of three-dimensional scans using non-invasive multiphoton tomography. The algorithm encompasses a multi-stage merging on preprocessed superpixel images to ensure independence from a single empirical global threshold. This leads to a high robustness of the segmentation considering the depth-dependent data characteristics, which include variable contrasts and cell sizes. The subsequent classification of cell cytoplasm and nuclei are based on a cell model described by a set of four features. Two novel features, a relationship between outer cell and inner nucleus (OCIN) and a stability index, were derived. The OCIN feature describes the topology of the model, while the stability index indicates segment quality in the multi-stage merging process. These two new features, combined with the local gradient magnitude and compactness, are used for the model-based fuzzy evaluation of the cell segments. We exemplify our approach on an image stack with 200 × 200 × 100 μm3, including the skin layers of the stratum spinosum and the stratum basale of a healthy volunteer. Our image processing pipeline contributes to the fully automated classification of human skin cells in multiphoton data and provides a basis for the detection of skin cancer using non-invasive optical biopsy.
Collapse
Affiliation(s)
- Philipp Prinke
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - Jens Haueisen
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Sascha Klee
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Muhammad Qurhanul Rizqie
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,Informatics Engineering Program, Universitas Sriwijaya, Palembang, South Sumatera, Indonesia
| | - Eko Supriyanto
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,IJN-UTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Karsten König
- Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, 66123, Saarbrücken, Germany.,JenLab GmbH, Johann-Hittorf-Straße 8, 12489, Berlin, Germany
| | - Hans Georg Breunig
- Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, 66123, Saarbrücken, Germany.,JenLab GmbH, Johann-Hittorf-Straße 8, 12489, Berlin, Germany
| | - Łukasz Piątek
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.,Department of Artificial Intelligence, University of Information Technology and Management, H. Sucharskiego 2 Str, 35-225, Rzeszów, Poland
| |
Collapse
|
18
|
Tandon I, Quinn KP, Balachandran K. Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:688513. [PMID: 34179147 PMCID: PMC8226007 DOI: 10.3389/fcvm.2021.688513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease. CAVD results in a considerable socio-economic burden, especially considering the aging population in Europe and North America. The only treatment standard is surgical valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. Novel diagnostic techniques and biomarkers for early detection and monitoring of CAVD progression are thus a pressing need. Additionally, non-destructive tools are required for longitudinal in vitro and in vivo assessment of CAVD initiation and progression that can be translated into clinical practice in the future. Multiphoton microscopy (MPM) facilitates label-free and non-destructive imaging to obtain quantitative, optical biomarkers that have been shown to correlate with key events during CAVD progression. MPM can also be used to obtain spatiotemporal readouts of metabolic changes that occur in the cells. While cellular metabolism has been extensively explored for various cardiovascular disorders like atherosclerosis, hypertension, and heart failure, and has shown potential in elucidating key pathophysiological processes in heart valve diseases, it has yet to gain traction in the study of CAVD. Furthermore, MPM also provides structural, functional, and metabolic readouts that have the potential to correlate with key pathophysiological events in CAVD progression. This review outlines the applicability of MPM and its derived quantitative metrics for the detection and monitoring of early CAVD progression. The review will further focus on the MPM-detectable metabolic biomarkers that correlate with key biological events during valve pathogenesis and their potential role in assessing CAVD pathophysiology.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
19
|
Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020; 12:E684. [PMID: 32698388 PMCID: PMC7407329 DOI: 10.3390/pharmaceutics12070684] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Johanna M. Brandner
- Department of Dermatology and Venerology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.G.); (C.M.); (S.W.S.); (V.H.)
| |
Collapse
|
20
|
Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis Diagnosis. Sci Rep 2020; 10:7968. [PMID: 32409755 PMCID: PMC7224284 DOI: 10.1038/s41598-020-64937-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
The diagnostic possibilities of multiphoton tomography (MPT) in dermatology have already been demonstrated. Nevertheless, the analysis of MPT data is still time-consuming and operator dependent. We propose a fully automatic approach based on convolutional neural networks (CNNs) to fully realize the potential of MPT. In total, 3,663 MPT images combining both morphological and metabolic information were acquired from atopic dermatitis (AD) patients and healthy volunteers. These were used to train and tune CNNs to detect the presence of living cells, and if so, to diagnose AD, independently of imaged layer or position. The proposed algorithm correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells. The diagnosis was obtained with a sensitivity of 0.966 ± 0.003, specificity of 0.977 ± 0.003 and F-score of 0.964 ± 0.002. Relevance propagation by deep Taylor decomposition was used to enhance the algorithm's interpretability. Obtained heatmaps show what aspects of the images are important for a given classification. We showed that MPT imaging can be combined with artificial intelligence to successfully diagnose AD. The proposed approach serves as a framework for the automatic diagnosis of skin disorders using MPT.
Collapse
|
21
|
Abstract
Fluorescence Lifetime Imaging (FLIM) in life sciences based on ultrashort laser scanning microscopy and time-correlated single photon counting (TCSPC) started 30 years ago in Jena/East-Germany. One decade later, first two-photon FLIM images of a human finger were taken with a lab microscope based on a tunable femtosecond Ti:sapphire laser. In 2002/2003, first clinical non-invasive two-photon FLIM studies on patients with dermatological disorders were performed using a novel multiphoton tomograph. Current in vivo two-photon FLIM studies on human subjects are based on TCSPC and focus on (i) patients with skin inflammation and skin cancer as well as brain tumors, (ii) cosmetic research on volunteers to evaluate anti-ageing cremes, (iii) pharmaceutical research on volunteers to gain information on in situ pharmacokinetics, and (iv) space medicine to study non-invasively skin modifications on astronauts during long-term space flights. Two-photon FLIM studies on volunteers and patients are performed with multiphoton FLIM tomographs using near infrared femtosecond laser technology that provide rapid non-invasive and label-free intratissue autofluorescence biopsies with picosecond temporal resolution.
Collapse
Affiliation(s)
- Karsten König
- Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, D-66123 Saarbrücken, Germany. JenLab GmbH, Johann-Hittorf-Strasse 8, D-12489 Berlin, Germany
| |
Collapse
|