1
|
Kriukova E, LaRochelle E, Pfefer TJ, Kanniyappan U, Gioux S, Pogue B, Ntziachristos V, Gorpas D. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S13703. [PMID: 39034959 PMCID: PMC11256003 DOI: 10.1117/1.jbo.30.s1.s13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Significance Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.
Collapse
Affiliation(s)
- Elena Kriukova
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ethan LaRochelle
- QUEL Imaging, White River Junction, Vermont, United States
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Udayakumar Kanniyappan
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Sylvain Gioux
- Intuitive Surgical, Aubonne, Switzerland
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Brian Pogue
- University of Wisconsin Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, Munich Institute of Robotics and Machine Intelligence (MIRMI), Munich, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| |
Collapse
|
2
|
Hacker L, Joseph J, Lilaj L, Manohar S, Ivory AM, Tao R, Bohndiek SE. Tutorial on phantoms for photoacoustic imaging applications. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:080801. [PMID: 39143981 PMCID: PMC11324153 DOI: 10.1117/1.jbo.29.8.080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
Significance Photoacoustic imaging (PAI) is an emerging technology that holds high promise in a wide range of clinical applications, but standardized methods for system testing are lacking, impeding objective device performance evaluation, calibration, and inter-device comparisons. To address this shortfall, this tutorial offers readers structured guidance in developing tissue-mimicking phantoms for photoacoustic applications with potential extensions to certain acoustic and optical imaging applications. Aim The tutorial review aims to summarize recommendations on phantom development for PAI applications to harmonize efforts in standardization and system calibration in the field. Approach The International Photoacoustic Standardization Consortium has conducted a consensus exercise to define recommendations for the development of tissue-mimicking phantoms in PAI. Results Recommendations on phantom development are summarized in seven defined steps, expanding from (1) general understanding of the imaging modality, definition of (2) relevant terminology and parameters and (3) phantom purposes, recommendation of (4) basic material properties, (5) material characterization methods, and (6) phantom design to (7) reproducibility efforts. Conclusions The tutorial offers a comprehensive framework for the development of tissue-mimicking phantoms in PAI to streamline efforts in system testing and push forward the advancement and translation of the technology.
Collapse
Affiliation(s)
- Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | - James Joseph
- University of Dundee, School of Science and Engineering, United Kingdom
- University of Dundee, Centre for Medical Engineering and Technology, Dundee, United Kingdom
| | | | - Srirang Manohar
- University of Twente, Tech Med Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
| | - Aoife M. Ivory
- St. Vincent’s Private Hospital, Department of Medical Physics, Dublin, Ireland
| | - Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Members of IPASC
- University of Oxford, Department of Oncology, Oxford, United Kingdom
- University of Dundee, School of Science and Engineering, United Kingdom
- University of Dundee, Centre for Medical Engineering and Technology, Dundee, United Kingdom
- iThera Medical GmbH, Munich, Germany
- University of Twente, Tech Med Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- St. Vincent’s Private Hospital, Department of Medical Physics, Dublin, Ireland
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Li Y, Gröhl J, Haney B, Caranovic M, Lorenz-Meyer E, Papatheodorou N, Kempf J, Regensburger AP, Nedoschill E, Buehler A, Siebenlist G, Lang W, Uder M, Neurath MF, Waldner M, Knieling F, Rother U. Teachability of multispectral optoacoustic tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400106. [PMID: 38719459 DOI: 10.1002/jbio.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.
Collapse
Affiliation(s)
- Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Janek Gröhl
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Briain Haney
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lorenz-Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolaos Papatheodorou
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
5
|
Vogt WC, Wear KA, Pfefer TJ. Phantoms for evaluating the impact of skin pigmentation on photoacoustic imaging and oximetry performance. BIOMEDICAL OPTICS EXPRESS 2023; 14:5735-5748. [PMID: 38021140 PMCID: PMC10659791 DOI: 10.1364/boe.501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
Recent reports have raised concerns of potential racial disparities in performance of optical oximetry technologies. To investigate how variable epidermal melanin content affects performance of photoacoustic imaging (PAI) devices, we developed plastisol phantoms combining swappable skin-mimicking layers with a breast phantom containing either India ink or blood adjusted to 50-100% SO2 using sodium dithionite. Increasing skin pigmentation decreased maximum imaging depth by up to 25%, enhanced image clutter, and increased root-mean-square error in SO2 from 8.0 to 17.6% due to signal attenuation and spectral coloring effects. This phantom tool can aid in evaluating PAI device robustness to ensure high performance in all patients.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Kukk AF, Scheling F, Panzer R, Emmert S, Roth B. Combined ultrasound and photoacoustic C-mode imaging system for skin lesion assessment. Sci Rep 2023; 13:17947. [PMID: 37864039 PMCID: PMC10589211 DOI: 10.1038/s41598-023-44919-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Accurate assessment of the size and depth of infiltration is critical for effectively treating and removing skin cancer, especially melanoma. However, existing methods such as skin biopsy and histologic examination are invasive, time-consuming, and may not provide accurate depth results. We present a novel system for simultaneous and co-localized ultrasound and photoacoustic imaging, with the application for non-invasive skin lesion size and depth measurement. The developed system integrates an acoustical mirror that is placed on an ultrasound transducer, which can be translated within a flexible water tank. This allows for 3D (C-mode) imaging, which is useful for mapping the skin structure and determine the invasion size and depth of lesions including skin cancer. For efficient reconstruction of photoacoustic images, we applied the open-source MUST library. The acquisition time per 2D image is <1 s and the pulse energies are below the legal Maximum Permissible Exposure (MPE) on human skin. We present the depth and resolution capabilities of the setup on several self-designed agar phantoms and demonstrate in vivo imaging on human skin. The setup also features an unobstructed optical window from the top, allowing for simple integration with other optical modalities. The perspective towards clinical application is demonstrated.
Collapse
Affiliation(s)
- Anatoly Fedorov Kukk
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany.
| | - Felix Scheling
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
| | - Rüdiger Panzer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1a, 30167, Hannover, Germany
| |
Collapse
|
7
|
Grasso V, Raymond JL, Willumeit-Römer R, Joseph J, Jose J. Development of a morphologically realistic mouse phantom for pre-clinical photoacoustic imaging. Med Phys 2023; 50:5757-5771. [PMID: 37535898 DOI: 10.1002/mp.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Characterizations based on anatomically realistic phantoms are highly effective to perform accurate technical validation of imaging systems. Specifically for photoacoustic imaging (PAI), although a variety of phantom models with simplified geometries are reported, an unmet need still exists to establish morphologically realistic heterogeneous pre-clinical phantoms. So the development of a mouse-mimicking phantom can reduce the use of animals for the validation and standardization studies of pre-clinical PAI systems and thus eventually translate the PAI technology to clinical research. PURPOSE Here we designed, developed, and fabricated a stable phantom that mimics the detailed morphology of a mouse, to be used as a realistic tool for PAI. METHODS The mouse phantom, has been designed by using a combination of image modeling and 3D-printing techniques. As a tissue-mimicking material, we have used copolymer-in-oil-based material that was recently proposed by the International Photoacoustic Standardization Consortium (IPASC). In particular, the anatomically realistic phantom has been modeled by using the real atlas of a mouse as a reference. The mouse phantom includes a 3D-printed skeleton and the main abdominal organs such as the liver, spleen, and kidneys obtained by using doped copolymer-in-oil material with 3D-printed molds. In addition, the acoustic and optical properties of the tissue-mimicking material and the long-term stability have been broadly characterized. RESULTS Furthermore, our studies showed that the phantom is durable and stable for more than 200 days, under normal storage and repeated use. Fabrication protocol is easy to reproduce. As a result, the proposed morphologically realistic mouse phantom offers durability, material compatibility, and an unprecedented realistic resemblance to the actual rodents' anatomy in PAI. CONCLUSION This durable morphologically realistic mouse phantom would minimize the animal experiments in compliance with the 3R principle of Replacement, Reduction, and Refinement. To our knowledge, this is the first time an anatomically realistic heterogeneous mouse phantom has been proposed for PAI in pre-clinical animal imaging and tested its durability over 200 days.
Collapse
Affiliation(s)
- Valeria Grasso
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Regine Willumeit-Römer
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
- Centre for Medical Engineering and Technology, University of Dundee, Dundee, UK
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Morsink CF, Dam-Vervloet AJ, Krommendijk ME, Kaya M, Cuartas-Vélez C, Knop T, Francis KJ, Bosschaart N. Design and characterization of color printed polyurethane films as biomedical phantom layers. BIOMEDICAL OPTICS EXPRESS 2023; 14:4485-4506. [PMID: 37791261 PMCID: PMC10545194 DOI: 10.1364/boe.491695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 10/05/2023]
Abstract
We propose a new, user-friendly and accessible approach for fabricating thin phantoms with controllable absorption properties in magnitude, spectral shape, and spatial distribution. We utilize a standard office laser color printer to print on polyurethane thin films (40 - 60 μm), commonly available as medical film dressings and ultrasound probe covers. We demonstrate that the optical attenuation and absorption of the printed films correlate linearly with the printer input settings (opacity), which facilitates a systematic phantom design. The optical and acoustic properties of these polyurethane films are similar to biological tissue. We argue that these thin phantoms are applicable to a wide range of biomedical applications. Here, we introduce two potential applications: (1) homogeneous epidermal melanin phantoms and (2) spatially resolved absorbers for photoacoustic imaging. We characterize the thin phantoms in terms of optical properties, thickness, microscopic structure, and reproducibility of the printing process.
Collapse
Affiliation(s)
- Claudia F. Morsink
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Alida J. Dam-Vervloet
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
- Medical Physics Department, Isala Hospital, Zwolle, The Netherlands
| | - Marleen E. Krommendijk
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Michael Kaya
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Carlos Cuartas-Vélez
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Kalloor Joseph Francis
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| |
Collapse
|
9
|
Latha HR, Ramaprasath A. HWCD: A hybrid approach for image compression using wavelet, encryption using confusion, and decryption using diffusion scheme. JOURNAL OF INTELLIGENT SYSTEMS 2023. [DOI: 10.1515/jisys-2022-9056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Image data play important role in various real-time online and offline applications. Biomedical field has adopted the imaging system to detect, diagnose, and prevent several types of diseases and abnormalities. The biomedical imaging data contain huge information which requires huge storage space. Moreover, currently telemedicine and IoT based remote health monitoring systems are widely developed where data is transmitted from one place to another. Transmission of this type of huge data consumes more bandwidth. Along with this, during this transmission, the attackers can attack the communication channel and obtain the important and secret information. Hence, biomedical image compression and encryption are considered the solution to deal with these issues. Several techniques have been presented but achieving desired performance for combined module is a challenging task. Hence, in this work, a novel combined approach for image compression and encryption is developed. First, image compression scheme using wavelet transform is presented and later a cryptography scheme is presented using confusion and diffusion schemes. The outcome of the proposed approach is compared with various existing techniques. The experimental analysis shows that the proposed approach achieves better performance in terms of autocorrelation, histogram, information entropy, PSNR, MSE, and SSIM.
Collapse
Affiliation(s)
| | - Alagarswamy Ramaprasath
- Department of Computer Applications, Hindustan Institute of Technology and Science , Chennai , India
| |
Collapse
|
10
|
Yang T, Jin Y, Neogi A. Acoustic Attenuation and Dispersion in Fatty Tissues and Tissue Phantoms Influencing Ultrasound Biomedical Imaging. ACS OMEGA 2023; 8:1319-1330. [PMID: 36643513 PMCID: PMC9835773 DOI: 10.1021/acsomega.2c06750] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The development of ultrasonic imaging techniques is optimized using artificial tissue phantoms before the practical applications. However, due to the strong attenuation and dispersion, accumulated fatty tissues can significantly impact the resolution and even feasibility of certain ultrasonic imaging modalities. An appropriate characterization of the acoustic properties on fatty phantoms can help the community to overcome the limitations. Some of the existing methods heavily overestimate attenuation coefficients by including the reflection loss and dispersion effects. Hence, in this study, we use numerical simulation-based comparison between two major attenuation measurement configurations. We further pointed out the pulse dispersion in viscoelastic tissue phantoms by simulations, which barely attracted attention in the existing studies. Using the selected attenuation and dispersion testing methods that were selected from the numerical simulation, we experimentally characterized the acoustic properties of common fatty tissue phantoms and compared the acoustic properties with the natural porcine fatty tissue samples. Furthermore, we selected one of the tissue phantoms to construct ultrasound imaging samples with some biomasses. With the known attenuation and dispersion of the tissue phantom, we showed the clarity enhancement of ultrasound imaging by signal post-processing to weaken the attenuation and dispersion effects.
Collapse
Affiliation(s)
- Teng Yang
- Department
of Physics, University of North Texas, Denton, Texas76203, United States
- Department
of Materials Science and Engineering,University
of North Texas, Denton, Texas76207, United States
| | - Yuqi Jin
- Department
of Physics, University of North Texas, Denton, Texas76203, United States
| | - Arup Neogi
- Department
of Physics, University of North Texas, Denton, Texas76203, United States
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu611731, P. R. China
| |
Collapse
|
11
|
Burgos D, Blumenkopf B, Afshari A, Snodderly K, Pfefer TJ. Biomimetic tissue phantoms for neurosurgical near-infrared fluorescence imaging. NEUROPHOTONICS 2023; 10:015007. [PMID: 36936998 PMCID: PMC10015182 DOI: 10.1117/1.nph.10.1.015007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Neurosurgical fluorescence imaging is a well-established clinical approach with a growing range of indications for use. However, this technology lacks effective phantom-based tools for development, performance testing, and clinician training. AIM Our primary aim was to develop and evaluate 3D-printed phantoms capable of optically and morphologically simulating neurovasculature under fluorescence angiography. APPROACH Volumetric digital maps of the circle of Willis with basilar and posterior communicator artery aneurysms, along with surrounding cerebral tissue, were generated. Phantoms were fabricated with a stereolithography printer using custom photopolymer composites, then visualized under white light and near-infrared fluorescence imaging. RESULTS Feature sizes of printed components were found to be within 13% of digital models. Phantoms exhibited realistic optical properties and convincingly recapitulated fluorescence angiography scenes. CONCLUSIONS Methods identified in this study can facilitate the development of realistic phantoms as powerful new tools for fluorescence imaging.
Collapse
Affiliation(s)
- David Burgos
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Bennett Blumenkopf
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Ali Afshari
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Kirstie Snodderly
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - T. Joshua Pfefer
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| |
Collapse
|
12
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Palma-Chavez J, Wear KA, Mantri Y, Jokerst JV, Vogt WC. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts. PHOTOACOUSTICS 2022; 26:100348. [PMID: 35360521 PMCID: PMC8960980 DOI: 10.1016/j.pacs.2022.100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 05/05/2023]
Abstract
Standardized phantoms and test methods are needed to accelerate clinical translation of emerging photoacoustic imaging (PAI) devices. Evaluating object detectability in PAI is challenging due to variations in target morphology and artifacts including boundary buildup. Here we introduce breast fat and parenchyma tissue-mimicking materials based on emulsions of silicone oil and ethylene glycol in polyacrylamide hydrogel. 3D-printed molds were used to fabricate solid target inclusions that produced more filled-in appearance than traditional PAI phantoms. Phantoms were used to assess understudied image quality characteristics (IQCs) of three PAI systems. Object detectability was characterized vs. target diameter, absorption coefficient, and depth. Boundary buildup was quantified by target core/boundary ratio, which was higher in transducers with lower center frequency. Target diameter measurement accuracy was also size-dependent and improved with increasing transducer frequency. These phantoms enable evaluation of multiple key IQCs and may support development of comprehensive standardized test methods for PAI devices.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Material Science Program, University of California San Diego, La Jolla, CA 92093, USA
- Corresponding author at: Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
- Corresponding author.
| |
Collapse
|
14
|
Gorpas D, Wabnitz H, Pfefer TJ. Special Section Guest Editorial: Tissue Phantoms to Advance Biomedical Optical Systems. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074701. [PMID: 35752879 PMCID: PMC9234512 DOI: 10.1117/1.jbo.27.7.074701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The editorial introduces the JBO Special Section on Tissue Phantoms to Advance Biomedical Optical Systems.
Collapse
Affiliation(s)
- Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, Chair of Biological Imaging, Munich, Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - T Joshua Pfefer
- Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
15
|
Gubbi MR, Gonzalez EA, Bell MAL. Theoretical Framework to Predict Generalized Contrast-to-Noise Ratios of Photoacoustic Images With Applications to Computer Vision. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2098-2114. [PMID: 35446763 DOI: 10.1109/tuffc.2022.3169082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The successful integration of computer vision, robotic actuation, and photoacoustic imaging to find and follow targets of interest during surgical and interventional procedures requires accurate photoacoustic target detectability. This detectability has traditionally been assessed with image quality metrics, such as contrast, contrast-to-noise ratio, and signal-to-noise ratio (SNR). However, predicting target tracking performance expectations when using these traditional metrics is difficult due to unbounded values and sensitivity to image manipulation techniques like thresholding. The generalized contrast-to-noise ratio (gCNR) is a recently introduced alternative target detectability metric, with previous work dedicated to empirical demonstrations of applicability to photoacoustic images. In this article, we present theoretical approaches to model and predict the gCNR of photoacoustic images with an associated theoretical framework to analyze relationships between imaging system parameters and computer vision task performance. Our theoretical gCNR predictions are validated with histogram-based gCNR measurements from simulated, experimental phantom, ex vivo, and in vivo datasets. The mean absolute errors between predicted and measured gCNR values ranged from 3.2 ×10-3 to 2.3 ×10-2 for each dataset, with channel SNRs ranging -40 to 40 dB and laser energies ranging 0.07 [Formula: see text] to 68 mJ. Relationships among gCNR, laser energy, target and background image parameters, target segmentation, and threshold levels were also investigated. Results provide a promising foundation to enable predictions of photoacoustic gCNR and visual servoing segmentation accuracy. The efficiency of precursory surgical and interventional tasks (e.g., energy selection for photoacoustic-guided surgeries) may also be improved with the proposed framework.
Collapse
|
16
|
Hsu HC, Wear KA, Joshua Pfefer T, Vogt WC. Tissue-mimicking phantoms for performance evaluation of photoacoustic microscopy systems. BIOMEDICAL OPTICS EXPRESS 2022; 13:1357-1373. [PMID: 35415004 PMCID: PMC8973174 DOI: 10.1364/boe.445702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Phantom-based performance test methods are critically needed to support development and clinical translation of emerging photoacoustic microscopy (PAM) devices. While phantoms have been recently developed for macroscopic photoacoustic imaging systems, there is an unmet need for well-characterized tissue-mimicking materials (TMMs) and phantoms suitable for evaluating PAM systems. Our objective was to develop and characterize a suitable dermis-mimicking TMM based on polyacrylamide hydrogels and demonstrate its utility for constructing image quality phantoms. TMM formulations were optically characterized over 400-1100 nm using integrating sphere spectrophotometry and acoustically characterized using a pulse through-transmission method over 8-24 MHz with highly confident extrapolation throughout the usable band of the PAM system. This TMM was used to construct a spatial resolution phantom containing gold nanoparticle point targets and a penetration depth phantom containing slanted tungsten filaments and blood-filled tubes. These phantoms were used to characterize performance of a custom-built PAM system. The TMM was found to be broadly tunable and specific formulations were identified to mimic human dermis at an optical wavelength of 570 nm and acoustic frequencies of 10-50 MHz. Imaging results showed that tungsten filaments yielded 1.1-4.2 times greater apparent maximum imaging depth than blood-filled tubes, which may overestimate real-world performance for vascular imaging applications. Nanoparticles were detectable only to depths of 120-200 µm, which may be due to the relatively weaker absorption of single nanoparticles vs. larger targets containing high concentration of hemoglobin. The developed TMMs and phantoms are useful tools to support PAM device characterization and optimization, streamline regulatory decision-making, and accelerate clinical translation.
Collapse
Affiliation(s)
- Hsun-Chia Hsu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
17
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
18
|
Fales AM, Ilev IK, Pfefer TJ. Evaluation of standardized performance test methods for biomedical Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 27:JBO-210201SSR. [PMID: 34713648 PMCID: PMC8551908 DOI: 10.1117/1.jbo.27.7.074705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Raman spectroscopy has emerged as a promising technique for a variety of biomedical applications. The unique ability to provide molecular specific information offers insight to the underlying biochemical changes that result in disease states such as cancer. However, one of the hurdles to successful clinical translation is a lack of international standards for calibration and performance assessment of modern Raman systems used to interrogate biological tissue. AIM To facilitate progress in the clinical translation of Raman-based devices and assist the scientific community in reaching a consensus regarding best practices for performance testing. APPROACH We reviewed the current literature and available standards documents to identify methods commonly used for bench testing of Raman devices (e.g., relative intensity correction, wavenumber calibration, noise, resolution, and sensitivity). Additionally, a novel 3D-printed turbid phantom was used to assess depth sensitivity. These approaches were implemented on three fiberoptic-probe-based Raman systems with different technical specifications. RESULTS While traditional approaches demonstrated fundamental differences due to detectors, spectrometers, and data processing routines, results from the turbid phantom illustrated the impact of illumination-collection geometry on measurement quality. CONCLUSIONS Specifications alone are necessary but not sufficient to predict in vivo performance, highlighting the need for phantom-based test methods in the standardized evaluation of Raman devices.
Collapse
Affiliation(s)
- Andrew M. Fales
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Ilko K. Ilev
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - T. Joshua Pfefer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| |
Collapse
|