1
|
Tian C, Hu Y, Li S, Zhang X, Wei Q, Li K, Chen X, Zheng L, Yang X, Qin Y, Bian Y. Peri- and intra-nodular radiomic features based on 18F-FDG PET/CT to distinguish lung adenocarcinomas from pulmonary granulomas. Front Med (Lausanne) 2024; 11:1453421. [PMID: 39175818 PMCID: PMC11339787 DOI: 10.3389/fmed.2024.1453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Objective To compare the effectiveness of radiomic features based on 18F-FDG PET/CT images within (intranodular) and around (perinodular) lung nodules/masses in distinguishing between lung adenocarcinoma and pulmonary granulomas. Methods For this retrospective study, 18F-FDG PET/CT images were collected for 228 patients. Patients diagnosed with lung adenocarcinoma (n = 156) or granulomas (n = 72) were randomly assigned to a training (n = 159) and validation (n = 69) groups. The volume of interest (VOI) of intranodular, perinodular (1-5 voxels, termed Lesion_margin1 to Lesion_margin5) and total area (intra- plus perinodular region, termed Lesion_total1 to Lesion_total5) on PET/CT images were delineated using PETtumor and Marge tool of segmentation editor. A total of 1,037 radiomic features were extracted separately from PET and CT images, and the optimal features were selected to develop radiomic models. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results Good and acceptable performance was, respectively, observed in the training (AUC = 0.868, p < 0.001) and validation (AUC = 0.715, p = 0.004) sets for the intranodular radiomic model. Among the perinodular models, the Lesion_margin2 model demonstrated the highest AUC in both sets (0.883 and 0.616, p < 0.001 and p = 0.122). Similarly, in terms of total models, Lesion_total2 model was found to outperform others in the training (AUC = 0.879, p < 0.001) and validation (AUC = 0.742, p = 0.001) sets, slightly surpassing the intranodular model. Conclusion When intra- and perinodular radiomic features extracted from the immediate vicinity of the nodule/mass up to 2 voxels distance on 18F-FDG PET/CT imaging are combined, improved differential diagnostic performance in distinguishing between lung adenocarcinomas and granulomas is achieved compared to the intra- and perinodular radiomic features alone.
Collapse
Affiliation(s)
- Congna Tian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yujing Hu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xinchao Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qiang Wei
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Kang Li
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zheng
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xin Yang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanan Qin
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanzhu Bian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Baidya Kayal E, Ganguly S, Sasi A, Sharma S, DS D, Saini M, Rangarajan K, Kandasamy D, Bakhshi S, Mehndiratta A. A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models. Front Oncol 2023; 13:1212526. [PMID: 37671060 PMCID: PMC10476362 DOI: 10.3389/fonc.2023.1212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The presence of lung metastases in patients with primary malignancies is an important criterion for treatment management and prognostication. Computed tomography (CT) of the chest is the preferred method to detect lung metastasis. However, CT has limited efficacy in differentiating metastatic nodules from benign nodules (e.g., granulomas due to tuberculosis) especially at early stages (<5 mm). There is also a significant subjectivity associated in making this distinction, leading to frequent CT follow-ups and additional radiation exposure along with financial and emotional burden to the patients and family. Even 18F-fluoro-deoxyglucose positron emission technology-computed tomography (18F-FDG PET-CT) is not always confirmatory for this clinical problem. While pathological biopsy is the gold standard to demonstrate malignancy, invasive sampling of small lung nodules is often not clinically feasible. Currently, there is no non-invasive imaging technique that can reliably characterize lung metastases. The lung is one of the favored sites of metastasis in sarcomas. Hence, patients with sarcomas, especially from tuberculosis prevalent developing countries, can provide an ideal platform to develop a model to differentiate lung metastases from benign nodules. To overcome the lack of optimal specificity of CT scan in detecting pulmonary metastasis, a novel artificial intelligence (AI)-based protocol is proposed utilizing a combination of radiological and clinical biomarkers to identify lung nodules and characterize it as benign or metastasis. This protocol includes a retrospective cohort of nearly 2,000-2,250 sample nodules (from at least 450 patients) for training and testing and an ambispective cohort of nearly 500 nodules (from 100 patients; 50 patients each from the retrospective and prospective cohort) for validation. Ground-truth annotation of lung nodules will be performed using an in-house-built segmentation tool. Ground-truth labeling of lung nodules (metastatic/benign) will be performed based on histopathological results or baseline and/or follow-up radiological findings along with clinical outcome of the patient. Optimal methods for data handling and statistical analysis are included to develop a robust protocol for early detection and classification of pulmonary metastasis at baseline and at follow-up and identification of associated potential clinical and radiological markers.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Archana Sasi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Swetambri Sharma
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dheeksha DS
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Manish Saini
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Krithika Rangarajan
- Radiodiagnosis, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
3
|
Fu Y, Zhou F, Shi X, Wang L, Li Y, Wu J, Huang H. Classification of adenoid cystic carcinoma in whole slide images by using deep learning. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Schroeder KE, Acharya L, Mani H, Furqan M, Sieren JC. Radiomic biomarkers from chest computed tomography are assistive in immunotherapy response prediction for non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:1023-1033. [PMID: 37323179 PMCID: PMC10261870 DOI: 10.21037/tlcr-22-763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Background Immunotherapies, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) antibodies have been shown to improve overall and progression-free survival (PFS) in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). However, not all patients derive a meaningful clinical benefit. Additionally, patients receiving anti-PD-1/PD-L1 therapy can experience immune-related adverse events (irAEs). Clinically significant irAEs may require temporary pause or discontinuation of treatment. Having a tool to identify patients who may not benefit and/or are at risk for developing severe irAEs from immunotherapy will aid in an informed decision-making process for the patients and their physicians. Methods Computed tomography (CT) scans and clinical data were retrospectively collected for this study to develop three prediction models using (I) radiomic features, (II) clinical features, and (III) radiomic and clinical features combined. Each subject had 6 clinical features and 849 radiomic features extracted. Selected features were run through an artificial neural network (NN) trained on 70% of the cohort, maintaining the case and control ratio. The NN was assessed by calculating the area-under-the-receiver-operating-characteristic curve (AUC-ROC), area-under-the-precision-recall curve (AUC-PR), sensitivity, and specificity. Results A cohort of 132 subjects, of which 43 (33%) had a PFS ≤90 days and 89 (67%) of which had a PFS >90 days was used to develop the prediction models. The radiomic model was able to predict progression-free survival with a training AUC-ROC of 87% and testing AUC-ROC, sensitivity, and specificity of 83%, 75%, and 81%, respectively. In this cohort, the clinical and radiomic combined features did add a slight increase in the specificity (85%) but with a decrease in sensitivity (75%) and AUC-ROC (81%). Conclusions Whole lung segmentation and feature extraction can identify those that would see a benefit from anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
| | - Luna Acharya
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Hariharasudan Mani
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Muhammad Furqan
- Department of Internal Medicine, Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Hartmann K, Sadée CY, Satwah I, Carrillo-Perez F, Gevaert O. Imaging genomics: data fusion in uncovering disease heritability. Trends Mol Med 2023; 29:141-151. [PMID: 36470817 PMCID: PMC10507799 DOI: 10.1016/j.molmed.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Sequencing of the human genome in the early 2000s enabled probing of the genetic basis of disease on a scale previously unimaginable. Now, two decades later, after interrogating millions of markers in thousands of individuals, a significant portion of disease heritability still remains hidden. Recent efforts to unravel this 'missing heritability' have focused on garnering new insight from merging different data types, including medical imaging. Imaging offers promising intermediate phenotypes to bridge the gap between genetic variation and disease pathology. In this review we outline this fusion and provide examples of imaging genomics in a range of diseases, from oncology to cardiovascular and neurodegenerative disease. Finally, we discuss how ongoing revolutions in data science and sharing are primed to advance the field.
Collapse
Affiliation(s)
- Katherine Hartmann
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph Y Sadée
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ishan Satwah
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Granada, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Liu M, Wu J, Wang N, Zhang X, Bai Y, Guo J, Zhang L, Liu S, Tao K. The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis. PLoS One 2023; 18:e0273445. [PMID: 36952523 PMCID: PMC10035910 DOI: 10.1371/journal.pone.0273445] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/03/2023] [Indexed: 03/25/2023] Open
Abstract
Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.
Collapse
Affiliation(s)
- Mingsi Liu
- Department of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinghui Wu
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Nian Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yujiao Bai
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing people's Hospital, Shaoxing, Zhejiang, China
| | - Shulin Liu
- Department of the First Affiliated Hospital of Chengdu Medical College, Sichuan, China
| | - Ke Tao
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Benign-malignant classification of pulmonary nodule with deep feature optimization framework. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Huang H, Wu R, Li Y, Peng C. Self-Supervised Transfer Learning Based on Domain Adaptation for Benign-Malignant Lung Nodule Classification on Thoracic CT. IEEE J Biomed Health Inform 2022; 26:3860-3871. [PMID: 35503850 DOI: 10.1109/jbhi.2022.3171851] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The spatial heterogeneity is an important indicator of the malignancy of lung nodules in lung cancer diagnosis. Compared with 2D nodule CT images, the 3D volumes with entire nodule objects hold richer discriminative information. However, for deep learning methods driven by massive data, effectively capturing the 3D discriminative features of nodules in limited labeled samples is a challenging task. Different from previous models that proposed transfer learning models in a 2D pattern or learning from scratch 3D models, we develop a self-supervised transfer learning based on domain adaptation (SSTL-DA) 3D CNN framework for benign-malignant lung nodule classification. At first, a data pre-processing strategy termed adaptive slice selection (ASS) is developed to eliminate the redundant noise of the input samples with lung nodules. Then, the self-supervised learning network is constructed to learn robust image representation from CT images. Finally, a transfer learning method based on domain adaptation is designed to obtain discriminant features for classification. The proposed SSTL-DA method has been assessed on the LIDC-IDRI benchmark dataset, and it obtains an accuracy of 91.07% and an AUC of 95.84%. These results demonstrate that the SSTL-DA model achieves quite a competitive classification performance compared with some state-of-the-art approaches.
Collapse
|
9
|
Uthoff JM, Mott SL, Larson J, Neslund-Dudas CM, Schwartz AG, Sieren JC. Computed Tomography Features of Lung Structure Have Utility for Differentiating Malignant and Benign Pulmonary Nodules. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:154-164. [PMID: 35021316 PMCID: PMC9166332 DOI: 10.15326/jcopdf.2021.0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a known comorbidity for lung cancer independent of smoking history. Quantitative computed tomography (qCT) imaging features related to COPD have shown promise in the assessment of lung cancer risk. We hypothesize that qCT features from the lung, lobe, and airway tree related to the location of the pulmonary nodule can be used to provide informative malignancy risk assessment. METHODS A total of 183 qCT features were extracted from 278 individuals with a solitary pulmonary nodule of known diagnosis (71 malignant, 207 benign). These included histogram and airway characteristics of the lungs, lobe, and segmental paths. Performances of the least absolute shrinkage and selection operator (LASSO) regression analysis and an ensemble of neural networks (ENN) were compared for feature set selection and classification on a testing cohort of 49 additional individuals (15 malignant, 34 benign). RESULTS The LASSO and ENN methods produced different feature sets for classification with LASSO selecting fewer qCT features (7) than the ENN (17). The LASSO model with the highest performing training area under the curve (AUC) (0.80) incorporated automatically extracted features and reader-measured nodule diameter with a testing AUC of 0.62. The ENN model with the highest performing AUC (0.77) also incorporated qCT and reader diameter but maintained higher testing performance AUC (0.79). CONCLUSIONS Automatically extracted qCT imaging features of the lung can be informative of the differentiation between individuals with malignant pulmonary nodules and those with benign pulmonary nodules, without requiring nodule segmentation and analysis.
Collapse
Affiliation(s)
- Johanna M. Uthoff
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States
| | - Sarah L. Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States
| | - Jared Larson
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
| | - Christine M. Neslund-Dudas
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, United States
| | - Ann G. Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States
| | - the COPDGene® Investigators
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
10
|
Li D, Yuan S, Yao G. Classification of lung nodules based on the DCA-Xception network. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:993-1008. [PMID: 35912787 DOI: 10.3233/xst-221219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Developing deep learning networks to classify between benign and malignant lung nodules usually requires many samples. Due to the precious nature of medical samples, it is difficult to obtain many samples. OBJECTIVE To investigate and test a DCA-Xception network combined with a new data enhancement method to improve performance of lung nodule classification. METHODS First, the Wasserstein Generative Adversarial Network (WGAN) with conditions and five data enhancement methods such as flipping, rotating, and adding Gaussian noise are used to extend the samples to solve the problems of unbalanced sample classification and the insufficient samples. Then, a DCA-Xception network is designed to classify lung nodules. Using this network, information around the target is obtained by introducing an adaptive dual-channel feature extraction module, and the network learns features more accurately by introducing a convolutional attention module. The network is trained and validated using 274 lung nodules (154 benign and 120 malignant) and tested using 52 lung nodules (23 benign and 29 malignant). RESULTS The experiments show that the network has an accuracy of 83.46% and an AUC of 0.929. The features extracted using this network achieve an accuracy of 85.24% on the K-nearest neighbor and random forest classifiers. CONCLUSION This study demonstrates that the DCA-Xception network yields higher performance in classification of lung nodules than the performance using the classical classification networks as well as pre-trained networks.
Collapse
Affiliation(s)
- Dongjie Li
- Heilongjiang Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Shanliang Yuan
- Heilongjiang Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Gang Yao
- Heilongjiang Atomic Energy Research Institute, Harbin, China
| |
Collapse
|
11
|
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021; 11:603595. [PMID: 34026602 PMCID: PMC8131863 DOI: 10.3389/fonc.2021.603595] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung cancer represents the first cause of cancer-related death in the world. Radiomics studies arise rapidly in this late decade. The aim of this review is to identify important recent publications to be synthesized into a comprehensive review of the current status of radiomics in lung cancer at each step of the patients' care. METHODS A literature review was conducted using PubMed/Medline for search of relevant peer-reviewed publications from January 2012 to June 2020. RESULTS We identified several studies at each point of patient's care: detection and classification of lung nodules (n=16), determination of histology and genomic (n=10) and finally treatment outcomes predictions (=23). We reported the methodology of those studies and their results and discuss the limitations and the progress to be made for clinical routine applications. CONCLUSION Promising perspectives arise from machine learning applications and radiomics based models in lung cancers, yet further data are necessary for their implementation in daily care. Multicentric collaboration and attention to quality and reproductivity of radiomics studies should be further consider.
Collapse
Affiliation(s)
- Radouane El Ayachy
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Nicolas Giraud
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
- Radiation Oncology Department, Haut-Lévêque Hospital, CHU de Bordeaux, Pessac, France
| | - Paul Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Philippe Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anita Burgun
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Jean Emmanuel Bibault
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| |
Collapse
|
12
|
Calheiros JLL, de Amorim LBV, de Lima LL, de Lima Filho AF, Ferreira Júnior JR, de Oliveira MC. The Effects of Perinodular Features on Solid Lung Nodule Classification. J Digit Imaging 2021; 34:798-810. [PMID: 33791910 DOI: 10.1007/s10278-021-00453-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/09/2022] Open
Abstract
Lung cancer is the most lethal malignant neoplasm worldwide, with an annual estimated rate of 1.8 million deaths. Computed tomography has been widely used to diagnose and detect lung cancer, but its diagnosis remains an intricate and challenging work, even for experienced radiologists. Computer-aided diagnosis tools and radiomics tools have provided support to the radiologist's decision, acting as a second opinion. The main focus of these tools has been to analyze the intranodular zone; nevertheless, recent works indicate that the interaction between the nodule and its surroundings (perinodular zone) could be relevant to the diagnosis process. However, only a few works have investigated the importance of specific attributes of the perinodular zone and have shown how important they are in the classification of lung nodules. In this context, the purpose of this work is to evaluate the impact of using the perinodular zone on the characterization of lung lesions. Motivated by reproducible research, we used a large public dataset of solid lung nodule images and extracted fine-tuned radiomic attributes from the perinodular and intranodular zones. Our best-evaluated model obtained an average AUC of 0.916, an accuracy of 84.26%, a sensitivity of 84.45%, and specificity of 83.84%. The combination of attributes from the perinodular and intranodular zones in the image characterization resulted in an improvement in all the metrics analyzed when compared to intranodular-only characterization. Therefore, our results highlighted the importance of using the perinodular zone in the solid pulmonary nodules classification process.
Collapse
Affiliation(s)
| | | | - Lucas Lins de Lima
- Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | | | | |
Collapse
|
13
|
Ostrin EJ, Bantis LE, Wilson DO, Patel N, Wang R, Kundnani D, Adams-Haduch J, Dennison JB, Fahrmann JF, Chiu HT, Gazdar A, Feng Z, Yuan JM, Hanash SM. Contribution of a Blood-Based Protein Biomarker Panel to the Classification of Indeterminate Pulmonary Nodules. J Thorac Oncol 2021; 16:228-236. [PMID: 33137463 PMCID: PMC8218328 DOI: 10.1016/j.jtho.2020.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
RATIONALE The workup and longitudinal monitoring for subjects presenting with pulmonary nodules is a pressing clinical problem. A blood-based biomarker panel potentially has utility for identifying subjects at higher risk for harboring a malignant nodule for whom additional workup would be indicated or subjects at reduced risk for whom imaging-based follow-up would be indicated. OBJECTIVES To assess whether a previously described four-protein biomarker panel, reported to improve assessment of lung cancer risk compared with a smoking-based lung cancer risk model, can provide discrimination between benign and malignant indeterminate pulmonary nodules. METHODS A previously validated multiplex enzyme-linked immunoassay was performed on matched case and control samples from each cohort. MEASUREMENTS The biomarker panel was tested in two case-control cohorts of patients presenting with indeterminate pulmonary nodules at the University of Pittsburgh Medical Center and the University of Texas Southwestern. MAIN RESULTS In both cohorts, the biomarker panel resulted in improved prediction of lung cancer risk over a model on the basis of nodule size alone. Of particular note, the addition of the marker panel to nodule size greatly improved sensitivity at a high specificity in both cohorts. CONCLUSIONS A four-marker biomarker panel, previously validated to improve lung cancer risk prediction, was found to also have utility in distinguishing benign from malignant indeterminate pulmonary nodules. Its performance in improving sensitivity at a high specificity indicates potential utility of the marker panel in assessing likelihood of malignancy in otherwise indeterminate nodules.
Collapse
Affiliation(s)
- Edwin J. Ostrin
- Department of General Internal Medicine, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Leonidas E. Bantis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS
| | - David O. Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Nikul Patel
- McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Renwei Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Deepali Kundnani
- McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jennifer B. Dennison
- McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Johannes F. Fahrmann
- McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hsienchang Thomas Chiu
- Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Adi Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ziding Feng
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jian-Min Yuan
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Samir M. Hanash
- McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Lennartz S, Mager A, Große Hokamp N, Schäfer S, Zopfs D, Maintz D, Reinhardt HC, Thomas RK, Caldeira L, Persigehl T. Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules. Cancer Imaging 2021; 21:17. [PMID: 33499939 PMCID: PMC7836145 DOI: 10.1186/s40644-020-00374-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. METHODS 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, 18F-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. RESULTS Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). CONCLUSIONS First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy compared to classification based on conventional image features only.
Collapse
Affiliation(s)
- Simon Lennartz
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Alina Mager
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nils Große Hokamp
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - David Zopfs
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - David Maintz
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Hans Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital Cologne, 50931, Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Liliana Caldeira
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thorsten Persigehl
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| |
Collapse
|
15
|
杨 杨. Advances in the Classification of Benign and Malignant Pulmonary Nodules Based on Machine Learning. Biophysics (Nagoya-shi) 2021. [DOI: 10.12677/biphy.2021.92006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Yoon HJ, Park H, Lee HY, Sohn I, Ahn J, Lee SH. Prediction of tumor doubling time of lung adenocarcinoma using radiomic margin characteristics. Thorac Cancer 2020; 11:2600-2609. [PMID: 32705793 PMCID: PMC7471031 DOI: 10.1111/1759-7714.13580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Because shape or irregularity along the tumor perimeter can result from interactions between the tumor and the surrounding parenchyma, there could be a difference in tumor growth rate according to tumor margin or shape. However, no attempt has been made to evaluate the correlation between margin or shape features and tumor growth. Methods We evaluated 52 lung adenocarcinoma (ADC) patients who had at least two computed tomographic (CT) examinations before curative resection. Volume‐based doubling times (DTs) were calculated based on CT scans, and patients were divided into two groups according to the growth pattern (GP) of their ADCs (gradually growing tumors [GP I] vs. growing tumors with a temporary decrease in DT [GP II]). CT radiomic features reflecting margin characteristics were extracted, and radiomic features reflective of tumor DT were selected. Results Among the 52 patients, 41 (78.8%) were assigned to GP I and 11 (21.2%) to GP II. Of the 94 radiomic features extracted, eccentricity, surface‐to‐volume ratio, LoG uniformity (σ = 3.5), and LoG skewness (σ = 0.5) were ultimately selected for tumor DT prediction. Selected radiomic features in GP I were surface‐to‐volume ratio, contrast, LoG uniformity (σ = 3.5), and LoG skewness (σ = 0.5), similar to those for total subjects, whereas the radiomic features in GP II were solidity, energy, and busyness. Conclusions This study demonstrated the potential of margin‐related radiomic features to predict tumor DT in lung ADCs. Key points Significant findings of the study We found a relationship between margin‐related radiomic features and tumor doubling time. What this study adds Margin‐related radiomic features can potentially be used as noninvasive biomarkers to predict tumor doubling time in lung adenocarcinoma and inform treatment strategies.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Joonghyun Ahn
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seung-Hak Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
17
|
Gierada DS, Black WC, Chiles C, Pinsky PF, Yankelevitz DF. Low-Dose CT Screening for Lung Cancer: Evidence from 2 Decades of Study. Radiol Imaging Cancer 2020; 2:e190058. [PMID: 32300760 PMCID: PMC7135238 DOI: 10.1148/rycan.2020190058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/15/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Lung cancer remains the overwhelmingly greatest cause of cancer death in the United States, accounting for more annual deaths than breast, prostate, and colon cancer combined. Accumulated evidence since the mid to late 1990s, however, indicates that low-dose CT screening of high-risk patients enables detection of lung cancer at an early stage and can reduce the risk of dying from lung cancer. CT screening is now a recommended clinical service in the United States, subject to guidelines and reimbursement requirements intended to standardize practice and optimize the balance of benefits and risks. In this review, the evidence on the effectiveness of CT screening will be summarized and the current guidelines and standards will be described in the context of knowledge gained from lung cancer screening studies. In addition, an overview of the potential advances that may improve CT screening will be presented, and the need to better understand the performance in clinical practice outside of the research trial setting will be discussed. © RSNA, 2020.
Collapse
Affiliation(s)
- David S. Gierada
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St Louis, MO 63110 (D.S.G.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (W.C.B.); Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC (C.C.); Division of Cancer Prevention, National Cancer Institute, Bethesda, Md (P.F.P.); and Department of Radiology, Mount Sinai School of Medicine, New York, NY (D.F.Y.)
| | - William C. Black
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St Louis, MO 63110 (D.S.G.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (W.C.B.); Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC (C.C.); Division of Cancer Prevention, National Cancer Institute, Bethesda, Md (P.F.P.); and Department of Radiology, Mount Sinai School of Medicine, New York, NY (D.F.Y.)
| | - Caroline Chiles
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St Louis, MO 63110 (D.S.G.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (W.C.B.); Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC (C.C.); Division of Cancer Prevention, National Cancer Institute, Bethesda, Md (P.F.P.); and Department of Radiology, Mount Sinai School of Medicine, New York, NY (D.F.Y.)
| | - Paul F. Pinsky
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St Louis, MO 63110 (D.S.G.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (W.C.B.); Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC (C.C.); Division of Cancer Prevention, National Cancer Institute, Bethesda, Md (P.F.P.); and Department of Radiology, Mount Sinai School of Medicine, New York, NY (D.F.Y.)
| | - David F. Yankelevitz
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St Louis, MO 63110 (D.S.G.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (W.C.B.); Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC (C.C.); Division of Cancer Prevention, National Cancer Institute, Bethesda, Md (P.F.P.); and Department of Radiology, Mount Sinai School of Medicine, New York, NY (D.F.Y.)
| |
Collapse
|
18
|
Delzell DAP, Magnuson S, Peter T, Smith M, Smith BJ. Machine Learning and Feature Selection Methods for Disease Classification With Application to Lung Cancer Screening Image Data. Front Oncol 2019; 9:1393. [PMID: 31921650 PMCID: PMC6917601 DOI: 10.3389/fonc.2019.01393] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
As awareness of the habits and risks associated with lung cancer has increased, so has the interest in promoting and improving upon lung cancer screening procedures. Recent research demonstrates the benefits of lung cancer screening; the National Lung Screening Trial (NLST) found as its primary result that preventative screening significantly decreases the death rate for patients battling lung cancer. However, it was also noted that the false positive rate was very high (>94%).In this work, we investigated the ability of various machine learning classifiers to accurately predict lung cancer nodule status while also considering the associated false positive rate. We utilized 416 quantitative imaging biomarkers taken from CT scans of lung nodules from 200 patients, where the nodules had been verified as cancerous or benign. These imaging biomarkers were created from both nodule and parenchymal tissue. A variety of linear, nonlinear, and ensemble predictive classifying models, along with several feature selection methods, were used to classify the binary outcome of malignant or benign status. Elastic net and support vector machine, combined with either a linear combination or correlation feature selection method, were some of the best-performing classifiers (average cross-validation AUC near 0.72 for these models), while random forest and bagged trees were the worst performing classifiers (AUC near 0.60). For the best performing models, the false positive rate was near 30%, notably lower than that reported in the NLST.The use of radiomic biomarkers with machine learning methods are a promising diagnostic tool for tumor classification. The have the potential to provide good classification and simultaneously reduce the false positive rate.
Collapse
Affiliation(s)
- Darcie A P Delzell
- Department of Mathematics and Computer Science, Wheaton College, Wheaton, IL, United States
| | - Sara Magnuson
- Department of Mathematics and Computer Science, Wheaton College, Wheaton, IL, United States
| | - Tabitha Peter
- Department of Mathematics and Computer Science, Wheaton College, Wheaton, IL, United States
| | - Michelle Smith
- Department of Mathematics and Computer Science, Wheaton College, Wheaton, IL, United States
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
19
|
Uthoff J, Nagpal P, Sanchez R, Gross TJ, Lee C, Sieren JC. Differentiation of non-small cell lung cancer and histoplasmosis pulmonary nodules: insights from radiomics model performance compared with clinician observers. Transl Lung Cancer Res 2019; 8:979-988. [PMID: 32010576 DOI: 10.21037/tlcr.2019.12.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Histoplasmosis pulmonary nodules often present in computed tomography (CT) imaging with characteristics suspicious for lung cancer. This presents a work-up decision issue for clinicians in regions where histoplasmosis is an endemic fungal infection, when a nodule suspicious for lung cancer is detected. We hypothesize the application of radiomic features extracted from pulmonary nodules and perinodular parenchyma could accurately distinguish between suspicious histoplasmosis lung nodules and non-small cell lung cancer (NSCLC). Methods A retrospective clinical cohort of pulmonary nodules with a confirmed diagnosis of histoplasmosis or NSCLC was collected from the University of Iowa Hospitals and Clincs. Radiomic features were extracted describing characteristics of the nodule and perinodular parenchyma regions and used to build a machine learning tool. These cases were assessed by four expert clinicians who gave a blinded risk prediction for NSCLC. Tool and observer performance were assessed by calculating the area under the curve for the receiver operating characteristic (AUC-ROC) and interclass correlation coefficient (ICC). Results A cohort of 71 subjects with confirmed histopathology (40 NSCLC, 31 histoplasmosis) were case-matched based on age, sex, and smoking history. Superior performance (AUC-ROC =0.89) was demonstrated using leave-one-subject out validation in the tool that incorporated radiomics from the nodule and perinodular parenchyma region extended to 100% nodule diameter. Observers had perfect intra-repeatability (ICC =1.0) and demonstrated fair inter-reader variability (ICC =0.52). Conclusions Radiomics have potential utility in the challenging task of differentiation between lung cancer and histoplasmosis. Expert clinician readers have high intra-repeatability but demonstrated inter-reader variability which could provide context for a supplemental radiomics-based tool.
Collapse
Affiliation(s)
- Johanna Uthoff
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Prashant Nagpal
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Rolando Sanchez
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Thomas J Gross
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Changhyun Lee
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jessica C Sieren
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
20
|
Uthoff J, Stephens MJ, Newell JD, Hoffman EA, Larson J, Koehn N, De Stefano FA, Lusk CM, Wenzlaff AS, Watza D, Neslund-Dudas C, Carr LL, Lynch DA, Schwartz AG, Sieren JC. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med Phys 2019; 46:3207-3216. [PMID: 31087332 DOI: 10.1002/mp.13592] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Computed tomography (CT) is an effective method for detecting and characterizing lung nodules in vivo. With the growing use of chest CT, the detection frequency of lung nodules is increasing. Noninvasive methods to distinguish malignant from benign nodules have the potential to decrease the clinical burden, risk, and cost involved in follow-up procedures on the large number of false-positive lesions detected. This study examined the benefit of including perinodular parenchymal features in machine learning (ML) tools for pulmonary nodule assessment. METHODS Lung nodule cases with pathology confirmed diagnosis (74 malignant, 289 benign) were used to extract quantitative imaging characteristics from computed tomography scans of the nodule and perinodular parenchyma tissue. A ML tool development pipeline was employed using k-medoids clustering and information theory to determine efficient predictor sets for different amounts of parenchyma inclusion and build an artificial neural network classifier. The resulting ML tool was validated using an independent cohort (50 malignant, 50 benign). RESULTS The inclusion of parenchymal imaging features improved the performance of the ML tool over exclusively nodular features (P < 0.01). The best performing ML tool included features derived from nodule diameter-based surrounding parenchyma tissue quartile bands. We demonstrate similar high-performance values on the independent validation cohort (AUC-ROC = 0.965). A comparison using the independent validation cohort with the Fleischner pulmonary nodule follow-up guidelines demonstrated a theoretical reduction in recommended follow-up imaging and procedures. CONCLUSIONS Radiomic features extracted from the parenchyma surrounding lung nodules contain valid signals with spatial relevance for the task of lung cancer risk classification. Through standardization of feature extraction regions from the parenchyma, ML tool validation performance of 100% sensitivity and 96% specificity was achieved.
Collapse
Affiliation(s)
- Johanna Uthoff
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52240, USA.,Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew J Stephens
- Department of Radiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - John D Newell
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52240, USA.,Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52240, USA.,Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jared Larson
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas Koehn
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Chrissy M Lusk
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Angela S Wenzlaff
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Donovan Watza
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | | | - Laurie L Carr
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, 80206, USA
| | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Jessica C Sieren
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52240, USA.,Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
21
|
Zhang G, Yang Z, Gong L, Jiang S, Wang L, Cao X, Wei L, Zhang H, Liu Z. An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images. J Med Syst 2019; 43:181. [PMID: 31093830 DOI: 10.1007/s10916-019-1327-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
As "the second eyes" of radiologists, computer-aided diagnosis systems play a significant role in nodule detection and diagnosis for lung cancer. In this paper, we aim to provide a systematic survey of state-of-the-art techniques (both traditional techniques and deep learning techniques) for nodule diagnosis from computed tomography images. This review first introduces the current progress and the popular structure used for nodule diagnosis. In particular, we provide a detailed overview of the five major stages in the computer-aided diagnosis systems: data acquisition, nodule segmentation, feature extraction, feature selection and nodule classification. Second, we provide a detailed report of the selected works and make a comprehensive comparison between selected works. The selected papers are from the IEEE Xplore, Science Direct, PubMed, and Web of Science databases up to December 2018. Third, we discuss and summarize the better techniques used in nodule diagnosis and indicate the existing future challenges in this field, such as improving the area under the receiver operating characteristic curve and accuracy, developing new deep learning-based diagnosis techniques, building efficient feature sets (fusing traditional features and deep features), developing high-quality labeled databases with malignant and benign nodules and promoting the cooperation between medical organizations and academic institutions.
Collapse
Affiliation(s)
- Guobin Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Li Gong
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China. .,Centre for advanced Mechanisms and Robotics, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Lu Wang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Xi Cao
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Lin Wei
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyun Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Ziqi Liu
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Uthoff J, Koehn N, Larson J, Dilger SKN, Hammond E, Schwartz A, Mullan B, Sanchez R, Hoffman RM, Sieren JC. Post-imaging pulmonary nodule mathematical prediction models: are they clinically relevant? Eur Radiol 2019; 29:5367-5377. [PMID: 30937590 DOI: 10.1007/s00330-019-06168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. MATERIALS AND METHODS A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. RESULTS Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. CONCLUSIONS Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. KEY POINTS • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
Collapse
Affiliation(s)
- Johanna Uthoff
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Nicholas Koehn
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | - Jared Larson
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | - Samantha K N Dilger
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Emily Hammond
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Ann Schwartz
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI, 48201, USA
| | - Brian Mullan
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | - Rolando Sanchez
- Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Richard M Hoffman
- Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA. .,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA.
| | | |
Collapse
|
23
|
Beig N, Khorrami M, Alilou M, Prasanna P, Braman N, Orooji M, Rakshit S, Bera K, Rajiah P, Ginsberg J, Donatelli C, Thawani R, Yang M, Jacono F, Tiwari P, Velcheti V, Gilkeson R, Linden P, Madabhushi A. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology 2019; 290:783-792. [PMID: 30561278 PMCID: PMC6394783 DOI: 10.1148/radiol.2018180910] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Purpose To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18-92 years; 125 men [mean age, 67 years; range, 18-90 years] and 165 women [mean age, 68 years; range, 33-92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on axial CT images by a radiologist with manual annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Nishino in this issue.
Collapse
Affiliation(s)
- Niha Beig
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Mohammadhadi Khorrami
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Mehdi Alilou
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Prateek Prasanna
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Nathaniel Braman
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Mahdi Orooji
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Sagar Rakshit
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Kaustav Bera
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Prabhakar Rajiah
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Jennifer Ginsberg
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Christopher Donatelli
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Rajat Thawani
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Michael Yang
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Frank Jacono
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Pallavi Tiwari
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Vamsidhar Velcheti
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Robert Gilkeson
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Philip Linden
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| | - Anant Madabhushi
- From the Department of Biomedical Engineering, Case Western Reserve
University, 2071 Martin Luther King Dr, Wickenden 523, Cleveland, OH 44106-7207
(N. Beig, M.K., M.A., P.P., N. Braman, M.O., K.B., P.T., A.M.); Taussig Cancer
Institute–Cleveland Clinic, Cleveland, Ohio (S.R.); Division of Thoracic
and Esophageal Surgery (J.G., P.L.), Division of Pulmonary Critical Care and
Sleep Medicine (C.D., F.J.), Department of Pathology (M.Y.), and Department of
Radiology (R.G.), University Hospitals of Cleveland, Cleveland, Ohio; Pulmonary
Section, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (F.J.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (P.R.);
Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY (R.T.);
and Hematology and Oncology, New York University, Perlmutter Cancer Center, New
York, NY (V.V.)
| |
Collapse
|
24
|
Liu H, Jing B, Han W, Long Z, Mo X, Li H. A Comparative Texture Analysis Based on NECT and CECT Images to Differentiate Lung Adenocarcinoma from Squamous Cell Carcinoma. J Med Syst 2019; 43:59. [PMID: 30707369 DOI: 10.1007/s10916-019-1175-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
The purpose of the study was to compare the texture based discriminative performances between non-contrast enhanced computed tomography (NECT) and contrast-enhanced computed tomography (CECT) images in differentiating lung adenocarcinoma (ADC) from squamous cell carcinoma (SCC) patients. Eighty-seven lung cancer subjects were enrolled in the study, including pathologically proved 47 ADC patients and 40 SCC patients, and 261 texture features were extracted from the manually delineated region of interests on CECT and NECT images respectively. Fisher score was then used to select the effective discriminative texture features between groups, and the selected texture features were adopted to differentiate ADC from SCC using Support Vector Machine and Leave-one-out cross-validation. Both NECT and CECT images could achieve the same best classification accuracy of 95.4%, and most of the informative features were from the gray-level co-occurrence matrix. In addition, CECT images were found with enhanced texture features compared with NECT images, and combining texture features of CECT and NECT images together could further improve the prediction accuracy. Besides the texture feature, the tumor location information also contributed to the differential diagnosis between ADC and SCC.
Collapse
Affiliation(s)
- Han Liu
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, 100069, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, 100069, China
| | - Wenjuan Han
- Department of Radiology, the General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Zhuqing Long
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, 100069, China
| | - Xiao Mo
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, 100069, China
| | - Haiyun Li
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
25
|
Yu Y, Wang J, Ng CW, Ma Y, Mo S, Fong ELS, Xing J, Song Z, Xie Y, Si K, Wee A, Welsch RE, So PTC, Yu H. Deep learning enables automated scoring of liver fibrosis stages. Sci Rep 2018; 8:16016. [PMID: 30375454 PMCID: PMC6207665 DOI: 10.1038/s41598-018-34300-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85–0.95 versus ANN (AUROC of up to 0.87–1.00), MLR (AUROC of up to 0.73–1.00), SVM (AUROC of up to 0.69–0.99) and RF (AUROC of up to 0.94–0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Jiahao Wang
- Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Zhejiang, 310058, China
| | - Chan Way Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117411, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Yukun Ma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Shupei Mo
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Ziwei Song
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yufei Xie
- Duke-NUS Graduate Medical School Singapore, National University of Singapore, Singapore, 169857, Singapore
| | - Ke Si
- Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Zhejiang, 310058, China.,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Zhejiang, 310027, China
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore, 119074, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Roy E Welsch
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Center for Statistics and Data Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore. .,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore. .,Confocal Microscopy Unit & Flow Cytometry Laboratory, National University Health System, Singapore, 119228, Singapore. .,Gastroenterology Department, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Uthoff J, De Stefano FA, Panzer K, Darbro BW, Sato TS, Khanna R, Quelle DE, Meyerholz DK, Weimer J, Sieren JC. Radiomic biomarkers informative of cancerous transformation in neurofibromatosis-1 plexiform tumors. J Neuroradiol 2018; 46:179-185. [PMID: 29958847 DOI: 10.1016/j.neurad.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND This study explores whether objective, quantitative radiomic biomarkers derived from magnetic resonance (MR), positron emission tomography (PET), and computed tomography (CT) may be useful in reliably distinguishing malignant peripheral nerve sheath tumors (MPNST) from benign plexiform neurofibromas (PN). METHODS A registration and segmentation pipeline was established using a cohort of NF1 patients with histopathological diagnosis of PN or MPNST, and medical imaging of the PN including MR and PET-CT. The corrected MR datasets were registered to the corresponding PET-CT via landmark-based registration. PET standard-uptake value (SUV) thresholds were used to guide segmentation of volumes of interest: MPNST-associated PET-hot regions (SUV≥3.5) and PN-associated PET-elevated regions (2.0<SUV<3.5). Quantitative imaging features were extracted from the MR, PET, and CT data and compared for statistical differences. Intensity histogram features included (mean, media, maximum, variance, full width at half maximum, entropy, kurtosis, and skewness), while image texture was quantified using Law's texture energy measures, grey-level co-occurrence matrices, and neighborhood grey-tone difference matrices. RESULTS For each of the 20 NF1 subjects, a total of 320 features were extracted from the image data. Feature reduction and statistical testing identified 9 independent radiomic biomarkers from the MR data (4 intensity and 5 texture) and 4 PET (2 intensity and 2 texture) were different between the PET-hot versus PET-elevated volumes of interest. CONCLUSIONS Our data suggests imaging features can be used to distinguish malignancy in NF1-realted tumors, which could improve MPNST risk assessment and positively impact clinical management of NF1 patients.
Collapse
Affiliation(s)
- J Uthoff
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - F A De Stefano
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America
| | - K Panzer
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - B W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - T S Sato
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America
| | - R Khanna
- Department of Pharmacology, University of Arizona, Arizona, United States of America
| | - D E Quelle
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - D K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - J Weimer
- Pediatric and Rare Disease Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - J C Sieren
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America.
| |
Collapse
|
27
|
Causey JL, Zhang J, Ma S, Jiang B, Qualls JA, Politte DG, Prior F, Zhang S, Huang X. Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep 2018; 8:9286. [PMID: 29915334 PMCID: PMC6006355 DOI: 10.1038/s41598-018-27569-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/04/2018] [Indexed: 11/26/2022] Open
Abstract
Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX .
Collapse
Affiliation(s)
- Jason L Causey
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, 72467, United States of America
- The UALR/UAMS Joint Graduate Program in Bioinformatics, Little Rock, Arkansas, 72204, United States of America
| | - Junyu Zhang
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Shiqian Ma
- Department of Mathematics, University of California, Davis, California, 95616, United States of America
| | - Bo Jiang
- Research Center for Management Science and Data Analytics, School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai, 200433, China
| | - Jake A Qualls
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, 72467, United States of America
- The UALR/UAMS Joint Graduate Program in Bioinformatics, Little Rock, Arkansas, 72204, United States of America
| | - David G Politte
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, 63110, United States of America
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, United States of America.
| | - Shuzhong Zhang
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America.
| | - Xiuzhen Huang
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, 72467, United States of America.
- The UALR/UAMS Joint Graduate Program in Bioinformatics, Little Rock, Arkansas, 72204, United States of America.
| |
Collapse
|
28
|
Phillips I, Ajaz M, Ezhil V, Prakash V, Alobaidli S, McQuaid SJ, South C, Scuffham J, Nisbet A, Evans P. Clinical applications of textural analysis in non-small cell lung cancer. Br J Radiol 2017; 91:20170267. [PMID: 28869399 DOI: 10.1259/bjr.20170267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Treatment pathways include regular cross-sectional imaging, generating large data sets which present intriguing possibilities for exploitation beyond standard visual interpretation. This additional data mining has been termed "radiomics" and includes semantic and agnostic approaches. Textural analysis (TA) is an example of the latter, and uses a range of mathematically derived features to describe an image or region of an image. Often TA is used to describe a suspected or known tumour. TA is an attractive tool as large existing image sets can be submitted to diverse techniques for data processing, presentation, interpretation and hypothesis testing with annotated clinical outcomes. There is a growing anthology of published data using different TA techniques to differentiate between benign and malignant lung nodules, differentiate tissue subtypes of lung cancer, prognosticate and predict outcome and treatment response, as well as predict treatment side effects and potentially aid radiotherapy planning. The aim of this systematic review is to summarize the current published data and understand the potential future role of TA in managing lung cancer.
Collapse
Affiliation(s)
- Iain Phillips
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK
| | - Mazhar Ajaz
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK.,2 Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | - Veni Ezhil
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK
| | - Vineet Prakash
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK
| | - Sheaka Alobaidli
- 3 Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
| | | | | | - James Scuffham
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK
| | - Andrew Nisbet
- 1 Royal Surrey County Hospital, University of Surrey, Guildford, UK
| | - Philip Evans
- 3 Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
| |
Collapse
|
29
|
Farag AA, Ali A, Elshazly S, Farag AA. Feature fusion for lung nodule classification. Int J Comput Assist Radiol Surg 2017. [PMID: 28623478 DOI: 10.1007/s11548-017-1626-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE This article examines feature-based nodule description for the purpose of nodule classification in chest computed tomography scanning. METHODS Three features based on (i) Gabor filter, (ii) multi-resolution local binary pattern (LBP) texture features and (iii) signed distance fused with LBP which generates a combinational shape and texture feature are utilized to provide feature descriptors of malignant and benign nodules and non-nodule regions of interest. Support vector machines (SVMs) and k-nearest neighbor (kNN) classifiers in serial and two-tier cascade frameworks are optimized and analyzed for optimal classification results of nodules. RESULTS A total of 1191 nodule and non-nodule samples from the Lung Image Data Consortium database is used for analysis. Classification using SVM and kNN classifiers is examined. The classification results from the two-tier cascade SVM using Gabor features showed overall better results for identifying non-nodules, malignant and benign nodules with average area under the receiver operating characteristics (AUC-ROC) curves of 0.99 and average f1-score of 0.975 over the two tiers. CONCLUSION In the results, higher overall AUCs and f1-scores were obtained for the non-nodules cases using any of the three features, showing the greatest distinguishability over nodules (benign/malignant). SVM and kNN classifiers were used for benign, malignant and non-nodule classification, where Gabor proved to be the most effective of the features for classification. The cascaded framework showed the greatest distinguishability between benign and malignant nodules.
Collapse
Affiliation(s)
- Amal A Farag
- Kentucky Imaging Technologies, LLC., Louisville, KY, USA.
| | - Asem Ali
- Computer Vision and Image Processing Laboratory (CVIP Lab), University of Louisville, Louisville, KY, 40292, USA
| | - Salwa Elshazly
- Kentucky Imaging Technologies, LLC., Louisville, KY, USA
| | - Aly A Farag
- Computer Vision and Image Processing Laboratory (CVIP Lab), University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
30
|
Chubachi S, Takahashi S, Tsutsumi A, Kameyama N, Sasaki M, Naoki K, Soejima K, Nakamura H, Asano K, Betsuyaku T. Radiologic features of precancerous areas of the lungs in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:1613-1624. [PMID: 28615934 PMCID: PMC5459962 DOI: 10.2147/copd.s132709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Only a few studies have evaluated the radiologic features of pre-existing structural abnormalities where lung cancer may develop. This study aimed to analyze the computed tomography (CT) images of lung areas where new cancer developed in chronic obstructive pulmonary disease (COPD) patients. PATIENTS AND METHODS We conducted a multicenter, longitudinal cohort study, called the Keio COPD Comorbidity Research, to assess the incidence of lung cancer. Emphysema and interstitial abnormalities were evaluated in 240 COPD patients who had baseline CT scans applicable for further digital analyses. For patients who developed lung cancer during the 3-year follow-up period, the local spherical lung density of the precancerous area was individually quantified. RESULTS Lung cancer was newly diagnosed in 21 participants (2.3% per year). The percent-age of low attenuation area in patients who developed lung cancer was higher than that of the other patients (20.0% vs 10.4%, P=0.014). The presence of emphysema (odds ratio [OR] 4.2, 95% confidence interval [CI] 1.0-29.0, P=0.049) or interstitial lung abnormalities (OR 15.6, 95% CI 4.4-65.4, P<0.0001) independently increased the risk for lung cancer. Compared with the density of the entire lung, the local density of the precancerous area was almost the same in patients with heterogeneous emphysema, but it was higher in most patients with interstitial abnormalities. CONCLUSION The presence of emphysema or interstitial abnormalities or a combination of both were independent predictors of lung cancer development in COPD patients. Furthermore, lung cancer most often developed in non-emphysematous areas or in interstitial abnormalities.
Collapse
Affiliation(s)
- Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Saeko Takahashi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Akihiro Tsutsumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Katsuhiko Naoki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Irima-gun, Saitama
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara-shi, Kanagawa, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo
| |
Collapse
|
31
|
Barros Netto SM, Corrêa Silva A, Lopes H, Cardoso de Paiva A, Acatauassú Nunes R, Gattass M. Statistical tools for the temporal analysis and classification of lung lesions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 142:55-72. [PMID: 28325447 DOI: 10.1016/j.cmpb.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Lung cancer remains one of the most common cancers globally. Temporal evaluation is an important tool for analyzing the malignant behavior of lesions during treatment, or of indeterminate lesions that may be benign. This work proposes a methodology for the analysis, quantification, and visualization of small (local) and large (global) changes in lung lesions. In addition, we extract textural features for the classification of lesions as benign or malignant. METHODS We employ the statistical concept of uncertainty to associate each voxel of a lesion to a probability that changes occur in the lesion over time. We employ the Jensen divergence and hypothesis test locally to verify voxel-to-voxel changes, and globally to capture changes in lesion volumes. RESULTS For the local hypothesis test, we determine that the change in density varies by between 3.84 and 40.01% of the lesion volume in a public database of malignant lesions under treatment, and by between 5.76 and 35.43% in a private database of benign lung nodules. From the texture analysis of regions in which the density changes occur, we are able to discriminate lung lesions with an accuracy of 98.41%, which shows that these changes can indicate the true nature of the lesion. CONCLUSION In addition to the visual aspects of the density changes occurring in the lesions over time, we quantify these changes and analyze the entire set using volumetry. In the case of malignant lesions, large b-divergence values are associated with major changes in lesion volume. In addition, this occurs when the change in volume is small but is associated with significant changes in density, as indicated by the histogram divergence. For benign lesions, the methodology shows that even in cases where the change in volume is small, a change of density occurs. This proves that even in lesions that appear stable, a change in density occurs.
Collapse
Affiliation(s)
- Stelmo Magalhães Barros Netto
- Federal University of Maranhão - UFMA, Applied Computing Group - NCA/UFMA, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga 65085-580, São Luís, MA, Brazil.
| | - Aristófanes Corrêa Silva
- Federal University of Maranhão - UFMA, Applied Computing Group - NCA/UFMA, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga 65085-580, São Luís, MA, Brazil.
| | - Hélio Lopes
- Pontifical Catholic University of Rio de Janeiro - PUC-Rio R. São Vicente, 225, Gávea, 22453-900, Rio de Janeiro, RJ, Brazil.
| | - Anselmo Cardoso de Paiva
- Federal University of Maranhão - UFMA, Applied Computing Group - NCA/UFMA, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga 65085-580, São Luís, MA, Brazil.
| | - Rodolfo Acatauassú Nunes
- State University of Rio de Janeiro - UERJ, São Francisco de Xavier, 524, Maracanã, 20550-900, Rio de Janeiro, RJ, Brazil.
| | - Marcelo Gattass
- Pontifical Catholic University of Rio de Janeiro - PUC-Rio R. São Vicente, 225, Gávea, 22453-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Hancock MC, Magnan JF. Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the Lung Image Database Consortium dataset with two statistical learning methods. J Med Imaging (Bellingham) 2016; 3:044504. [PMID: 27990453 DOI: 10.1117/1.jmi.3.4.044504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
In the assessment of nodules in CT scans of the lungs, a number of image-derived features are diagnostically relevant. Currently, many of these features are defined only qualitatively, so they are difficult to quantify from first principles. Nevertheless, these features (through their qualitative definitions and interpretations thereof) are often quantified via a variety of mathematical methods for the purpose of computer-aided diagnosis (CAD). To determine the potential usefulness of quantified diagnostic image features as inputs to a CAD system, we investigate the predictive capability of statistical learning methods for classifying nodule malignancy. We utilize the Lung Image Database Consortium dataset and only employ the radiologist-assigned diagnostic feature values for the lung nodules therein, as well as our derived estimates of the diameter and volume of the nodules from the radiologists' annotations. We calculate theoretical upper bounds on the classification accuracy that are achievable by an ideal classifier that only uses the radiologist-assigned feature values, and we obtain an accuracy of 85.74 [Formula: see text], which is, on average, 4.43% below the theoretical maximum of 90.17%. The corresponding area-under-the-curve (AUC) score is 0.932 ([Formula: see text]), which increases to 0.949 ([Formula: see text]) when diameter and volume features are included and has an accuracy of 88.08 [Formula: see text]. Our results are comparable to those in the literature that use algorithmically derived image-based features, which supports our hypothesis that lung nodules can be classified as malignant or benign using only quantified, diagnostic image features, and indicates the competitiveness of this approach. We also analyze how the classification accuracy depends on specific features and feature subsets, and we rank the features according to their predictive power, statistically demonstrating the top four to be spiculation, lobulation, subtlety, and calcification.
Collapse
Affiliation(s)
- Matthew C Hancock
- Florida State University , Department of Mathematics, 208 Love Building, 1017 Academic Way, Tallahassee, Florida 32306-4510, United States
| | - Jerry F Magnan
- Florida State University , Department of Mathematics, 208 Love Building, 1017 Academic Way, Tallahassee, Florida 32306-4510, United States
| |
Collapse
|
33
|
Cirujeda P, Dicente Cid Y, Muller H, Rubin D, Aguilera TA, Loo BW, Diehn M, Binefa X, Depeursinge A. A 3-D Riesz-Covariance Texture Model for Prediction of Nodule Recurrence in Lung CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2620-2630. [PMID: 27429433 DOI: 10.1109/tmi.2016.2591921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper proposes a novel imaging biomarker of lung cancer relapse from 3-D texture analysis of CT images. Three-dimensional morphological nodular tissue properties are described in terms of 3-D Riesz-wavelets. The responses of the latter are aggregated within nodular regions by means of feature covariances, which leverage rich intra- and inter-variations of the feature space dimensions. When compared to the classical use of the average for feature aggregation, feature covariances preserve spatial co-variations between features. The obtained Riesz-covariance descriptors lie on a manifold governed by Riemannian geometry allowing geodesic measurements and differentiations. The latter property is incorporated both into a kernel for support vector machines (SVM) and a manifold-aware sparse regularized classifier. The effectiveness of the presented models is evaluated on a dataset of 110 patients with non-small cell lung carcinoma (NSCLC) and cancer recurrence information. Disease recurrence within a timeframe of 12 months could be predicted with an accuracy of 81.3-82.7%. The anatomical location of recurrence could be discriminated between local, regional and distant failure with an accuracy of 78.3-93.3%. The obtained results open novel research perspectives by revealing the importance of the nodular regions used to build the predictive models.
Collapse
|
34
|
Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, Rubin D, McNitt-Gray M, Lo P, Sieren JC, Uthoff J, Dilger SKN, Driscoll B, Yeung I, Hadjiiski L, Cha K, Balagurunathan Y, Gillies R, Goldgof D. Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features. ACTA ACUST UNITED AC 2016; 2:430-437. [PMID: 28149958 PMCID: PMC5279995 DOI: 10.18383/j.tom.2016.00235] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic “feature” sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy.
Collapse
Affiliation(s)
| | - Artem Mamomov
- Massachusetts General Hospital, Boston, Massachusetts
| | - Binsheng Zhao
- Columbia University Medical Center, New York, New York
| | - Lin Lu
- Columbia University Medical Center, New York, New York
| | | | | | | | | | | | - Pechin Lo
- University of California Los Angeles, Los Angeles, California
| | | | | | | | | | - Ivan Yeung
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | | | - Kenny Cha
- University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
35
|
Armato SG, Drukker K, Li F, Hadjiiski L, Tourassi GD, Engelmann RM, Giger ML, Redmond G, Farahani K, Kirby JS, Clarke LP. LUNGx Challenge for computerized lung nodule classification. J Med Imaging (Bellingham) 2016; 3:044506. [PMID: 28018939 PMCID: PMC5166709 DOI: 10.1117/1.jmi.3.4.044506] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/17/2016] [Indexed: 11/14/2022] Open
Abstract
The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants' computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists' AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.
Collapse
Affiliation(s)
- Samuel G. Armato
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States
| | - Karen Drukker
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States
| | - Feng Li
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States
| | - Lubomir Hadjiiski
- University of Michigan, Department of Radiology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Georgia D. Tourassi
- Health Data Sciences Institute, Biomedical Science and Engineering Center, Oak Ridge National Laboratory, P.O. Box 2008 MS6085 Oak Ridge, Tennessee 37831-6085, United States
| | - Roger M. Engelmann
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States
| | - Maryellen L. Giger
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States
| | - George Redmond
- National Cancer Institute, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, 9609 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Keyvan Farahani
- National Cancer Institute, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, 9609 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Justin S. Kirby
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer Imaging Program, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Laurence P. Clarke
- National Cancer Institute, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, 9609 Medical Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
36
|
Parekh V, Jacobs MA. Radiomics: a new application from established techniques. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016; 1:207-226. [PMID: 28042608 PMCID: PMC5193485 DOI: 10.1080/23808993.2016.1164013] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The increasing use of biomarkers in cancer have led to the concept of personalized medicine for patients. Personalized medicine provides better diagnosis and treatment options available to clinicians. Radiological imaging techniques provide an opportunity to deliver unique data on different types of tissue. However, obtaining useful information from all radiological data is challenging in the era of "big data". Recent advances in computational power and the use of genomics have generated a new area of research termed Radiomics. Radiomics is defined as the high throughput extraction of quantitative imaging features or texture (radiomics) from imaging to decode tissue pathology and creating a high dimensional data set for feature extraction. Radiomic features provide information about the gray-scale patterns, inter-pixel relationships. In addition, shape and spectral properties can be extracted within the same regions of interest on radiological images. Moreover, these features can be further used to develop computational models using advanced machine learning algorithms that may serve as a tool for personalized diagnosis and treatment guidance.
Collapse
Affiliation(s)
- Vishwa Parekh
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Computer Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael A. Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|