1
|
Bharadwaj S, Urner TM, Cowdrick KR, Brothers RO, Boodooram T, Zhao H, Goyal V, Sathialingam E, Wu YC, Quadri A, Turrentine K, Akbar MM, Triplett SE, Bai S, Buckley EM. Stand-alone segmentation of blood flow pulsatility measured with diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6052-6062. [PMID: 39421785 PMCID: PMC11482157 DOI: 10.1364/boe.533916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
We present a stand-alone blood flow index (BFI) pulse segmentation method for diffuse correlation spectroscopy that uses a wavelet-based representation of the BFI signal at the cardiac frequency in place of an exogenous physiological reference. We use this wavelet-based segmentation method to quantify BFI waveform morphology in a cohort of 30 healthy adults. We demonstrate that the waveform morphology features obtained with the wavelet approach strongly agree with those obtained using an exogenous blood pressure reference signal. These results suggest the promise of stand-alone wavelet-based BFI segmentation for quantifying BFI waveform morphological features.
Collapse
Affiliation(s)
- Srinidhi Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Tara M. Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Vidisha Goyal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Yueh-Chi Wu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Katherine Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Mariam M. Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Sydney E. Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Shasha Bai
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Mogharari N, Wojtkiewicz S, Borycki D, Liebert A, Kacprzak M. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery. BIOMEDICAL OPTICS EXPRESS 2024; 15:4330-4344. [PMID: 39022555 PMCID: PMC11249683 DOI: 10.1364/boe.523514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Time-domain diffuse correlation spectroscopy (td-DCS) enables the depth discrimination in tissue's blood flow recovery, considering the fraction of photons detected with higher time of flight (TOF) and longer pathlength through the tissue. However, the recovery result depends on factors such as the instrument response function (IRF), analyzed TOF gate start time, gate width and the source-detector separation (SDS). In this research we evaluate the performance of the td-DCS technique at three SDSs of 1.5, 2 and 2.5 cm to recover cerebral blood flow (CBF). To do that we presented comprehensive characterization of the td-DCS system through a series of phantom experiments. First by quality metrices such as coefficient of variation and contrast-to-noise ratios, we identified optimal time gate(s) of the TOF to extract dynamics of particles. Then using sensitivity metrices, each SDS ability to detect dynamics of particles in superficial and deeper layer was evaluated. Finally, td-DCS at each SDS was tested on healthy volunteers during cuff occlusion test and breathing tasks. According to phantom measurements, the sensitivity to estimate perfusion within the deep layer located at depth of 1.5 cm from the surface can be increased more than two times when the SDS increases from 1.5 cm to 2.5 cm.
Collapse
Affiliation(s)
- Neda Mogharari
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Poland
| | - Stanisław Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Poland
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Poland
| | - Michał Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Poland
| |
Collapse
|
3
|
Bi R, Zhang R, Meng L, Du Y, Low J, Qi Y, Rajarahm P, Lai AYF, Tan VSY, Ho P, Olivo M. A portable optical pulsatile flowmetry demonstrates strong clinical relevance for diabetic foot perfusion assessment. APL Bioeng 2024; 8:016109. [PMID: 38390315 PMCID: PMC10883714 DOI: 10.1063/5.0182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
We present a robust, cost-effective (<2000 USD), and portable optical diffuse speckle pulsatile flowmetry (DSPF) device with a flexible handheld probe for deep tissue blood flow measurement in the human foot as well as a first-in-man observational clinical study using the proposed optical device for tissue ischemia assessment and peripheral artery disease (PAD) diagnosis. Blood flow in tissue is inherently pulsatile in nature. However, most conventional methods cannot measure deep tissue-level pulsatile blood flow noninvasively. The proposed optical device can measure tissue-level pulsatile blood flow ∼6 mm underneath the skin surface. A new quantitative tissue perfusion index (TPIDSPF) based on frequency domain analysis of the pulsatile blood flow waveform is defined to assess tissue ischemia status. Through a clinical study involving 66 subjects, including healthy individuals and diabetes patients with and without PAD, TPIDSPF demonstrated strong correlations of 0.720 with transcutaneous tissue partial oxygen pressure (TcPO2) and 0.652 with toe-brachial index (TBI). Moreover, among the three methods, TPIDSPF demonstrated the highest area under the curve for PAD diagnosis among diabetes patients, with a notable value of 0.941. The promising clinical results suggest that the proposed optical method has the potential to be an effective clinical tool for identifying PAD among the diabetic cohort.
Collapse
Affiliation(s)
- Renzhe Bi
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Ruochong Zhang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Lingyan Meng
- National University Health System (NUHS), 1E Kent Ridge Rd., Singapore 119228, Republic of Singapore
| | - Yao Du
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Julie Low
- National University Health System (NUHS), 1E Kent Ridge Rd., Singapore 119228, Republic of Singapore
| | - Yi Qi
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Poongkulali Rajarahm
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Alexis Yuen Fun Lai
- National University Health System (NUHS), 1E Kent Ridge Rd., Singapore 119228, Republic of Singapore
| | - Victoria Shi Ying Tan
- National University Health System (NUHS), 1E Kent Ridge Rd., Singapore 119228, Republic of Singapore
| | | | - Malini Olivo
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| |
Collapse
|
4
|
Kedia N, McDowell MM, Yang J, Wu J, Friedlander RM, Kainerstorfer JM. Pulsatile microvascular cerebral blood flow waveforms change with intracranial compliance and age. NEUROPHOTONICS 2024; 11:015003. [PMID: 38250664 PMCID: PMC10799239 DOI: 10.1117/1.nph.11.1.015003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Significance Diffuse correlation spectroscopy (DCS) is an optical method to measure relative changes in cerebral blood flow (rCBF) in the microvasculature. Each heartbeat generates a pulsatile signal with distinct morphological features that we hypothesized to be related to intracranial compliance (ICC). Aim We aim to study how three features of the pulsatile rCBF waveforms: the augmentation index (AIx), the pulsatility index, and the area under the curve, change with respect to ICC. We describe ICC as a combination of vascular compliance and extravascular compliance. Approach Since patients with Chiari malformations (CM) (n = 30 ) have been shown to have altered extravascular compliance, we compare the morphology of rCBF waveforms in CM patients with age-matched healthy control (n = 30 ). Results AIx measured in the supine position was significantly less in patients with CM compared to healthy controls (p < 0.05 ). Since physiologic aging also leads to changes in vessel stiffness and intravascular compliance, we evaluate how the rCBF waveform changes with respect to age and find that the AIx feature was strongly correlated with age (R healthy subjects = - 0.63 , R preoperative CM patient = - 0.70 , and R postoperative CM patients = - 0.62 , p < 0.01 ). Conclusions These results suggest that the AIx measured in the cerebral microvasculature using DCS may be correlated to changes in ICC.
Collapse
Affiliation(s)
- Nikita Kedia
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Michael M. McDowell
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Robert M. Friedlander
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Bartlett MF, Palmero-Canton A, Oneglia AP, Mireles J, Brothers RM, Trowbridge CA, Wilkes D, Nelson MD. Epinephrine iontophoresis attenuates changes in skin blood flow and abolishes cutaneous contamination of near-infrared diffuse correlation spectroscopy estimations of muscle perfusion. Am J Physiol Regul Integr Comp Physiol 2023; 324:R368-R380. [PMID: 36693173 PMCID: PMC9970657 DOI: 10.1152/ajpregu.00242.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an optical imaging technique for measuring relative changes in skeletal muscle microvascular perfusion (i.e., fold change above baseline) during reactive hyperemia testing and exercise and is reported as a blood flow index (BFI). Although it is generally accepted that changes in BFI are primarily driven by changes in muscle perfusion, it is well known that large, hyperthermia-induced changes in cutaneous blood flow can uncouple this relationship. What remains unknown, is how much of an impact that changes in cutaneous perfusion have on NIR-DCS BFI and estimates of skeletal muscle perfusion under thermoneutral conditions, where changes in cutaneous blood flow are assumed to be relatively low. We therefore used epinephrine iontophoresis to pharmacologically block changes in cutaneous perfusion throughout a battery of experimental procedures. The data show that 1) epinephrine iontophoresis attenuates changes in cutaneous perfusion for up to 4-h posttreatment, even in the face of significant neural and local stimuli, 2) under thermoneutral conditions, cutaneous perfusion does not significantly impact NIR-DCS BFI during reactive hyperemia testing or moderate-intensity exercise, and 3) during passive whole body heat stress, when cutaneous vasodilation is pronounced, epinephrine iontophoresis preserves NIR-DCS measures of skeletal muscle BFI during moderate-intensity exercise. Collectively, these data suggest that cutaneous perfusion is unlikely to have a major impact on NIR-DCS estimates of skeletal muscle BFI under thermoneutral conditions, but that epinephrine iontophoresis can be used to abolish cutaneous contamination of the NIR-DCS BFI signal during studies where skin blood flow may be elevated but skeletal muscle perfusion is of specific interest.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Alberto Palmero-Canton
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Andrew P Oneglia
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Julissa Mireles
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Cynthia A Trowbridge
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Dustin Wilkes
- US Dermatology Partners, Weatherford, Texas, United States
| | - Michael D Nelson
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
6
|
Lewis A, Forti RM, Alomaja O, Mesaros C, Piel S, Greenwood JC, Talebi FM, Mavroudis CD, Kelly M, Kao SH, Shofer FS, Ehinger JK, Kilbaugh TJ, Baker WB, Jang DH. Preliminary Research: Application of Non-Invasive Measure of Cytochrome c Oxidase Redox States and Mitochondrial Function in a Porcine Model of Carbon Monoxide Poisoning. J Med Toxicol 2022; 18:214-222. [PMID: 35482181 PMCID: PMC9198167 DOI: 10.1007/s13181-022-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology. METHODS Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting. RESULTS While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio. CONCLUSIONS There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.
Collapse
Affiliation(s)
- Alistair Lewis
- Department of Chemistry, University of Pennsylvania, PA 19104 Philadelphia, USA
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Rodrigo M. Forti
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Oladunni Alomaja
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics (SPATT), University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah Piel
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Fatima M. Talebi
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Constantine D. Mavroudis
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - Matthew Kelly
- Department of Emergency Medicine, The University of Alabama at Birmingham, 701 20th Street South, Birmingham, AB 35233 UK
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Johannes K. Ehinger
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Todd J. Kilbaugh
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| | - Wesley B. Baker
- Division of Neurology, The Children’s Hospital of Philadelphia (CHOP), PA 19104 Philadelphia, USA
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 USA
| |
Collapse
|
7
|
Bartlett MF, Akins JD, Oneglia A, Brothers RM, Wilkes D, Nelson MD. Impact of Cutaneous Blood Flow on NIR-DCS Measures of Skeletal Muscle Blood Flow Index. J Appl Physiol (1985) 2021; 131:914-926. [PMID: 34264131 DOI: 10.1152/japplphysiol.00337.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an optical technique for estimating relative changes in skeletal muscle perfusion during exercise, but may be affected by changes in cutaneous blood flow, as photons emitted by the laser must first pass through the skin. Accordingly, the purpose of this investigation was to examine how increased cutaneous blood flow affects NIR-DCS blood flow index (BFI) at rest and during exercise using a passive whole-body heating protocol that increases cutaneous, but not skeletal muscle, perfusion in the uncovered limb. BFI and cutaneous perfusion (laser Doppler flowmetry) were assessed in 15 healthy young subjects before (e.g., rest) and during 5-minutes of moderate-intensity hand-grip exercise in normothermic conditions and after cutaneous blood flow was elevated via whole-body heating. Hyperthermia significantly increased both cutaneous perfusion (~7.3-fold; p≤0.001) and NIR-DCS BFI (~4.5-fold; p≤0.001). Although relative BFI (i.e., fold-change above baseline) exhibited a typical exponential increase in muscle perfusion during normothermic exercise (2.81±0.95), there was almost no change in BFI during hyperthermic exercise (1.43±0.44). A subset of 8 subjects were subsequently treated with intradermal injection of botulinum toxin-A (Botox) to block heating-induced elevations in cutaneous blood flow, which 1) nearly abolished the hyperthermia-induced increase in BFI, and 2) restored BFI kinetics during hyperthermic exercise to values that were not different from normothermic exercise (p=0.091). Collectively, our results demonstrate that cutaneous blood flow can have a substantial, detrimental impact on NIR-DCS estimates of skeletal muscle perfusion and highlight the need for technical and/or pharmacological advancements to overcome this issue moving forward.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Andrew Oneglia
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Dustin Wilkes
- Medical City Weatherford Dermatology Residency Program, Weatherford, TX, United States
| | - Michael D Nelson
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
8
|
Ozana N, Zavriyev AI, Mazumder D, Robinson M, Kaya K, Blackwell M, Carp SA, Franceschini MA. Superconducting nanowire single-photon sensing of cerebral blood flow. NEUROPHOTONICS 2021; 8:035006. [PMID: 34423069 PMCID: PMC8373637 DOI: 10.1117/1.nph.8.3.035006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 05/25/2023]
Abstract
Significance: The ability of diffuse correlation spectroscopy (DCS) to measure cerebral blood flow (CBF) in humans is hindered by the low signal-to-noise ratio (SNR) of the method. This limits the high acquisition rates needed to resolve dynamic flow changes and to optimally filter out large pulsatile oscillations and prevents the use of large source-detector separations ( ≥ 3 cm ), which are needed to achieve adequate brain sensitivity in most adult subjects. Aim: To substantially improve SNR, we have built a DCS device that operates at 1064 nm and uses superconducting nanowire single-photon detectors (SNSPD). Approach: We compared the performances of the SNSPD-DCS in humans with respect to a typical DCS system operating at 850 nm and using silicon single-photon avalanche diode detectors. Results: At a 25-mm separation, we detected 13 ± 6 times more photons and achieved an SNR gain of 16 ± 8 on the forehead of 11 subjects using the SNSPD-DCS as compared to typical DCS. At this separation, the SNSPD-DCS is able to detect a clean pulsatile flow signal at 20 Hz in all subjects. With the SNSPD-DCS, we also performed measurements at 35 mm, showing a lower scalp sensitivity of 31 ± 6 % with respect to the 48 ± 8 % scalp sensitivity at 25 mm for both the 850 and 1064 nm systems. Furthermore, we demonstrated blood flow responses to breath holding and hyperventilation tasks. Conclusions: While current commercial SNSPDs are expensive, bulky, and loud, they may allow for more robust measures of non-invasive cerebral perfusion in an intensive care setting.
Collapse
Affiliation(s)
- Nisan Ozana
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Alexander I. Zavriyev
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Mitchell Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
- Massachusetts Institute of Technology, Health Sciences and Technology Program, Cambridge, Massachusetts, United States
| | - Kutlu Kaya
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Megan Blackwell
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Cortese L, Lo Presti G, Pagliazzi M, Contini D, Dalla Mora A, Dehghani H, Ferri F, Fischer JB, Giovannella M, Martelli F, Weigel UM, Wojtkiewicz S, Zanoletti M, Durduran T. Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware based on targets for signal-to-noise ratio and precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:3265-3281. [PMID: 34221659 PMCID: PMC8221932 DOI: 10.1364/boe.423071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 05/09/2023]
Abstract
Over the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals. Here, DCS experiments have been performed using liquid tissue simulating phantoms to study the effect of the detected photon count-rate, the number of parallel detection channels and the measurement duration on the precision and SNR to suggest scaling relations to be utilized for device design.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Fabio Ferri
- Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia and To. Sca. Lab., 22100 Como, Italy
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica, 50100 Firenze, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
10
|
Fischer JB, Ghouse A, Tagliabue S, Maruccia F, Rey-Perez A, Báguena M, Cano P, Zucca R, Weigel UM, Sahuquillo J, Poca MA, Durduran T. Non-Invasive Estimation of Intracranial Pressure by Diffuse Optics: A Proof-of-Concept Study. J Neurotrauma 2020; 37:2569-2579. [PMID: 32460617 DOI: 10.1089/neu.2019.6965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other hand, there are other less critical conditions for which ICP monitoring could still be useful; therefore, there is a need to develop non-invasive methods. We propose a new method to estimate ICP based on the analysis of the non-invasive measurement of pulsatile, microvascular cerebral blood flow with diffuse correlation spectroscopy. This is achieved by training a recurrent neural network using only the cerebral blood flow as the input. The method is validated using a 50% split sample method using the data from a proof-of-concept study. The study involved a population of infants (n = 6) with external hydrocephalus (initially diagnosed as benign enlargement of subarachnoid spaces) as well as a population of adults (n = 6) with traumatic brain injury. The algorithm was applied to each cohort individually to obtain a model and an ICP estimate. In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy of <4 mm Hg and a negligible small bias. Further, we have achieved a good correlation (Pearson's correlation coefficient >0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison with standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bedside assessment of ICP.
Collapse
Affiliation(s)
- Jonas B Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,HemoPhotonics S.L., Castelldefels, Barcelona, Spain
| | - Ameer Ghouse
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Susanna Tagliabue
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rey-Perez
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcelino Báguena
- Neurotrauma Intensive Care Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paola Cano
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Riccardo Zucca
- Synthetic Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Udo M Weigel
- HemoPhotonics S.L., Castelldefels, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria A Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|