1
|
Wang S, Lam SS, Aguilar A, Anakwe S, Barahona K, Haider H, Hunyadi O, Jain K, Kolodziejski D, Lal A, Li M, MacKenzie F, Miller J, Nardin O, Nguyen E, Pappu J, Rodriguez M, Lin JW. Inhibitory modulation of action potentials in crayfish motor axons by fluoxetine. Synapse 2024; 78:e22304. [PMID: 38896000 DOI: 10.1002/syn.22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.
Collapse
Affiliation(s)
- Selene Wang
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Si Seng Lam
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Anisah Aguilar
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Stephanie Anakwe
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Hani Haider
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Olivia Hunyadi
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kaahini Jain
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Anindita Lal
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Man Li
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Frank MacKenzie
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - John Miller
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Oliviero Nardin
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Emily Nguyen
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jaii Pappu
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Melissa Rodriguez
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
3
|
Fu P, Liu Y, Zhu L, Wang M, Yu Y, Yang F, Zhang W, Zhang H, Shoham S, Roe AW, Xi W. Two-photon imaging of excitatory and inhibitory neural response to infrared neural stimulation. NEUROPHOTONICS 2024; 11:025003. [PMID: 38800606 PMCID: PMC11125280 DOI: 10.1117/1.nph.11.2.025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Significance Pulsed infrared neural stimulation (INS, 1875 nm) is an emerging neurostimulation technology that delivers focal pulsed heat to activate functionally specific mesoscale networks and holds promise for clinical application. However, little is known about its effect on excitatory and inhibitory cell types in cerebral cortex. Aim Estimates of summed population neuronal response time courses provide a potential basis for neural and hemodynamic signals described in other studies. Approach Using two-photon calcium imaging in mouse somatosensory cortex, we have examined the effect of INS pulse train application on hSyn neurons and mDlx neurons tagged with GCaMP6s. Results We find that, in anesthetized mice, each INS pulse train reliably induces robust response in hSyn neurons exhibiting positive going responses. Surprisingly, mDlx neurons exhibit negative going responses. Quantification using the index of correlation illustrates responses are reproducible, intensity-dependent, and focal. Also, a contralateral activation is observed when INS applied. Conclusions In sum, the population of neurons stimulated by INS includes both hSyn and mDlx neurons; within a range of stimulation intensities, this leads to overall excitation in the stimulated population, leading to the previously observed activations at distant post-synaptic sites.
Collapse
Affiliation(s)
- Peng Fu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yin Liu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- KU Leuven Medical School, Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven, Belgium
| | - Liang Zhu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Mengqi Wang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yuan Yu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Fen Yang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Weijie Zhang
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Hequn Zhang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Shy Shoham
- NYU Langone Health, Department of Ophthalmology and Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Anna Wang Roe
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| | - Wang Xi
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| |
Collapse
|
4
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Zhu X, Lin JW, Turnali A, Sander MY. Single infrared light pulses induce excitatory and inhibitory neuromodulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:374-388. [PMID: 35154878 PMCID: PMC8803021 DOI: 10.1364/boe.444577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.
Collapse
Affiliation(s)
- Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ahmet Turnali
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Michelle Y. Sander
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, MA 02446, USA
| |
Collapse
|
6
|
Kaszas A, Szalay G, Slézia A, Bojdán A, Vanzetta I, Hangya B, Rózsa B, O'Connor R, Moreau D. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021; 11:9775. [PMID: 33963220 PMCID: PMC8105372 DOI: 10.1038/s41598-021-89163-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.
Collapse
Affiliation(s)
- Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Slézia
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Alexandra Bojdán
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Two-Photon Laboratory, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France.
| |
Collapse
|