1
|
Siegenthaler J, Betsholtz C. Commentary on "Structural characterization of SLYM - a 4th meningeal membrane". Fluids Barriers CNS 2024; 21:69. [PMID: 39252039 PMCID: PMC11385822 DOI: 10.1186/s12987-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
For centuries, the meninges have been described as three membranes: the inner pia, middle arachnoid and outer dura. It was therefore sensational when in early 2023 Science magazine published a report of a previously unrecognized - 4th - meningeal membrane located between the pia and arachnoid. Multiple features were claimed for this new membrane: a single cell layer marked by the transcription factor Prox1 that formed a barrier to low molecular weight substances and separated the subarachnoid space (SAS) into two fluid-filled compartments, not one as previously described. These features were further claimed to facilitate unidirectional glymphatic cerebrospinal fluid transport. These claims were immediately questioned by several researchers as misinterpretations of the authors' own data. The critics argued that (i) the 4th meningeal membrane as claimed did not exist as a separate structure but was part of the arachnoid, (ii) the "outer SAS" compartment was likely an artifactual subdural space created by the experimental procedures, and (iii) the 4th membrane barrier property was confused with the arachnoid barrier. Subsequent publications in late 2023 indeed showed that Prox1 + cells are embedded within the arachnoid and located immediately inside of and firmly attached to the arachnoid barrier cells by adherens junctions and gap junctions. In a follow-up study, published in this journal, the lead authors of the Science paper Kjeld Møllgård and Maiken Nedergaard reported additional observations they claim support the existence of a 4th meningeal membrane and the compartmentalization of the SAS into two non-communicating spaces. Their minor modification to the original paper was the 4th meningeal membrane was better observable at the ventral side of the brain than at the dorsal side where it was originally reported. The authors also claimed support for the existence of a 4th meningeal membrane in classical literature. Here, we outline multiple concerns over the new data and interpretation and argue against the claim there is prior support in the literature for a 4th meningeal membrane.
Collapse
Affiliation(s)
- Julie Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Anschutz Medical Campus, 12800 East 19th Ave, MS-8313, Aurora, CO, 80045, USA.
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
2
|
Santisteban MM, Schaeffer S, Anfray A, Faraco G, Brea D, Wang G, Sobanko MJ, Sciortino R, Racchumi G, Waisman A, Park L, Anrather J, Iadecola C. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat Neurosci 2024; 27:63-77. [PMID: 38049579 PMCID: PMC10999222 DOI: 10.1038/s41593-023-01497-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2023] [Indexed: 12/06/2023]
Abstract
Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona, Barcelona, Spain
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Melissa J Sobanko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Jones HE, Robertson GL, Romero-Morales A, O’Rourke R, Siegenthaler JA, Gama V. Leptomeningeal Neural Organoid (LMNO) Fusions as Models to Study Meninges-Brain Signaling. RESEARCH SQUARE 2023:rs.3.rs-3694849. [PMID: 38168409 PMCID: PMC10760226 DOI: 10.21203/rs.3.rs-3694849/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.
Collapse
Affiliation(s)
- Hannah E Jones
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
- University of Colorado Anschutz Medical Campus, Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO 80045 USA
| | - Gabriella L Robertson
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| | - Alejandra Romero-Morales
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| | - Rebecca O’Rourke
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
| | - Julie A Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
- University of Colorado Anschutz Medical Campus, Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO 80045 USA
| | - Vivian Gama
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| |
Collapse
|
4
|
Jones HE, Robertson GL, Romero-Morales A, O’Rourke R, Siegenthaler JA, Gama V. Leptomeningeal Neural Organoid (LMNO) Fusions as Models to Study Meninges-Brain Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569648. [PMID: 38077064 PMCID: PMC10705555 DOI: 10.1101/2023.12.01.569648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.
Collapse
Affiliation(s)
- Hannah E Jones
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
- University of Colorado Anschutz Medical Campus, Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO 80045 USA
| | - Gabriella L Robertson
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| | - Alejandra Romero-Morales
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| | - Rebecca O’Rourke
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
| | - Julie A Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045 USA
- University of Colorado Anschutz Medical Campus, Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO 80045 USA
| | - Vivian Gama
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232 USA
| |
Collapse
|
5
|
Jones HE, Coelho-Santos V, Bonney SK, Abrams KA, Shih AY, Siegenthaler JA. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 2023; 150:dev201805. [PMID: 37756588 PMCID: PMC10565218 DOI: 10.1242/dev.201805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Perivascular fibroblasts (PVFs) are a fibroblast-like cell type that reside on large-diameter blood vessels in the adult meninges and central nervous system (CNS). PVFs contribute to fibrosis following injury but their homeostatic functions are not defined. PVFs were previously shown to be absent from most brain regions at birth and are only detected postnatally within the cerebral cortex. However, the origin, timing and cellular mechanisms of PVF development are not known. We used Col1a1-GFP and Col1a2-CreERT2 transgenic mice to track PVF development postnatally. Using lineage tracing and in vivo imaging we show that brain PVFs originate from the meninges and are first seen on parenchymal cerebrovasculature at postnatal day (P) 5. After P5, PVF coverage of the cerebrovasculature expands via local cell proliferation and migration from the meninges. Finally, we show that PVFs and perivascular macrophages develop concurrently. These findings provide the first complete timeline for PVF development in the brain, enabling future work into how PVF development is coordinated with cell types and structures in and around the perivascular spaces to support normal CNS vascular function.
Collapse
Affiliation(s)
- Hannah E. Jones
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kelsey A. Abrams
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Julie A. Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Derk J, Como CN, Jones HE, Joyce LR, Kim S, Spencer BL, Bonney S, O'Rourke R, Pawlikowski B, Doran KS, Siegenthaler JA. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev Cell 2023; 58:635-644.e4. [PMID: 36996816 PMCID: PMC10231667 DOI: 10.1016/j.devcel.2023.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
The arachnoid barrier, a component of the blood-cerebrospinal fluid barrier (B-CSFB) in the meninges, is composed of epithelial-like, tight-junction-expressing cells. Unlike other central nervous system (CNS) barriers, its' developmental mechanisms and timing are largely unknown. Here, we show that mouse arachnoid barrier cell specification requires the repression of Wnt-β-catenin signaling and that constitutively active β-catenin can prevent its formation. We also show that the arachnoid barrier is functional prenatally and, in its absence, a small molecular weight tracer and the bacterium group B Streptococcus can cross into the CNS following peripheral injection. Acquisition of barrier properties prenatally coincides with the junctional localization of Claudin 11, and increased E-cadherin and maturation continues after birth, where postnatal expansion is marked by proliferation and re-organization of junctional domains. This work identifies fundamental mechanisms that drive arachnoid barrier formation, highlights arachnoid barrier fetal functions, and provides novel tools for future studies on CNS barrier development.
Collapse
Affiliation(s)
- Julia Derk
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christina N Como
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA
| | - Hannah E Jones
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA
| | - Luke R Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sol Kim
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA
| | - Brady L Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie Bonney
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Rebecca O'Rourke
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Brad Pawlikowski
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Cell Biology Stem Cells and Development Graduate Program, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Zhang Y, Bailey JT, Xu E, Singh K, Lavaert M, Link VM, D'Souza S, Hafiz A, Cao J, Cao G, Sant'Angelo DB, Sun W, Belkaid Y, Bhandoola A, McGavern DB, Yang Q. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat Immunol 2022; 23:1714-1725. [PMID: 36411380 PMCID: PMC10202031 DOI: 10.1038/s41590-022-01349-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates close interaction between immune cells and the brain, revising the traditional view of the immune privilege of the brain. However, the specific mechanisms by which immune cells promote normal neural function are not entirely understood. Mucosal-associated invariant T cells (MAIT cells) are a unique type of innate-like T cell with molecular and functional properties that remain to be better characterized. In the present study, we report that MAIT cells are present in the meninges and express high levels of antioxidant molecules. MAIT cell deficiency in mice results in the accumulation of reactive oxidative species in the meninges, leading to reduced expression of junctional protein and meningeal barrier leakage. The presence of MAIT cells restricts neuroinflammation in the brain and preserves learning and memory. Together, our work reveals a new functional role for MAIT cells in the meninges and suggests that meningeal immune cells can help maintain normal neural function by preserving meningeal barrier homeostasis and integrity.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - En Xu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kunal Singh
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanti D'Souza
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Wei Sun
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Shih AY, Coelho-Santos V, Kılıç K. Special Section Guest Editorial: Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces. NEUROPHOTONICS 2022; 9:031901. [PMID: 36204654 PMCID: PMC9529636 DOI: 10.1117/1.nph.9.3.031901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The guest editorial provides an introduction to Parts 1 and 2 of the Neurophotonics Special Section on Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces.
Collapse
Affiliation(s)
- Andy Y. Shih
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Vanessa Coelho-Santos
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|