1
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. Nat Neurosci 2024; 27:846-861. [PMID: 38539013 PMCID: PMC11104262 DOI: 10.1038/s41593-024-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Futia
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel A Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Baris Ozbay
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Gilinsky SD, Jung DN, Futia GL, Zohrabi M, Welton TA, Supekar OD, Gibson EA, Restrepo D, Bright VM, Gopinath JT. Tunable liquid lens for three-photon excitation microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3285-3300. [PMID: 38855666 PMCID: PMC11161341 DOI: 10.1364/boe.516956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.
Collapse
Affiliation(s)
- Samuel D. Gilinsky
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Diane N. Jung
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Greg L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Tarah A. Welton
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Omkar D. Supekar
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Stamenkovic S, Li Y, Waters J, Shih A. Deep Imaging to Dissect Microvascular Contributions to White Matter Degeneration in Rodent Models of Dementia. Stroke 2023; 54:1403-1415. [PMID: 37094035 PMCID: PMC10460612 DOI: 10.1161/strokeaha.122.037156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The increasing socio-economic burden of Alzheimer disease (AD) and AD-related dementias has created a pressing need to define targets for therapeutic intervention. Deficits in cerebral blood flow and neurovascular function have emerged as early contributors to disease progression. However, the cause, progression, and consequence of small vessel disease in AD/AD-related dementias remains poorly understood, making therapeutic targets difficult to pinpoint. Animal models that recapitulate features of AD/AD-related dementias may provide mechanistic insight because microvascular pathology can be studied as it develops in vivo. Recent advances in in vivo optical and ultrasound-based imaging of the rodent brain facilitate this goal by providing access to deeper brain structures, including white matter and hippocampus, which are more vulnerable to injury during cerebrovascular disease. Here, we highlight these novel imaging approaches and discuss their potential for improving our understanding of vascular contributions to AD/AD-related dementias.
Collapse
Affiliation(s)
- Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Yuandong Li
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Andy Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Shih AY, Coelho-Santos V, Kılıç K. Special Section Guest Editorial: Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces. NEUROPHOTONICS 2022; 9:031901. [PMID: 36204654 PMCID: PMC9529636 DOI: 10.1117/1.nph.9.3.031901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The guest editorial provides an introduction to Parts 1 and 2 of the Neurophotonics Special Section on Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces.
Collapse
Affiliation(s)
- Andy Y. Shih
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Vanessa Coelho-Santos
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|