1
|
Shen L, Huang X, Liu Y, Bai S, Wang F, Yang Q. Multi-sequence magnetic resonance imaging radiomics combined with imaging features predicts the difficulty of HIFU treatment of uterine fibroids. Sci Rep 2025; 15:3259. [PMID: 39863675 PMCID: PMC11762267 DOI: 10.1038/s41598-025-86958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
To establish a multivariate linear regression model for predicting the difficulty of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids based on multi-sequence magnetic resonance imaging radiomics features. A retrospective analysis was conducted on 218 patients with uterine fibroids who underwent HIFU treatment, including 178 cases from Yongchuan Hospital of Chongqing Medical University and 40 cases from the Second Affiliated Hospital of Chongqing Medical University (external validation set). Radiomics features were extracted and selected from magnetic resonance images, and potentially related imaging features were collected. The energy efficiency factor (EEF) was used as the dependent variable. Imaging models, radiomics models, and joint models were established using a stepwise approach. The model with the highest R2 value was selected for external validation. The R2 value of the combined model was 0.642, higher than that of other models. Spearman correlation analysis showed a correlation coefficient of R = 0.824 (P < 0.001) between predicted EEF and actual EEF. External validation yielded a correlation coefficient of R = 0.645 (P < 0.001). A model for predicting EEF has been developed, which is clinically important for predicting the difficulty of HIFU treatment of uterine fibroids.
Collapse
Affiliation(s)
- Li Shen
- Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Xiao Huang
- Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Yuyao Liu
- Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Shanwei Bai
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai, 200000, China
| | - Quan Yang
- Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
2
|
Maxwell AD. Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging. OPTICS AND LASERS IN ENGINEERING 2024; 181:108361. [PMID: 39219742 PMCID: PMC11361005 DOI: 10.1016/j.optlaseng.2024.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ultrasound is a ubiquitous technology in medicine for screening, diagnosis, and treatment of disease. The functionality and efficacy of different ultrasound modes relies strongly on our understanding of the physical interactions between ultrasound waves and biological tissue structures. This article reviews the use of photoelasticity imaging for investigating ultrasound fields and interactions. Physical interactions are described for different ultrasound technologies, including those using linear and nonlinear ultrasound waves, as well as shock waves. The use of optical modulation of light by ultrasound is presented for shadowgraphic and photoelastic techniques. Investigations into shock wave and burst wave lithotripsy using photoelastic methods are summarized, along with other endoscopic forms of lithotripsy. Photoelasticity in soft tissue surrogate materials is reviewed, and its deployment in investigating tissue-bubble interactions, generated ultrasound waves, and traumatic brain injury, are discussed. With the continued growth of medical ultrasound, photoelasticity imaging can play a role in elucidating the physical mechanisms leading to useful bioeffects of ultrasound for imaging and therapy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
3
|
Sotiriou M, Damianou C. Evaluating acoustic and thermal properties of a plaque phantom. J Ultrasound 2024; 27:457-470. [PMID: 37031317 PMCID: PMC11333666 DOI: 10.1007/s40477-023-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/07/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE The aim of this study is to evaluate the acoustic and thermal properties of a plaque phantom. This is very important for the effective implementation of ultrasound not only in diagnosis but especially in treatment for the future. MATERIAL AND METHODS An evaluation of acoustic and thermal properties of plaque phantoms to test their suitability mainly for ultrasound imaging and therapy was presented. The evaluation included measurements of the acoustic propagation speed using pulse-echo technique, ultrasonic attenuation coefficient using through transmission immersion technique, and absorption coefficient. Moreover, thermal properties (thermal conductivity, volumetric specific heat capacity and thermal diffusivity) were measured with the transient method using a needle probe. RESULTS It was shown that acoustic and thermal properties of atherosclerotic plaque phantoms fall well within the range of reported values for atherosclerotic plaque and slightly different for thermal diffusivity and volumetric specific heat capacity for soft tissues. The mean value of acoustic and thermal properties and their standard deviation of plaque phantoms were 1523 ± 23 m/s for acoustic speed, 0.50 ± 0.02 W/mK for thermal conductivity, 0.30 ± 0.21 db/cm-MHz for ultrasonic absorption coefficient and 1.63 ± 0.46 db/cm-MHz for ultrasonic attenuation coefficient. CONCLUSIONS This study demonstrated that acoustic and thermal properties of atherosclerotic plaque phantoms were within the range of reported values. Future studies should be focused on the optimum recipe of the atherosclerotic plaque phantoms that mimics the human atherosclerotic plaque (agar 4% w/v, gypsum 10% w/v and butter 10% w/v) and can be used for HIFU therapy.
Collapse
Affiliation(s)
- Michalis Sotiriou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036, Limassol, Cyprus.
| |
Collapse
|
4
|
Qiang Y, Wang X, Liu R, Han X, Zheng H, Qiu W, Zhang Z. Sub-aperture ultrafast volumetric ultrasound imaging for fully sampled dual-mode matrix array. ULTRASONICS 2024; 136:107172. [PMID: 37788535 DOI: 10.1016/j.ultras.2023.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Fully sampled dual-mode matrix array ultrasound transducer is capable of performing imaging and therapeutic ultrasound in three dimensions (3D). It is a promising tool for many clinical applications because of its precise multi-focus therapy with imaging guidance by itself. Our team previously designed a 256-element fully sampled dual-mode matrix array transducer, while its imaging quality needs to be further improved. In this work, we propose a high-contrast sub-aperture volumetric imaging strategy to improve the imaging quality of the dual-mode matrix array. We first analyzed the effect of various parameters of sub-aperture imaging on the imaging quality by Field II. Based on the optimized parameters, we compared the resolution and signal to noise ratio (SNR) of sub-aperture imaging with those of full aperture imaging on phantoms and rabbit brain. The experimental results showed the proposed sub-aperture imaging method could obtain a comparable resolution to full aperture imaging. Moreover, the average intensity of noise signal near the wire phantom decreased by about 5 dB and the SNR of tissue phantom image increased by 8 %. The proposed sub-aperture imaging method also enabled clearer and more accurate imaging of the rabbit brain. The obtained results indicate the proposed sub-aperture imaging is a promising method for practical use of a fully sampled dual-mode matrix array for volumetric ultrasound imaging.
Collapse
Affiliation(s)
- Yu Qiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingying Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Xuan Han
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Sotiriou M, Yiannakou M, Damianou C. Investigating atherosclerotic plaque phantoms for ultrasound therapy. J Ultrasound 2022; 25:709-720. [PMID: 35098435 PMCID: PMC9402861 DOI: 10.1007/s40477-022-00658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of the proposed study was to conduct a feasibility study using a flat rectangular (2 × 10 mm2) transducer operating at 4.0 MHz for creating thermal lesions in an arterial atherosclerotic plaque phantom. The proposed method can be used in the future for treating atherosclerotic plaques in human arteries. MATERIALS AND METHODS The flat rectangular transducer was firstly assessed in agar/silica evaporated milk phantom, polyacrylamide phantom and freshly excised turkeytissue phantom. Then, the same transducer was assessed in an arterial atherosclerotic plaque phantom which was created in the laboratory with a very low cost. The recipe of the atherosclerotic plaque phantom was 4% w/v agar, 1% w/v gypsum, 2% w/v butter and 93% water. The amount of plaque removal was evaluated visually and using an X-Ray system. RESULTS It was shown that the flat rectangular transducer can create thermal lesions on the agar/silica evaporated milk phantom, polyacrylamide phantom and in excised tissue. The size of the lesions matches the geometry of the transducer. Moreover, this transducer destroyed 27.1% of the atherosclerotic plaque phantom with 8 W acoustical power and 30 s duration. CONCLUSIONS This feasibility study demonstrated that atherosclerotic plaque can be destroyed using a very small flat rectangular (2 × 10 mm2) transducer in a very small time interval of 30 s. In future clinical trials the transducer will be incorporated in a catheter which will be inserted intravascular (1-3 mm) wide and can be used to treat atherosclerotic plaques in the coronary arteries.
Collapse
Affiliation(s)
- Michalis Sotiriou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| | - Marinos Yiannakou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036 Limassol, Cyprus
| |
Collapse
|
6
|
Bhargawa B, Sharma V, Ganesh MR, Cavalieri F, Ashokkumar M, Neppolian B, Sundaramurthy A. Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery. ULTRASONICS SONOCHEMISTRY 2022; 86:106016. [PMID: 35525092 PMCID: PMC9079700 DOI: 10.1016/j.ultsonch.2022.106016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 05/30/2023]
Abstract
We report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.0 µm were prepared by a sonochemical method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The LyMs were examined using hydrophobic (nile red) as well as hydrophilic (trypan blue) dyes under confocal laser scanning microscopy (CLSM) to obtain information about the preferential distribution of fluorescent molecules. Notably, the fluorescent molecules were accumulated in the inner lining of LyMs as the core was occupied with air. The encapsulation efficiency of 5-FU for LyMs-NR was found to be ∼64%. The drug release from control LyMs as well as LyMs incorporated with NRs was investigated under the influence of ultrasound (US) at 200 kHz. The total release for control LyMs and LyMs incorporated with gold NRs was found to be ∼70 and 95% after 1 h, respectively. The density difference caused by NR incorporation on the shell played a key role in rupturing the LyMs-NR under US irradiation. Furthermore, 5-FU loaded LyMs-NR exhibited excellent anti-cancer activity against the THP-1 cell line (∼90% cell death) when irradiated with US of 200 kHz. The enhanced anti-cancer activity of LyMs-NR was caused by the transfer of released 5-FU molecules from bulk to the interior of the cell via temporary pores formed on the surface of cancer cells, i.e., sonoporation. Thus, LyMs-NR demonstrated here has a high potential for use as carriers in the field of drug delivery, bio-imaging and therapy.
Collapse
Affiliation(s)
- Bharat Bhargawa
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Varsha Sharma
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | | | | | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| | - Anandhakumar Sundaramurthy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
7
|
Takagi R, Koseki Y, Yoshizawa S, Umemura SI. Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment. ULTRASONICS 2021; 114:106394. [PMID: 33657511 DOI: 10.1016/j.ultras.2021.106394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In high-intensity focused ultrasound (HIFU) treatment, a method that monitors tissue changes while irradiating therapeutic ultrasound is needed to detect changes in the order of milliseconds due to thermal coagulation and the presence of cavitation bubbles. The new filtering method in which only the HIFU noise was reduced while the tissue signals remained intact was proposed in the conventional HIFU exposure in our preliminary study. However, HIFU was irradiated perpendicular to the direction of the imaging ultrasound in the preliminary experiment, which was believed to be impractical. This study investigated the efficacy of the proposed method a parallel setup, in which both HIFU and imaging beams have the same axis just as in a practical application. In addition, this filtering algorithm was applied to the "Trigger HIFU" sequence in which ultrasound-induced cavitation bubbles were generated in the HIFU focal region to enhance heating. In this setup and sequence, HIFU noise level was increased and the summation or difference tone induced by the interaction of HIFU waves with the imaging pulse has the potential to affect this proposed method. Ex-vivo experiments proved that the HIFU noise was selectively eliminated by the proposed filtering method in which chaotic acoustic signals were emitted by the cavitation bubbles at the HIFU focus. These results suggest that the proposed method was practically efficient for monitoring tissue changes in HIFU-induced cavitation bubbles.
Collapse
Affiliation(s)
- Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
| | - Yoshihiko Koseki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Shin Yoshizawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
8
|
Zhang Z, Liu R, Li G, Su M, Li F, Zheng H, Qiu W. A Dual-mode 2D Matrix Array for Ultrasound Image-guided Noninvasive Therapy. IEEE Trans Biomed Eng 2021; 68:3482-3490. [PMID: 33872140 DOI: 10.1109/tbme.2021.3073951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Focused ultrasound (FUS) lacks reliable real-time image guidance, which hinders the development of non-invasive ultrasound treatment in many important clinical applications. A dual-mode ultrasound array, capable of both imaging and therapy offers a new and reliable strategy for image-guided ultrasound therapy applications. The strategy has the advantages of real-time use, low cost, portability and inherent registration between imaging and therapeutic coordinate systems. In this work, a dual-mode two-dimensional (2D) matrix array with 1 MHz center frequency and 256 elements for ultrasound image-guided non-invasive therapy is reported. The array can provide three-dimensional (3D) volumetric ultrasound imaging and 3D focus control. Ultrasound imaging and therapeutic applications for the brain of small animals demonstrated the multi-functional capability of the dual-mode 2D matrix array. A method of rat brain positioning based on ultrasound imaging was proposed and verified. Transcranial ultrasound image-guided bloodbrain barrier (BBB) opening of multiple-targets was achieved in vivo, using the proposed dual-mode 2D array. The obtained results indicate that the dual-mode 2D matrix array is a promising method for practical use in ultrasound image-guided non-invasive therapy applications.
Collapse
|
9
|
Mamoon RS, Mawas AS, El Badry SM, Youssef AM, Ali MG, Aly MA, Abo El-Maaty AM. Therapeutic modality of induced uterine leiomyoma with shock waves in rats: The uterine blood flow, circulating ovarian hormones and histopathological findings. Reprod Biol 2021; 21:100501. [PMID: 33773235 DOI: 10.1016/j.repbio.2021.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023]
Abstract
Uterine leiomyoma is the most common benign pelvic tumor and the primary indication for hysterectomy. We hypothesized tumor softening and shrinking through shock waves mechanobiological influence on fibroblasts of the induced leiomyoma in rats. Three rats served as control from thirty-three female Wistar rats subjected to leiomyoma induction using mono-sodium glutamate and estradiol benzoate. After assessing uterine leiomyoma development with Doppler ultrasonography, blood and tissue samples were collected for hormonal and histopathological analysis. Of the fifteen rats treated with shock waves, five rats were sacrificed after receiving two sessions (2S), another five rats were sacrificed after receiving four sessions (4S), and the last five rats were sacrificed after two weeks recovery period (recovered 4S). From the fifteen non-treated leiomyoma group, five rats were sacrificed after Doppler ultrasound assessment (Leiomyoma), another five rats were sacrificed with the 4S group (Leiomyoma 1Wk recovery), and the last five rats were sacrificed with the recovered 4S group (Recovered leiomyoma). The collected blood samples, estradiol (E2), Estrogen receptor, progesterone (P4), and progesterone receptor (PGR), were assayed. Total cholesterol, protein, albumin, and globulin were measured. Uterine arteries' blood flow velocities, indices, and volume were obtained. Tissue samples were stained with smooth muscle actin (SMA), trichrome-three, and (hematoxylin and eosin). Rats developed leiomyoma had the highest (P = 0.0001) gross and sonographic uterine horns diameters, uterine weight, uterine coefficient, E2, and ER. Both trichrome-three and SMA staining confirmed the leiomyoma development and the response to shock waves treatment. In conclusion, low-intensity shock waves proved curative to the induced leiomyoma.
Collapse
Affiliation(s)
- Rehab Saber Mamoon
- Department of Physical Therapy for Women's Health, South Valley University, Qena, Egypt; Department of Physical Therapy for Women's Health, Cairo University, Giza, Egypt.
| | - Amany Sayed Mawas
- Department of Pathology and Clinical Pathology, South Valley University, Qena, Egypt
| | | | - Amel Mohamed Youssef
- Department of Physical Therapy for Women's Health, Cairo University, Giza, Egypt
| | - Mohamed Gamal Ali
- Department of Physical Therapy for Women's Health, South Valley University, Qena, Egypt; Department of Physical Therapy for Women's Health, Cairo University, Giza, Egypt
| | - Mohamed Aly Aly
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Giza, Egypt
| | - Amal Mahmoud Abo El-Maaty
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Almekkawy M, Ebbini ES. The Optimization of Transcostal Phased Array Refocusing Using the Semidefinite Relaxation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:318-328. [PMID: 31567081 PMCID: PMC8651278 DOI: 10.1109/tuffc.2019.2944434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumors in organs partially obscured by the rib cage represent a challenge for high-intensity focused ultrasound (HIFU) therapy. The ribs distort the HIFU beams in a manner that reduces the focusing gain at the target, which could result in treatment-limiting collateral damage. In fact, skin burns are a common complication during the ablation of hepatic tumors. This problem can be addressed by employing optimal refocusing algorithms that are designed to achieve a specified focusing gain at the target while controlling the exposure to the ribs in the path of the HIFU beam. However, previously proposed optimal refocusing algorithms did not allow for the controlled transmission through the ribs. In this article, we introduce a new approach for refocusing that can more efficiently steer power toward the target while limiting the power deposition on the ribs. The approach utilizes the semidefinite relaxation (SDR) technique to approximate the original (nonconvex) optimization problem. An important advantage of the SDR-based method over previously proposed optimization methods is the control of the side lobes in the focal plane. The method also allows for specifying an acceptable level of exposure to the ribs. Simulation results using a 1-MHz spherical concave phased array focused on an inhomogeneous medium are presented to demonstrate the performance of the SDR refocusing approach. A finite-difference time-domain propagation model was used to model the propagation in the inhomogeneous tissues, including the ribs. Temperature simulations based on the inhomogeneous transient bioheat transfer equation (tBHTE) demonstrate the significance of the improvements in the focusing gain when using the limited power deposition (LPD) method. The results also demonstrate that the LPD method yields well-behaved array excitation vectors, realizable by currently existing drivers.
Collapse
|
11
|
Adams C, Carpenter TM, Cowell D, Freear S, McLaughlan JR. HIFU Drive System Miniaturization Using Harmonic Reduced Pulsewidth Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2407-2417. [PMID: 30371363 PMCID: PMC6305628 DOI: 10.1109/tuffc.2018.2878464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 05/30/2023]
Abstract
Switched excitation has the potential to improve on the cost, efficiency, and size of the linear amplifier circuitry currently used in high-intensity focused ultrasound (HIFU) systems. Existing switching schemes are impaired by high harmonic distortion or lack array apodisation capability, so require adjustable supplies and/or large power filters to be useful. A multilevel pulsewidth modulation (PWM) topology could address both of these issues but the switching-speed limitations of transistors mean that there are a limited number of pulses available in each waveform cycle. In this study, harmonic reduction PWM (HRPWM) is proposed as an algorithmic solution to the design of switched waveforms. Its appropriateness for HIFU was assessed by design of a high power five-level unfiltered amplifier and subsequent thermal-only lesioning of ex vivo chicken breast. Three switched waveforms of different electrical powers (16, 26, 35 W) were generated using the HRPWM algorithm. Lesion sizes were measured and compared with those made at the same electrical power using a linear amplifier and bi-level excitation. HRPWM produced symmetric, thermal-only lesions that were the same size as their linear amplifier equivalents ( ). At 16 W, bi-level excitation produced smaller lesions but at higher power levels large transients in the acoustic waveform nucleated undesired cavitation. These results demonstrate that HRPWM can minimize HIFU drive circuity size without the need for filters to remove harmonics or adjustable power supplies to achieve array apodisation.
Collapse
|
12
|
Gu J, Jing Y. Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1258-1267. [PMID: 29993378 PMCID: PMC6055067 DOI: 10.1109/tuffc.2018.2828316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A mixed-domain method (MDM) is presented in this paper for modeling one-way linear/nonlinear wave propagation in biological tissue with arbitrary heterogeneities, in which sound speed, density, attenuation coefficients, and nonlinear coefficients are all spatial varying functions. The present method is based on solving an integral equation derived from a Westervelt-like equation. One-dimensional problems are first studied to verify the MDM and to reveal its limitations. It is shown that this method is accurate for cases with small variation of sound speed. A 2-D case is further studied with focused ultrasound beams to validate the application of the method in the medical field. Results from the MATLAB toolbox k-Wave are used as the benchmark. Normalized root-mean-square (rms) error estimated at the focus of the transducer is 0.0133 when the coarsest mesh (1/3 of the wavelength) is used in the MDM. Fundamental and second-harmonic fields throughout the considered computational domains are compared and good agreement is observed. Overall, this paper demonstrates that the MDM is a computationally efficient and accurate method when used to model wave propagation in biological tissue with relatively weak heterogeneities.
Collapse
|
13
|
Blum NT, Yildirim A, Chattaraj R, Goodwin AP. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound. Theranostics 2017; 7:694-702. [PMID: 28255360 PMCID: PMC5327643 DOI: 10.7150/thno.17522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/26/2016] [Indexed: 01/20/2023] Open
Abstract
This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C4F10, C5F12, or C6F14) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4F10, and for at least one day for C5F12. The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics.
Collapse
|
14
|
Evans KD, Weiss B, Knopp M. High-Intensity Focused Ultrasound (HIFU) for Specific Therapeutic Treatments: A Literature Review. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479307307268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A literature review is provided concerning the scientific studies that have been published involving high-intensity focused ultrasound (HIFU) as a therapeutic treatment for tumors of the prostate, uterus, and brain. This is a revival of earlier work that now focuses on targeted therapy with sonography, but the studies that have been conducted vary in their level of evidence and translation to clinical practice. The review arranges the published studies by levels of evidence and provides a meta-analysis of the potential for using HIFU to treat prostate cancer, fibroids, and glioblastomas. Human studies are needed that provide clear levels of frequency, intensity, temperature, and treatment patterns. The bioeffects of sonography play a huge role in the destruction of these tumors as well as the potential to cause collateral damage in the surrounding healthy tissue. The hope is that with continued research, a fusion of technology with HIFU can provide patients with a noninvasive, nonionizing therapy for these lesions.
Collapse
|
15
|
Abstract
High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.
Collapse
Affiliation(s)
- Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, Sutton, London, UK.
| |
Collapse
|
16
|
Almekkaway MK, Shehata IA, Ebbini ES. Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques. Int J Hyperthermia 2015; 31:433-42. [DOI: 10.3109/02656736.2015.1018966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Zhao WP, Chen JY, Chen WZ. Effect of abdominal liposuction on sonographically guided high-intensity focused ultrasound ablation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1539-1544. [PMID: 25154933 DOI: 10.7863/ultra.33.9.1539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of abdominal liposuction on sonographically guided high-intensity focused ultrasound (HIFU) ablation. METHODS A total of 10 women with uterine fibroids or adenomyosis who had received abdominal liposuction were analyzed after sonographically guided HIFU ablation. Of the 10 women, 6 had a diagnosis of uterine fibroids, and 4 had a diagnosis of uterine adenomyosis. All of them had a history of a horizontal-margin split-cesarean delivery. In addition, 26 women with a history of a single horizontal-margin split-cesarean delivery who had a diagnosis of uterine fibroids or adenomyosis but had not received liposuction were analyzed together as a control group. RESULTS Of the 10 women, 1 woman with uterine fibroids developed local skin erythema after treatment; 1 women with uterine adenomyosis developed a skin burn after treatment; and the remaining women had obvious skin-burning pain during treatment. All women who had not received liposuction finished the treatment with no serious adverse events during or after treatment. The pain scores and incidence of skin-burning pain were significantly higher in the liposuction group than the control group (P= .021 and .038, respectively). CONCLUSIONS Abdominal liposuction may increase the risk of skin burns during sonographically guided HIFU ablation.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- State Key Laboratory of Ultrasound Engineering in Medicine, Cofounded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (W.-P.Z., J.-Y.C., W.-Z.C.); and Clinical Center for Tumor Therapy, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (W.-Z.C.). Dr Zhao is currently with the Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jin-Yun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine, Cofounded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (W.-P.Z., J.-Y.C., W.-Z.C.); and Clinical Center for Tumor Therapy, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (W.-Z.C.). Dr Zhao is currently with the Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Wen-Zhi Chen
- State Key Laboratory of Ultrasound Engineering in Medicine, Cofounded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (W.-P.Z., J.-Y.C., W.-Z.C.); and Clinical Center for Tumor Therapy, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (W.-Z.C.). Dr Zhao is currently with the Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Kim Y, Maxwell AD, Hall TL, Xu Z, Lin KW, Cain CA. Rapid prototyping fabrication of focused ultrasound transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1559-1574. [PMID: 25167156 DOI: 10.1109/tuffc.2014.3070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rapid prototyping (RP) fabrication techniques are currently widely used in diverse industrial and medical fields, providing substantial advantages in development time and costs in comparison to more traditional manufacturing processes. This paper presents a new method for the fabrication of high-intensity focused ultrasound transducers using RP technology. The construction of a large-aperture hemispherical transducer designed by computer software is described to demonstrate the process. The transducer was conceived as a modular design consisting of 32 individually focused 50.8-mm (2-in) PZT-8 element modules distributed in a 300-mm hemispherical scaffold with a geometric focus of 150 mm. The entire structure of the array, including the module housings and the hemispherical scaffold was fabricated through a stereolithography (SLA) system using a proprietary photopolymer. The PZT elements were bonded to the lenses through a quarter-wave tungsten-epoxy matching layer developed in-house specifically for this purpose. Modules constructed in this manner displayed a high degree of electroacoustic consistency, with an electrical impedance mean and standard deviation of 109 ± 10.2 Ω for the 32 elements. Time-of-flight measurements for individually pulsed modules mounted on the hemispherical scaffold showed that all pulses arrived at the focus within a 350 ns range, indicating a good degree of element alignment. Pressure profile measurements of the fully assembled transducer also showed close agreement with simulated results. The measured focal beam FWHM dimensions were 1.9 × 4.0 mm (1.9 × 3.9 mm simulated) in the transversal and axial directions respectively. Total material expenses associated with the construction of the transducer were approximately 5000 USD (as of 2011). The versatility and lower fabrication costs afforded by RP methods may be beneficial in the development of complex transducer geometries suitable for a variety of research and clinical applications.
Collapse
|
20
|
Focused ultrasound simultaneous irradiation/MRI imaging, and two-stage general kinetic model. PLoS One 2014; 9:e100280. [PMID: 24949997 PMCID: PMC4064987 DOI: 10.1371/journal.pone.0100280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
Many studies have investigated how to use focused ultrasound (FUS) to temporarily disrupt the blood-brain barrier (BBB) in order to facilitate the delivery of medication into lesion sites in the brain. In this study, through the setup of a real-time system, FUS irradiation and injections of ultrasound contrast agent (UCA) and Gadodiamide (Gd, an MRI contrast agent) can be conducted simultaneously during MRI scanning. By using this real-time system, we were able to investigate in detail how the general kinetic model (GKM) is used to estimate Gd penetration in the FUS irradiated area in a rat's brain resulting from UCA concentration changes after single FUS irradiation. Two-stage GKM was proposed to estimate the Gd penetration in the FUS irradiated area in a rat's brain under experimental conditions with repeated FUS irradiation combined with different UCA concentrations. The results showed that the focal increase in the transfer rate constant of Ktrans caused by BBB disruption was dependent on the doses of UCA. Moreover, the amount of in vivo penetration of Evans blue in the FUS irradiated area in a rat's brain under various FUS irradiation experimental conditions was assessed to show the positive correlation with the transfer rate constants. Compared to the GKM method, the Two-stage GKM is more suitable for estimating the transfer rate constants of the brain treated with repeated FUS irradiations. This study demonstrated that the entire process of BBB disrupted by FUS could be quantitatively monitored by real-time dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
Collapse
|
21
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Silver nanoparticles modified nanocapsules for ultrasonically activated drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
WANG SHUWEN, HE XINYING, LI MINGZHONG. High-intensity focused ultrasound compared with irradiation for ovarian castration in premenopausal females with hormone receptor-positive breast cancer after radical mastectomy. Oncol Lett 2012; 4:1087-1091. [PMID: 23162657 PMCID: PMC3499595 DOI: 10.3892/ol.2012.860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
The aim of the current study was to determine the feasibility, efficacy and safety of ovarian castration by high-intensity focused ultrasound (HIFU) in premenopausal patients with estrogen receptor (ER)(+)/progesterone receptor (PR)(+) breast cancer subsequent to radical mastectomy. A total of 88 premenopausal females with pathologically confirmed ER(+)/PR(+) breast cancer following radical mastectomy were randomly and equally divided into two groups that received HIFU therapy or radiation treatment. HIFU therapy was applied twice at an interval of three days and radiotherapy was administered to a total prescribed dose of D(T) 18 Gy in nine fractions over 11 days. Outcome measures included serum levels of estradiol and estrone, the Kupperman index and the incidence of secondary amenorrhea. Adverse events were monitored and recorded. All patients were followed up for 12 months. Serum levels of estradiol and estrone were comparable prior to treatment between the HIFU and radiation treatment groups. One month following treatment, serum levels of estradiol and estrone were significantly decreased in the two groups, but a greater decline was observed in the HIFU treatment group (P<0.01 and 0.05, respectively). In addition, more patients developed severe menopausal symptoms and amenorrhea in the HIFU therapy group compared with the radiotherapy group (P<0.01 for the two groups). A total of 3 months following treatment, serum levels of estradiol and estrone and the distribution of patients with severe, moderate and mild menopausal symptoms were comparable between the two groups. Following nine menstrual cycles, the incidence of amenorrhea reached 100% in the two groups. HIFU therapy is superior to radiotherapy for ovarian castration in premenopausal females with ER(+)/PR(+) breast cancer subsequent to radical mastectomy in terms of its minimal invasiveness and faster efficacy. HIFU represents a feasible non-surgical approach for ovarian castration.
Collapse
Affiliation(s)
- SHU-WEN WANG
- Correspondence to: Dr Shu-Wen Wang, Department of Radiation Oncology, The First Affiliated Hospital of Medical College of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, Shaanxi 710061, P.R. China, E-mail:
| | | | | |
Collapse
|
24
|
Jeong JS, Chang JH, Shung KK. Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: a preliminary study. ULTRASONICS 2012; 52:730-9. [PMID: 22356771 PMCID: PMC3751008 DOI: 10.1016/j.ultras.2012.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 05/20/2023]
Abstract
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9MHz frequency sweep range is used for B-mode imaging and 4MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4MHz and 8MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6MHz imaging signals and two outer elements are only used for transmitting 4MHz continuous HIFU wave. When the chirp signal and 4MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4MHz and 8MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to -45dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.
Collapse
Affiliation(s)
- Jong Seob Jeong
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Republic of Korea.
| | | | | |
Collapse
|
25
|
Stovall DW. Alternatives to hysterectomy: focus on global endometrial ablation, uterine fibroid embolization, and magnetic resonance-guided focused ultrasound. Menopause 2011; 18:437-44. [PMID: 21701430 DOI: 10.1097/gme.0b013e318207fe15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to inform the clinician of alternatives to hysterectomy through a critical evaluation of three treatment options: global endometrial ablation, uterine fibroid embolization, and magnetic resonance-guided focused ultrasound. Studies published in English-language, peer-reviewed journals were systematically searched using Cochrane and Medline. Keywords used included "alternatives to hysterectomy," "endometrial ablation," "uterine fibroid embolization," "uterine artery embolization," and "focused ultrasound." Articles meeting the inclusion criteria were reviewed and analyzed for themes and similarities. All three alternative methods of treatment reviewed are currently approved for use in the United States and abroad. In fact, five different global endometrial ablation devices are approved by the Food and Drug Administration for treatment of menorrhagia. Patient satisfaction scores after endometrial ablation are high (90%-95%), but amenorrhea rates are much lower (15%-60%). Data from randomized trials demonstrate that uterine fibroid embolization results in a shorter hospital stay and quicker return to work as compared with abdominal hysterectomy for leiomyomas, but after embolization, up to 20% of women need a second procedure. Ex-ablative therapy of leiomyomas with focused ultrasound is the newest of the three methods. It has a special set of patient selection criteria and is only available at less than 20 medical centers in the United States. Leiomyoma symptom relief after focused ultrasound therapy at 1 year post-procedure is high (85%-95%). There are many effective alternatives to hysterectomy in women with menorrhagia and/or symptomatic leiomyomas. However, because these procedures are performed by individuals from different subspecialists, primarily gynecologists and interventional radiologists, clinicians must consider using a multidisciplinary approach to find the best procedure for a given patient. There are no randomized trials comparing uterine fibroid embolization to vaginal hysterectomy, laparoscopic hysterectomy, or laparoscopic myomectomy.
Collapse
Affiliation(s)
- Dale W Stovall
- Department of Obstetrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
26
|
Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound. Aesthetic Plast Surg 2011; 35:901-12. [PMID: 21461627 DOI: 10.1007/s00266-011-9700-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Body-sculpting procedures are becoming increasingly popular in the United States. Although surgical lipoplasty remains the most common body sculpting procedure, a demand exists for noninvasive alternatives capable of reducing focal adiposity without the risks of adverse events (AEs) associated with invasive excisional body-sculpting procedures. METHODS This report describes the mechanism of action, efficacy, safety, and tolerability of cryolipolysis, radiofrequency ablation, low-level external laser therapy, injection lipolysis, low-intensity nonthermal ultrasound, and high-intensity focused ultrasound (HIFU), with an emphasis on thermal HIFU. The articles cited were identified via a PubMed search, with additional article citations identified by manual searching of the reference lists of articles identified through the literature search. RESULTS Each of the noninvasive treatments reviewed can be administered on an outpatient basis. These treatments generally have fewer complications than lipoplasty and require little or no anesthesia or analgesia. However, HIFU is the only treatment that can produce significant results in a single treatment, and only radiofrequency, low-level laser therapy, and cryolipolysis have been approved for use in the United States. Early clinical data on HIFU support its efficacy and safety for body sculpting. In contrast, radiofrequency, laser therapy, and injection lipolysis have been associated with significant AEs. CONCLUSIONS The published literature suggests that noninvasive body-sculpting techniques such as radiofrequency ablation, cryolipolysis, external low-level lasers, laser ablation, nonthermal ultrasound, and HIFU may be appropriate options for nonobese patients requiring modest reduction of adipose tissue.
Collapse
|
27
|
Esnault O, Franc B, Ménégaux F, Rouxel A, De Kerviler E, Bourrier P, Lacoste F, Chapelon JY, Leenhardt L. High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study. Thyroid 2011; 21:965-73. [PMID: 21834683 DOI: 10.1089/thy.2011.0141] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thyroid surgery is common, but complications may occur. High-intensity focused ultrasound (HIFU) is a minimally invasive alternative to surgery. We hypothesized that an optimized HIFU device could be safe and effective for ablating benign thyroid nodules without affecting neighboring structures. METHODS In this open, single-center feasibility study, 25 patients were treated with HIFU with real-time ultrasound imaging 2 weeks before a scheduled thyroidectomy for multinodular goiter. Thyroid ultrasonography imaging, thyroid function, were evaluated before and after treatment. Adverse events were carefully recorded. Each patient received HIFU for one thyroid nodule, solid or mixed, with mean diameter ≥8 mm, and no suspicion of malignancy. The HIFU device was progressively adjusted with stepwise testing. The energy level for ablation ranged from 35 to 94 J/pulse for different groups of patients. One pathologist examined all removed thyroids. RESULTS Three patients discontinued treatment due to pain or skin microblister. Among the remaining 22 patients, 16 showed significant changes by ultrasound. Macroscopic and histological examinations showed that all lesions were confined to the targeted nodule without affecting neighboring structures. At pathological analysis, the extent of nodule destruction ranged from 2% to 80%. Five out of 22 patients had over 20% pathological lesions unmistakably attributed to HIFU. Seventeen cases had putative lesions including nonspecific necrosis, hemorrhage, nodule detachment, cavitations, and cysts. Among these 17 cases, 12 had both ultrasound changes and cavitation at histology that may be expected for an HIFU effect. In the last three patients ablated at the highest energy level, significant ultrasound changes and complete coagulative necrosis were observed in 80%, 78%, and 58% of the targeted area, respectively. There were no major complications of ablation. CONCLUSION This study showed the potential efficacy of HIFU for human thyroid nodule ablation. Lesions were clearly visible by histology and ultrasound after high energy treatments, and safety and tolerability were good. We identified a power threshold for optimal necrosis of the target thyroid tissue. Further studies are ongoing to assess nodule changes at longer follow-up times.
Collapse
Affiliation(s)
- Olivier Esnault
- ENT & Cervicofacial Surgery (Private Practice), Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. CURRENT ORTHOPAEDIC PRACTICE 2011; 22:303-308. [PMID: 26120376 DOI: 10.1097/bco.0b013e318220dad5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors.
Collapse
|
29
|
Hosseini SHR, Xinliang Zheng, Vaezy S. Effects of gas pockets on high-intensity focused ultrasound field. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1203-10. [DOI: 10.1109/tuffc.2011.1930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Gadsden E, Aguilar MT, Smoller BR, Jewell ML. Evaluation of a novel high-intensity focused ultrasound device for ablating subcutaneous adipose tissue for noninvasive body contouring: safety studies in human volunteers. Aesthet Surg J 2011; 31:401-10. [PMID: 21551431 DOI: 10.1177/1090820x11405027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is an energy-based medical technology with many clinical applications. A device under clinical investigation in the United States (LipoSonix; Medicis Technologies Corporation, Bothell, Washington) uses HIFU to reduce localized deposits of abdominal adipose tissue. OBJECTIVES The authors describe the results from their clinical trial investigating the safety of this HIFU device in human patients. METHODS Over the course of three studies evaluating the safety of the HIFU device for ablating human subcutaneous adipose tissue (SAT), 152 healthy patients were treated with total HIFU energy doses of 47 to 331 J/cm(2)), including patients who presented for elective abdominoplasty and underwent treatment to areas identified for subsequent excision. The safety of each treatment regimen was confirmed before the energy levels were raised. Abdominoplasty was performed up to 14 weeks following the HIFU procedure, and a pathologist performed histopathological analyses of excised tissues. Safety evaluations included an assessment of clinical chemistry and hematology profiles, physical examinations, and adverse events. RESULTS Posttreatment ultrasound confirmed that the HIFU effects were limited to targeted SAT layers. Histopathology revealed well-demarcated disruption of adipocytes within the targeted SAT. Phagocytosis of released lipids and cellular debris occurred after 14 to 28 days. Phagocytized lipids underwent normal hepatic metabolism. Healing progressed normally and was 95% complete after eight to 14 weeks. Adverse events consisted primarily of temporary treatment discomfort, edema, erythema, dysesthesia, and ecchymosis. There were no changes in clinical laboratory parameters, and no serious device-related adverse events occurred. Optimal clinical outcomes were achieved with lower energy levels, which provided beneficial effects with the least amount of discomfort. CONCLUSIONS HIFU appears to provide a safe means for removing and remodeling unwanted deposits of abdominal SAT.
Collapse
|
31
|
Ohl SW, Shrestha A, Khoo BC, Kishen A. Characterizing bubble dynamics created by high-intensity focused ultrasound for the delivery of antibacterial nanoparticles into a dental hard tissue. Proc Inst Mech Eng H 2011; 224:1285-96. [PMID: 21218691 DOI: 10.1243/09544119jeim762] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hig hintensity focused ultrasound (HIFU) has been applied for drug delivery in various disease conditions. Delivery of antibacterial-nanoparticles into dental hard tissues may open up new avenues in the treatment of dental infections. However, the basic mechanism of bubble dynamics, its characterization, and working parameters for effective delivery of nanoparticles, warrants further understanding. This study was conducted to highlight the basic concept of HIFU and the associated bubble dynamics for the delivery of nanoparticles. Characterization experiments to deliver micro-scale particles into simulated tubular channels, activity of ultrasonic bubbles, and pressure measurement inside the HIFU system were conducted. Subsequently, experiments were carried out to test the ability of HIFU to deliver nanoparticles into human dentine using field emission scanning electron micrographs (FESEM) and elemental dispersive X-ray analysis (EDX). The characterization experiments showed that the bubbles collapsing at the opening of tubular channels were able to propel particles along their whole length. The pressure measured showed sufficient negative and positive pressure suggesting that the bubble grew to a certain size before collapsing, thus enabling the particles to be pushed. The FESEM and EDX analysis highlighted the ability of HIFU to deliver nanoparticles deep within the dentinal tubules. This study highlighted the characteristics and the mechanism involved of the bubbles generated by the HIFU and their capability to deliver nanoparticles.
Collapse
Affiliation(s)
- S W Ohl
- Department of Mechanical Engineering, University of California, 6141 Etcheverry Hall, Berkeley, CA 94720-1740, USA.
| | | | | | | |
Collapse
|
32
|
Lai P, McLaughlan JR, Draudt AB, Murray TW, Cleveland RO, Roy RA. Real-time monitoring of high-intensity focused ultrasound lesion formation using acousto-optic sensing. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:239-52. [PMID: 21208729 DOI: 10.1016/j.ultrasmedbio.2010.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/23/2010] [Accepted: 11/08/2010] [Indexed: 05/03/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a promising modality that is used to noninvasively ablate soft tissue tumors. Nevertheless, real-time treatment monitoring with diagnostic ultrasound still poses a significant challenge since tissue necrosis, in the absence of cavitation or boiling, provides little acoustic contrast with normal tissue. In comparison, the optical properties of tissue are significantly altered accompanying lesion formation. A photorefractive crystal-based acousto-optic (AO) sensing system that uses a single HIFU transducer to simultaneously generate tissue necrosis and pump the AO interaction is used to monitor the real-time optical changes associated with thermal lesions induced in chicken breast ex vivo. It is found that the normalized change in AO response increases proportionally with the volume of necrosis. This study demonstrates AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposures, results in more predictable lesion formation.
Collapse
Affiliation(s)
- Puxiang Lai
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Fujisaki M, Chiba T, Enosawa S, Dohi T, Takamoto S. Cardiac intervention using high-intensity focused ultrasound: creation of interatrial communication in beating heart of an anesthetized rabbit. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2010; 36:607-612. [PMID: 20842654 DOI: 10.1002/uog.8830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Current fetal cardiac intervention for restrictive atrial septum is invasive and technically demanding. We investigated the feasibility of computer-assisted high-intensity focused ultrasound (HIFU) for cardiac intervention on the atrial septum of a beating heart. METHODS To create an interatrial communication in the beating heart of nine anesthetized rabbits, the heart was exposed surgically and placed under a water-filled tank, in contact with the tank's membranous base. A HIFU transducer (3.3 MHz) coupled with a diagnostic ultrasound probe (10.0 MHz) was placed in the tank over the beating heart. The focus of the HIFU transducer was set so that it could create a hole in the target area on the atrial septum during the early diastolic phase. HIFU delivery was controlled based on ultrasound images captured with real-time image-recognition software. We attempted to create interatrial communication using HIFU and assessed the cardiac tissue specimen pathologically. RESULTS In eight of nine rabbits, small holes in the atrial septum were successfully created. Serious complications occurred in two animals: a fatal atrioventricular block in one and a cardiac tamponade in the other. CONCLUSION HIFU combined with a computer-assisted imaging system might be useful to create interatrial communication in beating hearts. This procedure may be helpful for making current fetal cardiac intervention less invasive.
Collapse
Affiliation(s)
- M Fujisaki
- Department of Cardiothoracic Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
34
|
Jeong JS, Cannata JM, Shung KK. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer. Phys Med Biol 2010; 55:1889-902. [PMID: 20224162 DOI: 10.1088/0031-9155/55/7/007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 degrees C to 71 degrees C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging.
Collapse
Affiliation(s)
- Jong Seob Jeong
- Department of Biomedical Engineering, NIH Resource Center for Medical Ultrasonic Transducer Technology, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
35
|
Esnault O, Franc B, Chapelon JY. Localized ablation of thyroid tissue by high-intensity focused ultrasound: improvement of noninvasive tissue necrosis methods. Thyroid 2009; 19:1085-91. [PMID: 19803790 DOI: 10.1089/thy.2009.0121] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Although thyroid nodules are frequently detected in patients during routine examinations, such nodules are rarely malignant. Surgical treatment of nodules is controversial because of the possible complications associated with surgery, and there is an unmet need for a minimally invasive alternative. We previously reported on a high-intensity focused ultrasound (HIFU) device that induced necrosis in ewe thyroids. This complementary study on 27 ewes evaluated the use of the device to produce thyroid lesions, characterized the HIFU-induced lesions on the thyroid and surrounding structures, and evaluated the safety and reproducibility of the method. METHODS A spherical 3-MHz transducer that was coupled to a 5-MHz linear array ultrasound imaging probe was used to generate powerful acoustic waves to destroy thyroid tissue. Three series of experiments were conducted: thyroid lesion experiments (10 ewes), safety experiments (4 ewes), and reproducibility experiments (13 ewes). After fixation of the ewe's neck, tissue lesions were examined both macroscopically and histologically. RESULTS First, individual pulsed acoustical waves were used to induce lesions in 19 thyroid lobes. In most lesions, there was coagulative necrosis that was replaced later by fibrosis. Macroscopic examination of adjacent organs revealed skin lesions and muscle injuries. A second series of experiments evaluated the consequences of HIFU pulsed waves on structures surrounding the thyroid to better characterize possible side effects of HIFU. Firings at the periphery of eight lobes revealed macroscopic lesions in the trachea of one ewe and superficial esophagus lesions in three ewes. The recurrent nerves were damaged bilaterally in one ewe that died from dysphagia 3 days after HIFU. Four ewes were found to have muscle injuries, but no skin lesions were observed. A third series of experiments evaluated the reproducibility of a HIFU prototype designed specifically for human use. Thyroid lesions were obtained in 25 of the 26 treated lobes. No damage to the nerves, trachea, esophagus, or muscles was observed. About 3 of the 13 ewes had superficial skin burns. CONCLUSION The results obtained in the ewe model show that thyroid lesions with a defined volume can be induced safely and suggest that the HIFU device is now ready for evaluation in humans.
Collapse
|
36
|
Ballard JR, Casper AJ, Wan Y, Ebbini ES. Adaptive transthoracic refocusing of dual-mode ultrasound arrays. IEEE Trans Biomed Eng 2009; 57:93-102. [PMID: 19651547 DOI: 10.1109/tbme.2009.2028150] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present experimental validation results of an adaptive, image-based refocusing algorithm of dual-mode ultrasound arrays (DMUAs) in the presence of strongly scattering objects. This study is motivated by the need to develop noninvasive techniques for therapeutic targeting of tumors seated in organs where the therapeutic beam is partially obstructed by the ribcage, e.g., liver and kidney. We have developed an algorithm that takes advantage of the imaging capabilities of DMUAs to identify the ribs and the intercostals within the path of the therapeutic beam to produce a specified power deposition at the target while minimizing the exposure at the rib locations. This image-based refocusing algorithm takes advantage of the inherent registration between the imaging and therapeutic coordinate systems of DMUAs in the estimation of array directivity vectors at the target and rib locations. These directivity vectors are then used in solving a constrained optimization problem allowing for adaptive refocusing, directing the acoustical energy through the intercostals, and avoiding the rib locations. The experimental validation study utilized a 1-MHz, 64-element DMUA in focusing through a block of tissue-mimicking phantom [0.5 dB/(cm .MHz)] with embedded Plexiglas ribs. Single transmit focus (STF) images obtained with the DMUA were used for image-guided selection of the critical and target points to be used for adaptive refocusing. Experimental results show that the echogenicity of the ribs in STF images provide feedback on the reduction of power deposition at rib locations. This was confirmed by direct comparison of measured temperature rise and integrated backscatter at the rib locations. Direct temperature measurements also confirm the improved power deposition at the target and the reduction in power deposition at the rib locations. Finally, we have compared the quality of the image-based adaptive refocusing algorithm with a phase-conjugation solution obtained by direct measurement of the complex pressures at the target location. It is shown that our adaptive refocusing algorithm achieves similar improvements in power deposition at the target while achieving larger reduction of power deposition at the rib locations.
Collapse
Affiliation(s)
- John R Ballard
- Department of Electrical and Computer Engineering,University of Minnesota, Twin Cities, MN 55455, USA.
| | | | | | | |
Collapse
|
37
|
Dogra VS, Zhang M, Bhatt S. High-Intensity Focused Ultrasound (HIFU) Therapy Applications. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.cult.2009.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Hundt W, Steinbach S, O'Connell-Rodwell CE, Bednarski MD, Guccione S. The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter. ULTRASONICS 2009; 49:312-318. [PMID: 19019402 DOI: 10.1016/j.ultras.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/23/2008] [Accepted: 10/03/2008] [Indexed: 05/27/2023]
Abstract
In this study, we compared the effect of high intensity focused ultrasound (HIFU) and thermal stress on the luciferase activity, controlled by a cytomegaly virus (CMV) promoter in an in vitro model using two tumor cell lines (M21, SCCVII). HIFU was applied in a pulsed-wave mode with increasing voltage at constant pulse duration, or thermal stress was delivered over a range of temperatures (36-52 degrees C) for 5 min. The resulting luciferase activity was measured in live cells using a cooled CCD camera. Luciferase activity was measured at set time intervals over a total of 48 h post-stress. Compared to baseline, the luciferase activity of the M21 tumor cell line when exposed to HIFU was approximately 54.2+/-67.5% (p<0.01) higher at a temperature of 42 degrees C, and approximately 52.9+/-128.5% (p<0.01) higher at 44 degrees C. In the SCCVII tumor cell line, the luciferase activity after HIFU application was 55.4+/-66.6% (p<0.01) higher compared to baseline at a temperature of 42 degrees C. The M21 and SCCVII tumor cell line when exposed to thermal stress alone did not increase the luciferase activity. M21 and SCCVII tumor cells exposed to HIFU showed a maximum decrease in cell viability to 45.3+/-7.5% and 10.3+/-7.5%, respectively, and when exposed to thermal stress to 85.3+/-3.5% and 20.4+/-6.5%, respectively, compared to the untreated control. In M21 and SCCVII cells exposed to HIFU, free radicals could be detected using the dichlorofluorescein dye. Our findings demonstrate that HIFU can enhance the luciferase activity controlled by a CMV promoter. However it also has a higher damaging effect on the cells.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
39
|
O'Neill BE, Li KCP. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. Int J Hyperthermia 2009; 24:506-20. [PMID: 18608574 DOI: 10.1080/02656730802093661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This paper reviews the enhanced delivery of genes, drugs and therapeutics using ultrasound. It begins with a general overview of the field and the various techniques associated with it, including sonophoresis, hyperthermia (with ultrasound), sonoporation, and microbubble assisted transvascular and targeted delivery. Particular attention is then paid to pulsed high intensity focused ultrasound drug delivery without the use of ultrasound contrast agents. Feasibility and mechanistic studies of this technique are described in some detail. Conclusions are then drawn regarding possible mechanisms of this treatment, and to contrast with the better known treatments relying on injection of ultrasound contrast agents.
Collapse
Affiliation(s)
- Brian E O'Neill
- Department of Radiology, The Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
40
|
Abstract
Ultrasound-mediated gene transfection (sonotransfection) has been shown to be a promising physical method for gene therapy, especially for cancer gene therapy. The procedure being done in vitro uses several ultrasound exposure (sonication) setups. Although high transfection rates have been attained in some of these setups in vitro, replicating similar levels of transfection in vivo has been difficult. In vivo-simulated setups offer hope for a more consistent outcome in vivo. Presented in this chapter are typical methods of sonotransfection in vitro, methods when using a novel in vivo-simulated in vitro sonication setup and also sonotransfection methods when doing in vivo experiments. Factors that could potentially influence the outcome of an ultrasound experiment are cited. Several advantages of sonotransfection are recognized, although a low transfection rate is still considered a disadvantage of this method. To improve the transfection rate and the efficiency of sonotransfection, several studies are currently being undertaken. Particularly promising are studies using engineered microbubbles to carry the therapeutic genes into a particular target tissue in the body, then using ultrasound to release or deliver the genes directly into target cells, e.g., cancer cells.
Collapse
Affiliation(s)
- Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka City, Fukuoka, Japan
| |
Collapse
|
41
|
Sequential changes in rat femoral artery blood flow and tissue degeneration after exposure to high-intensity focused ultrasound. J Med Ultrason (2001) 2008; 35:177-82. [DOI: 10.1007/s10396-008-0190-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 06/15/2008] [Indexed: 11/26/2022]
|
42
|
Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. ULTRASONICS 2008; 48:279-96. [PMID: 18511095 PMCID: PMC2569868 DOI: 10.1016/j.ultras.2008.04.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 03/25/2008] [Accepted: 04/06/2008] [Indexed: 05/03/2023]
Abstract
Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood-brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized.
Collapse
Affiliation(s)
- Natalia Vykhodtseva
- Department of Radiology, Focused Ultrasound Laboratory, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Room 515, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
43
|
Aubry JF, Pernot M, Marquet F, Tanter M, Fink M. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Phys Med Biol 2008; 53:2937-51. [PMID: 18475006 DOI: 10.1088/0031-9155/53/11/012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ex vivo experiments have been conducted through excised pork rib with bone, cartilage, muscle and skin. The aberrating effect of the ribcage has been experimentally evaluated. Adaptive ultrasonic focusing through ribs has been studied at low power. Without any correction, the pressure fields in the focal plane were both affected by inhomogeneous attenuation and phase distortion and three main effects were observed: a mean 2 mm shift of the main lobe, a mean 1.25 mm spreading of the half width of the main lobe and up to 20 dB increase of the secondary lobe level. Thanks to time-reversal focusing, a 5 dB decrease in the secondary lobes was obtained and the ratio between the energy deposited at the target location and the total amount of energy emitted by the therapeutic array was six times higher than that without correction. Time-reversal minimizes the heating of the ribs by automatically sonicating between the ribs, as demonstrated by temperature measurements using thermocouples placed at different locations on the ribcage. It is also discussed how this aberration correction process could be achieved non-invasively for clinical application.
Collapse
Affiliation(s)
- J-F Aubry
- Laboratoire Ondes et Acoustique, CNRS UMR 7587, Université Paris VII, Inserm, ESPCI, 10 rue Vauquelin, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
44
|
Focused ultrasound for treatment of uterine myoma: From experimental model to clinical practice. SRP ARK CELOK LEK 2008; 136:193-5. [DOI: 10.2298/sarh0804193t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It is well known that focused ultrasound has a biologic effect on tissue. High intensity focused ultrasound (HIFU) on a small target area raises the temperature of the tissue enough to denaturate proteins and cause irreversible cell damage. The tight focus of the ultrasound energy allows delivery of the intended dose to a very precise location. The resulting coagulation necrosis is relatively painless. The application of this method in the human clinical setting has required pilot studies on an animal model. Although the treatment had a high success rate, there was a significant percentage of complications, mainly attributed to the technical drawbacks of the procedure. Therefore, this method has been modified for use in humans, and the HIFU is now guided, monitored and controlled by magnetic resonance imaging (MRI). In October 2004, Food and Drug Adiministration (FDA) approved MRI guided focused ultrasound treatment of uterine fibroids in humans. Since then, successful treatment of uterine myomas by HIFU has been performed in thousands of women.
Collapse
|
45
|
Coussios CC, Farny CH, Haar GT, Roy RA. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia 2007; 23:105-20. [PMID: 17578336 DOI: 10.1080/02656730701194131] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acoustic cavitation has been shown to play a key role in a wide array of novel therapeutic ultrasound applications. This paper presents a brief discussion of the physics of thermally relevant acoustic cavitation in the context of high-intensity focussed ultrasound (HIFU). Models for how different types of cavitation activity can serve to accelerate tissue heating are presented, and results suggest that the bulk of the enhanced heating effect can be attributed to the absorption of broadband acoustic emissions generated by inertial cavitation. Such emissions can be readily monitored using a passive cavitation detection (PCD) scheme and could provide a means for real-time treatment monitoring. It is also shown that the appearance of hyperechoic regions (or bright-ups) on B-mode ultrasound images constitutes neither a necessary nor a sufficient condition for inertial cavitation activity to have occurred during HIFU exposure. Once instigated at relatively large HIFU excitation amplitudes, bubble activity tends to grow unstable and to migrate toward the source transducer, causing potentially undesirable pre-focal damage. Potential means of controlling inertial cavitation activity using pulsed excitation so as to confine it to the focal region are presented, with the intention of harnessing cavitation-enhanced heating for optimal HIFU treatment delivery. The role of temperature elevation in mitigating bubble-enhanced heating effects is also discussed, along with other bubble-field effects such as multiple scattering and shielding.
Collapse
Affiliation(s)
- C C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
46
|
Rivens I, Shaw A, Civale J, Morris H. Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperthermia 2007; 23:121-39. [PMID: 17578337 DOI: 10.1080/02656730701207842] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Therapeutic ultrasound is currently enjoying increasingly widespread clinical use especially for the treatment of cancer of the prostate, liver, kidney, breast, pancreas and bone, as well as for the treatment of uterine fibroids. The optimum method of treatment delivery varies between anatomical sites, but in all cases monitoring of the treatment is crucial if extensive clinical acceptance is to be achieved. Monitoring not only provides the operating clinician with information relating to the effectiveness of treatment, but can also provide an early alert to the onset of adverse effects in normal tissue. This paper reviews invasive and non-invasive monitoring methods that have been applied to assess the extent of treatment during the delivery of therapeutic ultrasound in the laboratory and clinic (follow-up after treatment is not reviewed in detail). The monitoring of temperature and, importantly, the way in which this measurement can be used to estimate the delivered thermal dose, is dealt with as a separate special case. Already therapeutic ultrasound has reached a stage of development where it is possible to attempt real-time feedback during exposure in order to optimize each and every delivery of ultrasound energy. To date, data from MR imaging have shown better agreement with the size of regions of damage than those from diagnostic ultrasound, but novel ultrasonic techniques may redress this balance. Whilst MR currently offers the best method for non-invasive temperature measurement, the ultrasound techniques under development, which could potentially offer more rapid visualisation of results, are discussed.
Collapse
Affiliation(s)
- I Rivens
- Joint Department of Physics, Institute of Cancer Research: Royal Marsden NHS Foundation Trust, Sutton, UK.
| | | | | | | |
Collapse
|
47
|
Chapman A, ter Haar G. Thermal ablation of uterine fibroids using MR-guided focused ultrasound-a truly non-invasive treatment modality. Eur Radiol 2007; 17:2505-11. [PMID: 17473924 DOI: 10.1007/s00330-007-0644-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/09/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Uterine fibroids are a significant source of morbidity for women of reproductive age. Definitive treatment has traditionally been a hysterectomy, but increasingly women are not prepared to undergo such an invasive procedure for a benign and usually self-limiting condition. Although a number of minimally invasive techniques are now available, focused ultrasound has a considerable advantage over them as it is completely non-invasive and does not require an anaesthetic. Improvements in imaging techniques, particularly magnetic resonance imaging (MRI), have enabled the accurate planning, targeting and monitoring of treatments. We review the early experience of focused ultrasound surgery for the treatment of fibroids, and, in particular, the results of the recent phase I, II and III multi-centre clinical trials. These trials and other studies which demonstrate that MR-guided focused ultrasound ablation is feasible, safe and appears to have an efficacy that is comparable with other treatment modalities are described. This technique has the advantages of being non-invasive and being deliverable as an out-patient procedure.
Collapse
Affiliation(s)
- Alexander Chapman
- Joint Department of Physics, The Royal Marsden Hospital, Institute of Cancer Research, Sutton, Surrey, UK.
| | | |
Collapse
|
48
|
Hendee WR, Banovac F, Carson PL, DeFronzo RA, Eckelman WC, Fullerton GD, Larson SM, McLennan G, Welch MJ. Biomedical imaging research opportunities workshop IV: a white paper. Med Phys 2007; 34:673-9. [PMID: 17388185 DOI: 10.1118/1.2405838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Fourth Biomedical Imaging Research Opportunities Workshop (BIROW IV) was held on February 24-25, 2006, in North Bethesda, MD. The workshop focused on opportunities for research and development in four areas of imaging: imaging of rodent models; imaging in drug development; imaging of chronic metabolic disease: diabetes; and image guided intervention in the fourth dimension-time. These topics were examined by four keynote speakers in plenary sessions and then discussed in breakout sessions devoted to identifying research opportunities and challenges in the individual topics. This paper synthesizes these discussions into a strategy for future research directions in biomedical imaging.
Collapse
Affiliation(s)
- William R Hendee
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Therapeutic applications of ultrasound predate its use in imaging. A range of biological effects can be induced by ultrasound, depending on the exposure levels used. At low levels, beneficial, reversible cellular effects may be produced, whereas at high intensities instantaneous cell death is sought. Therapy ultrasound can therefore be broadly divided into "low power" and "high power" applications. The "low power" group includes physiotherapy, fracture repair, sonophoresis, sonoporation and gene therapy, whereas the most common use of "high power" ultrasound in medicine is probably now high intensity focused ultrasound. Therapeutic effect through the intensity spectrum is obtained by both thermal and non-thermal interaction mechanisms. At low intensities, acoustic streaming is likely to be significant, but at higher levels, heating and acoustic cavitation will predominate. While useful therapeutic effects are now being demonstrated clinically, the mechanisms by which they occur are often not well understood.
Collapse
Affiliation(s)
- Gail ter Haar
- Joint Physics Department, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK.
| |
Collapse
|
50
|
Frenkel V, Li KCP. Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol 2006; 2:111-9. [PMID: 16556078 DOI: 10.2217/14796694.2.1.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As the understanding of human cancer biology increases, new potential strategies for gene therapy are being proposed and evaluated. However, safe and efficient gene transfer continues to be the major hurdle for its implementation in the clinic. Preclinical studies have shown how pulsed-high intensity focused ultrasound (HIFU) exposures can be combined with different modes of administration (local, intravascular and systemic) to improve local delivery of genes and other therapeutic agents. Using image guidance, exposures are given, where short pulses of energy create predominantly mechanical/structural effects in the tissues as opposed to thermal ones. The result is an increase in both extravasation and interstitial diffusion of macromolecules, which occur non-destructively and reversibly. Ultrasound contrast agents can also be added, which enhance acoustic cavitation activity and consequently sonoporation. By being able to locally increase the uptake and expression of DNA, pulsed-HIFU holds much promise to further the use and applications of gene therapy for treating cancer and other pathological conditions.
Collapse
Affiliation(s)
- Victor Frenkel
- Diagnostic Radiology Department, Clinial Center, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|