1
|
Ogilvy A, Collins S, Hilts M, Hare W, Jirasek A. Commissioning of a solid tank design for fan-beam optical CT based 3D radiation dosimetry. Phys Med Biol 2023; 68:175034. [PMID: 37451252 DOI: 10.1088/1361-6560/ace7aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Objective.Optical computed tomography (CT) is one of the leading modalities for imaging gel dosimeters used in the verification of complex radiotherapy treatments. In previous work, a novel fan-beam optical CT scanner design was proposed that could significantly reduce the volume of the refractive index baths that are commonly found in optical CT systems. Here, the proposed scanner has been manufactured and commissioned.Approach.Image reconstruction is performed through algebraic reconstruction technique and iterated using the fast iterative shrinkage-thresholding algorithm (FISTA) algorithm. Ray tracing for algebraic reconstruction was performed using an in-house developed ray tracing simulator. A set of Sylgard® 184 phantoms were created to commission spatial resolution, geometric deformity, contrast-to-noise ratio (CNR), and scan settings.Main Results.The scanner is capable of a 0.929 mm-1spatial resolution, observed at 200 iterations, although the spatial resolution is highly dependent on the number of iterations. The geometric distortion, measured by scanning a needle phantom with the prototype scanner as well as a conventional x-ray CT was found to be within <0.25 mm. The CNR was found to peak between 65 and 190 occurring between 50 and 100 iterations and was highly dependent on the region chosen for background noise calculation. The proposed scanner is capable of scanning and reading out slices in less than 1 min per slice.Significance.This work displays the viability of a fan-beam optical CT scanner with minimal index matching using ray-traced algebraic reconstruction.
Collapse
Affiliation(s)
- A Ogilvy
- Department of Physics, University of British Columbia-Okanagan campus, Kelowna BC V1V 1V7, Canada
| | - S Collins
- Department of Physics, University of British Columbia-Okanagan campus, Kelowna BC V1V 1V7, Canada
| | - M Hilts
- Department of Physics, University of British Columbia-Okanagan campus, Kelowna BC V1V 1V7, Canada
- Medical Physics, BC Cancer-Kelowna, Kelowna BC V1Y 5L3, Canada
| | - W Hare
- Department of Mathematics, University of British Columbia-Okanagan campus, Kelowna BC V1V 1V7, Canada
| | - A Jirasek
- Department of Physics, University of British Columbia-Okanagan campus, Kelowna BC V1V 1V7, Canada
| |
Collapse
|
2
|
De Deene Y. Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels 2022; 8:599. [PMID: 36135311 PMCID: PMC9498652 DOI: 10.3390/gels8090599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022] Open
Abstract
Gel dosimetry was developed in the 1990s in response to a growing need for methods to validate the radiation dose distribution delivered to cancer patients receiving high-precision radiotherapy. Three different classes of gel dosimeters were developed and extensively studied. The first class of gel dosimeters is the Fricke gel dosimeters, which consist of a hydrogel with dissolved ferrous ions that oxidize upon exposure to ionizing radiation. The oxidation results in a change in the nuclear magnetic resonance (NMR) relaxation, which makes it possible to read out Fricke gel dosimeters by use of quantitative magnetic resonance imaging (MRI). The radiation-induced oxidation in Fricke gel dosimeters can also be visualized by adding an indicator such as xylenol orange. The second class of gel dosimeters is the radiochromic gel dosimeters, which also exhibit a color change upon irradiation but do not use a metal ion. These radiochromic gel dosimeters do not demonstrate a significant radiation-induced change in NMR properties. The third class is the polymer gel dosimeters, which contain vinyl monomers that polymerize upon irradiation. Polymer gel dosimeters are predominantly read out by quantitative MRI or X-ray CT. The accuracy of the dosimeters depends on both the physico-chemical properties of the gel dosimeters and on the readout technique. Many different gel formulations have been proposed and discussed in the scientific literature in the last three decades, and scanning methods have been optimized to achieve an acceptable accuracy for clinical dosimetry. More recently, with the introduction of the MR-Linac, which combines an MRI-scanner and a clinical linear accelerator in one, it was shown possible to acquire dose maps during radiation, but new challenges arise.
Collapse
Affiliation(s)
- Yves De Deene
- Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW 1871, Australia; or
- Ingham Institute, Liverpool, NSW 2170, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Alyani Nezhad Z, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot 2021; 179:110015. [PMID: 34753087 DOI: 10.1016/j.apradiso.2021.110015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The accuracy of dose delivered to tumors and surrounding normal tissues is vital in either radiotherapy using low energy photons and radiological techniques as well as radiotherapy with mega voltage energies. This systematic review focuses on applications of gel dosimetry in low energy radiation contexts applied either through radiotherapy or interventional radiology. METHODS Literature was reviewed based on electronic databases: Google Scholar, Scopus, Embase, PubMed, Science Direct, Research Gate and IOP science. The search was conducted on relevant terms in the title and keywords. 82 articles related to our criteria has been extracted and included in the study. RESULTS The findings demonstrated that almost all types of gel dosimeters had an acceptable accuracy and high resolution in low energy radiation contexts with their own limitations and advantages. CONCLUSION Gel dosimeters compete well with other conventional dosimeters in terms of tissue equivalence and energy dependence; however, choosing the best gel dosimeter for use in low energy radiation dosimetry depends on their different limitation and advantages. There are some general features about each gel group which can help to select the suitable gel related to our work. For example, methacrylic acid based gel dosimeters show higher sensitivity compared to other types of gel dosimeters but have more toxicity and are dose rate dependent in the range of dose rates applied in low energy contexts. In addition, Fricke gel dosimeters exhibit less sensitivity while they are independent of dose rate and energy applied in low energy situations.
Collapse
Affiliation(s)
- Zahra Alyani Nezhad
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Marrale M, d’Errico F. Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry. Gels 2021; 7:74. [PMID: 34205640 PMCID: PMC8293215 DOI: 10.3390/gels7020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30-50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-sensitive gels. The gels are tissue equivalent, so they also serve as phantoms, and their response is largely independent of radiation quality and dose rate. Some of them are infused with ferrous sulfate and rely on the radiation-induced oxidation of ferrous ions to ferric ions (Fricke-gels). Other formulations consist of monomers dispersed in a gelatinous medium (Polyacrylamide gels) and rely on radiation-induced polymerization, which creates a stable polymer structure. In both gel types, irradiation causes changes in proton relaxation rates that are proportional to locally absorbed dose and can be imaged using magnetic resonance imaging (MRI). Changes in color and/or opacification of the gels also occur upon irradiation, allowing the use of optical tomography techniques. In this work, we review both Fricke and polyacrylamide gels with emphasis on their chemical and physical properties and on their applications for radiation dosimetry.
Collapse
Affiliation(s)
- Maurizio Marrale
- Department of Physics and Chemistry, “Emilio Segrè” ATeN Center, University of Palermo, 90128 Palermo, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, 95123 Catania, Italy
| | - Francesco d’Errico
- Scuola di Ingegneria, Università degli Studi di Pisa, 56126 Pisa, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, 56127 Pisa, Italy
- School of Medicine, Yale University New Haven, CT 06510, USA
| |
Collapse
|
5
|
Nezhad ZA, Geraily G, Parwaie W, Zohari S. A novel investigation of the effect of different concentrations of methacrylic acid on the dose response of MAGAT gel dosimeter in intraoperative radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Farhood B, Geraily G, Abtahi SMM. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot 2019; 143:47-59. [PMID: 30390500 DOI: 10.1016/j.apradiso.2018.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
Radiotherapy has rapidly improved because of the use of new equipment and techniques. Hence, the appeal for a feasible and accurate three-dimensional (3D) dosimetry system has increased. In this regard, gel dosimetry systems are accurate 3D dosimeters with high resolution. This systematic review evaluates the clinical applications of polymer gel dosimeters in radiotherapy. To find the clinical applications of polymer gel dosimeters in radiotherapy, a full systematic literature search was performed on the basis of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in electronic databases up to January 31, 2017, with use of search-related terms in the titles and abstracts of articles. A total of 765 articles were screened in accordance with our inclusion and exclusion criteria. Eventually, 53 articles were included in the study. The findings show that most clinical applications of polymer gel dosimeters relate to external radiotherapy. Most of the gel dosimeters studied have acceptable dose accuracy as a 3D dosimeter with high resolution. It is difficult to judge which is the best polymer gel dosimeter to use in a clinical setting, because each gel dosimeter has advantages and limitations. For example, methacrylic acid-based gel dosimeters have high dose sensitivity and low toxicity, while their dose response is beam energy dependent; in contrast, N-isopropylacrylamide gel dosimeters have low dose resolution, but their sensitivity is lower and they are relatively toxic.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, 8115187159 Kashan, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
7
|
Watanabe Y, Warmington L, Gopishankar N. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications. World J Radiol 2017; 9:112-125. [PMID: 28396725 PMCID: PMC5368627 DOI: 10.4329/wjr.v9.i3.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development.
Collapse
|
8
|
Du Y, Wang X, Xiang X, Wei Z. Evaluation of hybrid SART + OS + TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging. Phys Med Biol 2016; 61:8425-8439. [PMID: 27845916 DOI: 10.1088/0031-9155/61/24/8425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optical computed tomography (optical-CT) is a high-resolution, fast, and easily accessible readout modality for gel dosimeters. This paper evaluates a hybrid iterative image reconstruction algorithm for optical-CT gel dosimeter imaging, namely, the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization. The mathematical theory and implementation workflow of the algorithm are detailed. Experiments on two different optical-CT scanners were performed for cross-platform validation. For algorithm evaluation, the iterative convergence is first shown, and peak-to-noise-ratio (PNR) and contrast-to-noise ratio (CNR) results are given with the cone-beam filtered backprojection (FDK) algorithm and the FDK results followed by median filtering (mFDK) as reference. The effect on spatial gradients and reconstruction artefacts is also investigated. The PNR curve illustrates that the results of SART + OS + TV finally converges to that of FDK but with less noise, which implies that the dose-OD calibration method for FDK is also applicable to the proposed algorithm. The CNR in selected regions-of-interest (ROIs) of SART + OS + TV results is almost double that of FDK and 50% higher than that of mFDK. The artefacts in SART + OS + TV results are still visible, but have been much suppressed with little spatial gradient loss. Based on the assessment, we can conclude that this hybrid SART + OS + TV algorithm outperforms both FDK and mFDK in denoising, preserving spatial dose gradients and reducing artefacts, and its effectiveness and efficiency are platform independent.
Collapse
Affiliation(s)
- Yi Du
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Khorshidi A, Ahmadinejad M, Hamed Hosseini S. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application: A Review of Dosimetric Parameters. Medicine (Baltimore) 2015; 94:e1098. [PMID: 26181543 PMCID: PMC4617086 DOI: 10.1097/md.0000000000001098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue.
Collapse
Affiliation(s)
- Abdollah Khorshidi
- From the Department of Physics, Parand Branch (AK, MA); Department of Biomedical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (SHH)
| | | | | |
Collapse
|
10
|
Role of gel dosimeters in boron neutron capture therapy. Appl Radiat Isot 2015; 103:72-81. [PMID: 26070173 DOI: 10.1016/j.apradiso.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process.
Collapse
|
11
|
Conn G, Kidane AG, Punshon G, Kannan RY, Hamilton G, Seifalian AM. Is there an alternative to systemic anticoagulation, as related to interventional biomedical devices? Expert Rev Med Devices 2014; 3:245-61. [PMID: 16515390 DOI: 10.1586/17434440.3.2.245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To reduce the toxic effects, related clinical problems and complications such as bleeding disorders associated with systemic anticoagulation, it has been hypothesized that by coating the surfaces of medical devices, such as stents, bypass grafts, extracorporeal circuits, guide wires and catheters, there will be a significant reduction in the requirement for systemic anticoagulation or, ideally, it will no longer be necessary. However, current coating processes, even covalent ones, still result in leaching followed by reduced functionality. Alternative anticoagulants and related antiplatelet agents have been used for improvement in terms of reduced restenosis, intimal hyperphasia and device failure. This review focuses on existing heparinization processes, their application in clinical devices and the updated list of alternatives to heparinization in order to obtain a broad overview, it then highlights, in particular, the future possibilities of using heparin and related moieties to tissue engineer scaffolds.
Collapse
Affiliation(s)
- Gemma Conn
- Biomaterials & Tissue Engineering Centre, Academic Division of Surgical and Interventional Sciences, University College London, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
12
|
Shih CT, Hsu JT, Han RP, Hsieh BT, Chang SJ, Wu J. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images. PLoS One 2013; 8:e67281. [PMID: 23843998 PMCID: PMC3699568 DOI: 10.1371/journal.pone.0067281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/16/2013] [Indexed: 12/20/2022] Open
Abstract
Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.
Collapse
Affiliation(s)
- Cheng-Ting Shih
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Jui-Ting Hsu
- School of Dentistry, China Medical University, Taichung, Taiwan, R.O.C
| | - Rou-Ping Han
- Department of Management Information Systems, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Bor-Tsung Hsieh
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Shu-Jun Chang
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan, R.O.C
| | - Jay Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
13
|
Xu Y, Wuu CS. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results. Phys Med Biol 2013; 58:479-95. [DOI: 10.1088/0031-9155/58/3/479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Chang YJ, Hsieh BT. Effect of composition interactions on the dose response of an N-isopropylacrylamide gel dosimeter. PLoS One 2012; 7:e44905. [PMID: 23077487 PMCID: PMC3470576 DOI: 10.1371/journal.pone.0044905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
In this study, a two-level full factorial design was used to identify the effects of the interactions between compositions in an N-isopropylacrylamide (NIPAM) gel dosimeter involving the following variables: (A) gelatin, (B) NIPAM, (C) the crosslinker N, N′-methylene-bis-acrylamide (Bis), and (D) the antioxidant tetrakis (hydroxymethyl) phosphonium chloride (THPC). The dose range was from 0 Gy to 5 Gy. Optical computed tomography was used to scan the polymer gel dosimeter. Each component was set to two levels for all four variables, including (A) 4% and 6%, (B) 4% and 6%, (C) 2% and 4%, as well as (D) 5 and 15 mM. Response surface methodology and a central composite design were adopted for the quantitative investigation of the respective interaction effects on the dose response curve of the gel. The results showed that the contributions of the interaction effects, i.e., AB (6.22%), AC (8.38%), AD (7.74%), BC (9.44%), ABC (18.24%), BCD (12.66%), and ABCD (13.4%), were greater than those of the four main effects, accounting for over 76.08% of the total variability. These results also indicated that the NIPAM gel recipe with the highest sensitivity was at 40%C (mass fraction of Bis).
Collapse
Affiliation(s)
- Yuan-Jen Chang
- Department of Management Information Systems, Central Taiwan University of Science and Technology, Taichung, Taiwan, Republic of China.
| | | |
Collapse
|
15
|
Ramm D, Rutten TP, Shepherd J, Bezak E. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry. Phys Med Biol 2012; 57:3853-68. [DOI: 10.1088/0031-9155/57/12/3853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Doran SJ, Yatigammana DNB. Eliminating the need for refractive index matching in optical CT scanners for radiotherapy dosimetry: I. Concept and simulations. Phys Med Biol 2012; 57:665-83. [PMID: 22241587 DOI: 10.1088/0031-9155/57/3/665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optical computed tomography has now become a well-established method for making empirical measurements of 3D dose distributions in radiotherapy treatment verification. The requirement for effective refractive index matching as part of the scanning process has long been an inconvenience for users, limiting the speed of sample throughput. We propose a new method for reconstructing data that takes explicit account of the refracted path of the light rays and demonstrate theoretically the conditions under which there are sufficient data to create a good reconstruction. Examples of the performance of the algorithm are given. For smoothly varying data, reconstructed images of very high quality are obtained, with RMS deviation of under 1% from the original, provided that the irradiated region lies entirely within a critical radius. For the dosimeter material PRESAGE, this critical value is approximately 0.65 of the sample radius. Regions outside this are not reconstructed successfully, but we argue that there are many cases where this disadvantage is outweighed by the benefits of the technique.
Collapse
|
17
|
Papadakis AE, Maris TG, Zacharakis G, Papoutsaki V, Varveris C, Ripoll J, Damilakis J. Technical Note: A fast laser-based optical-CT scanner for three-dimensional radiation dosimetry. Med Phys 2011; 38:830-5. [DOI: 10.1118/1.3538924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
|
19
|
Papadakis AE, Zacharakis G, Maris TG, Ripoll J, Damilakis J. A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible? IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:1204-1212. [PMID: 20304723 DOI: 10.1109/tmi.2010.2044800] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper, we present a new optical computed tomography (Optical-CT) scanner for the verification of the radiation dose schemes delivered in modern radiotherapy applications. The optical-CT scanner is capable of providing rapid relative 3-D dosimetry with high spatial resolution with the use of normoxic N-Vinylpyrrolidone based polymer gel dosimeter. The scanner employs a diffuse uncollimated light illumination beam, a computer controlled motorized rotation stage and a charge-coupled device (CCD) camera. Various test experiments were performed to determine the performance characteristics of the optical-CT apparatus. Attenuation coefficient (micro) versus dose calibration data were generated from two calibration experiments using gel containers of two different diameters. All irradiations were performed using a 6 MV linear accelerator. A comparison of the reconstructed images between optical-CT scans using refractive index (RI) matching fluid and corresponding scans performed in free space was demonstrated. The dose readout of a test irradiation model was found to be in good agreement with independent readout performed by MR imaging. The findings presented in this study suggest that polymer dosimeters combined with the new optical-CT scanner constitute a potentially feasible method capable of measuring complex 3-D dose distributions with high resolution and in a wide dose range.
Collapse
MESH Headings
- Algorithms
- Gels
- Image Processing, Computer-Assisted/instrumentation
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Phantoms, Imaging
- Radiometry/instrumentation
- Radiometry/methods
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Tomography, Optical/instrumentation
- Tomography, Optical/methods
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/methods
Collapse
Affiliation(s)
- Antonios E Papadakis
- Department of Medical Physics, University Hospital of Heraklion, 71110 Crete, Greece.
| | | | | | | | | |
Collapse
|
20
|
Thomadsen BR, Heaton HT, Jani SK, Masten JP, Napolitano ME, Ouhib Z, Reft CS, Rivard MJ, Robin TT, Subramanian M, Suleiman OH. Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121a). Med Phys 2010; 37:2300-11. [DOI: 10.1118/1.3392286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010. [PMID: 20150687 DOI: 10.1088/0031‐9155/55/5/r01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010; 55:R1-63. [PMID: 20150687 DOI: 10.1088/0031-9155/55/5/r01] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu Y, Wuu CS, Maryanski MJ. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters. Med Phys 2010; 37:861-8. [PMID: 20229895 PMCID: PMC2826388 DOI: 10.1118/1.3298017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/04/2010] [Accepted: 01/04/2010] [Indexed: 11/07/2022] Open
Abstract
The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4 x 4 cm2 photon fields or 6 x 6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6 x 6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752 +/- 3%, 0.0756 +/- 3%, 0.0767 +/- 3%, and 0.0759 +/- 3% cm(-1) Gy(-1)) and the PDD matching methods (0.0768 +/- 3% and 0.0761 +/- 3% cm(-1) Gy(-1)) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6 x 6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.
Collapse
Affiliation(s)
- Y Xu
- Department of Radiation Oncology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
24
|
Sellakumar P, James Jebaseelan Samuel E. Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-Ray CT. RADIAT MEAS 2010. [DOI: 10.1016/j.radmeas.2009.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Baldock C. Historical overview of the development of gel dosimetry: Another personal perspective. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Doran SJ. The history and principles of optical computed tomography for scanning 3-D radiation dosimeters: 2008 update. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Krstajić N, Doran S. Initial characterization of fast laser scanning optical CT apparatus for 3-D dosimetry. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Doran SJ. The history and principles of chemical dosimetry for 3-D radiation fields: Gels, polymers and plastics. Appl Radiat Isot 2009; 67:393-8. [DOI: 10.1016/j.apradiso.2008.06.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Chu CH, Hsieh BT, Chen IJ, Chen WL, Lin UT. Dosimetry study for beta-radiation treatment of in-stent restenosis. RADIATION PROTECTION DOSIMETRY 2009; 134:49-54. [PMID: 19376885 DOI: 10.1093/rpd/ncp062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intravascular brachytherapy (IVBT) has been recognised as a treatment modality for reducing coronary restenosis after angioplasty and stent-implantation procedures. For the treatment of in-stent restenosis using beta-emitter (188)Re, delivering adequate doses to the entire vessel wall is not possible without the potential of overdosing tissues. A method to measure the dose distribution, perturbation and percentage depth dose using plane-parallel and cylindrical tissue-equivalent phantoms has been developed. Good agreement was found between experimental results and Monte Carlo simulation performed using MCNP4C code. The dose given to the affected area in the vascular region for intravascular radiation treatment was 15-30 Gy. Dose inhomogeneity beyond the stent surface decreased significantly with increasing radial distance. In the region close to the stent outer surface (>0.5-mm radial distance), a dose reduction of 11-17% due to the stent was observed. However, the dose perturbations due to the physical properties of metallic stents were found to be significant in IVBT for in-stent restenosis by using measured dose profiles in phantoms. The method can provide accuracy in beta isotope in vivo dosimetry results for treatments involving short-range dose distributions and provide a relatively high-level spatial resolution for detection.
Collapse
Affiliation(s)
- Chien-Hau Chu
- Health Physics Division, Institute of Nuclear Energy Research, PO Box 3-10, Longtan 325, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
30
|
Rink A, Lewis DF, Varma S, Vitkin IA, Jaffray DA. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium. Med Phys 2008; 35:4545-55. [PMID: 18975701 PMCID: PMC2736758 DOI: 10.1118/1.2975483] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/18/2008] [Accepted: 08/02/2008] [Indexed: 11/07/2022] Open
Abstract
The effects of temperature on real time changes in optical density (DeltaOD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance (lambdamax) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degrees C. The DeltaOD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in lambdamax. A compensation scheme using lambdamax and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.
Collapse
Affiliation(s)
- Alexandra Rink
- Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
| | | | | | | | | |
Collapse
|
31
|
Endovascular Brachytherapy in the Femoropopliteal Segment Using 192Ir and 188Re. Cardiovasc Intervent Radiol 2008; 31:698-708. [DOI: 10.1007/s00270-007-9275-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
|
32
|
Rink A, Vitkin IA, Jaffray DA. Intra-irradiation changes in the signal of polymer-based dosimeter (GAFCHROMIC EBT) due to dose rate variations. Phys Med Biol 2007; 52:N523-9. [DOI: 10.1088/0031-9155/52/22/n03] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
|
34
|
Wöhrle J, Krause BJ, Nusser T, Mottaghy FM, Habig T, Kochs M, Kotzerke J, Reske SN, Hombach V, Höher M. Intracoronary β-brachytherapy using a rhenium-188 filled balloon catheter in restenotic lesions of native coronary arteries and venous bypass grafts. Eur J Nucl Med Mol Imaging 2006; 33:1314-20. [PMID: 16791596 DOI: 10.1007/s00259-006-0142-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/09/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE We have previously demonstrated the efficacy of intracoronary beta-brachytherapy using a liquid (188)Re-filled balloon in a randomised trial including de novo lesions. Percutaneous coronary interventions in restenotic lesions and in stenoses of venous bypass grafts are characterised by a high recurrence rate for restenosis and re-interventions. Against this background, we wanted to assess the impact of intracoronary beta-brachytherapy using a liquid (188)Re-filled balloon in restenotic lesions in native coronary arteries and venous bypass grafts. METHODS In 243 patients, beta-brachytherapy with 22.5 Gy was applied at a tissue depth of 0.5 mm. Patients were followed up angiographically after 6 months and clinically for 12 months. The primary clinical endpoint was the incidence of MACE (death, myocardial infarction, target vessel revascularisation). Secondary angiographic endpoints were late loss and binary restenosis rate in the total segment. RESULTS All irradiation procedures were successfully performed. A total of 222 lesions were in native coronary arteries; 21 were bypass lesions. Mean irradiation length was 41.6+/-17.3 mm (range 20-150 mm) in native coronary arteries and 48.1+/-33.9 mm (range 30-180 mm) in bypass lesions; the reference diameter was 2.57+/-0.52 mm and 2.83+/-0.76 mm, respectively. There was no vessel thrombosis during antiplatelet therapy. Angiographic/clinical follow-up rate was 84%/100%. MACE rate was 17.6% in the native coronary artery group and 38.1% in the CABG group (p<0.03). Binary restenosis rate was 22.5% and 55.6% (p<0.01), and late loss was 0.38+/-0.72 mm and 1.33+/-1.11 mm (p<0.001), respectively. CONCLUSIONS We conclude that intracoronary beta-brachytherapy with a liquid (188)Re-filled balloon using 22.5 Gy at a tissue depth of 0.5 mm in restenotic lesions is safe. It is associated with a low binary restenosis rate, resulting in a low occurrence rate of MACE within 12 months in restenotic lesions in native coronary arteries but not in vein grafts.
Collapse
Affiliation(s)
- Jochen Wöhrle
- Department of Internal Medicine II, University of Ulm, Robert-Koch-Strasse-8, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van Doom T, Bhat M, Rutten TP, Tran T, Costanzo A. A fast, high spatial resolution optical tomographic scanner for measurement of absorption in gel dosimetry. ACTA ACUST UNITED AC 2005; 28:76-85. [PMID: 16060313 DOI: 10.1007/bf03178697] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A fast tomographic optical density measurement system has been constructed and evaluated for application in Fricke 3D gel dosimetry. Although the potential for full three-dimensional radiation dosimetry with Fricke gel dosimeters has been extensively reported, its application has been limited due to a lack of fast optical density measurement systems. In this work, the emphasis of the design has been to achieve a short scan time through the use of precision optics and minimal moving parts. The system has been demonstrated in the laboratory to be able to achieve better than 1mm resolution and a scanning time per tomographic slice of 2.4 seconds. Full volumetric sampling of a 10 cm diameter by 7cm long cylinder can be achieved in 3 minutes. When applied with a Fricke based gel dosimeter a linear response between reconstructed CT number and absolute dose was better than 3%.
Collapse
Affiliation(s)
- T van Doom
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | |
Collapse
|
36
|
Xu Y, Wuu CS, Maryanski MJ. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification. Med Phys 2004; 31:3024-33. [PMID: 15587656 DOI: 10.1118/1.1803674] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG 3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG 3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cm x 6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the "3%-or-2 mm" criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.
Collapse
Affiliation(s)
- Y Xu
- Department of Radiation Oncology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
37
|
Berg A, Pernkopf M, Waldhäusl C, Schmidt W, Moser E. High resolution MR based polymer dosimetry versus film densitometry: a systematic study based on the modulation transfer function approach. Phys Med Biol 2004; 49:4087-108. [PMID: 15470925 DOI: 10.1088/0031-9155/49/17/018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
Collapse
Affiliation(s)
- A Berg
- Institut für Medizinische Physik, Medizinische Universität Wien, Währingerstr 13, A-1090 Wien, Austria.
| | | | | | | | | |
Collapse
|