1
|
Li Z, Hannan MN, Sharma AK, Baran TM. Treatment planning for photodynamic therapy of abscess cavities using patient-specific optical properties measured prior to illumination. Phys Med Biol 2024; 69:055031. [PMID: 38316055 PMCID: PMC10900070 DOI: 10.1088/1361-6560/ad2635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Photodynamic therapy (PDT) is an effective antimicrobial therapy that we used to treat human abscess cavities in a Phase 1 clinical trial. This trial included pre-PDT measurements of abscess optical properties, which affect light dose (light fluence) at the abscess wall and PDT response. This study simulated PDT treatment planning for 13 subjects that received optical spectroscopy prior to clinical PDT, to determine the impact of measured optical properties on ability to achieve fluence rate targets in 95% of the abscess wall. Retrospective treatment plans were evaluated for 3 conditions: (1) clinically delivered laser power and assumed, homogeneous optical properties, (2) clinically delivered laser power and measured, homogeneous optical properties, and (3) with patient-specific treatment planning using measured, homogeneous optical properties. Treatment plans modified delivered laser power, intra-cavity Intralipid (scatterer) concentration, and laser fiber type. Using flat-cleaved laser fibers, the proportion of subjects achieving 95% abscess wall coverage decreased significantly relative to assumed optical properties when using measured values for 4 mW cm-2(92% versus 38%,p= 0.01) and 20 mW cm-2(62% versus 15%,p= 0.04) thresholds. When measured optical properties were incorporated into treatment planning, the 4 mW cm-2target was achieved for all cases. After treatment planning, optimal Intralipid concentration across subjects was 0.14 ± 0.09%, whereas 1% was used clinically. Required laser power to achieve the 4 mW cm-2target was significantly correlated with measured abscess wall absorption (ρ= 0.7,p= 0.008), but not abscess surface area (ρ= 0.2,p= 0.53). When using spherical diffuser fibers for illumination, both optimal Intralipid concentration (p= 0.0005) and required laser power (p= 0.0002) decreased compared to flat cleaved fibers. At 0% Intralipid concentration, the 4 mW cm-2target could only be achieved for 69% of subjects for flat-cleaved fibers, compared to 100% for spherical diffusers. Based on large inter-subject variations in optical properties, individualized treatment planning is essential for abscess photodynamic therapy. (Clinical Trial Registration: The parent clinical trial from which these data were acquired is registered on ClinicalTrials.gov as 'Safety and Feasibility Study of Methylene Blue Photodynamic Therapy to Sterilize Deep Tissue Abscess Cavities,' with ClinicalTrials.gov identifier NCT02240498).
Collapse
Affiliation(s)
- Zihao Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
| | - Md Nafiz Hannan
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States of America
| | - Ashwani K Sharma
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Timothy M Baran
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
- The Institute of Optics, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
2
|
Li Z, Hannan MN, Sharma AK, Baran TM. Treatment planning for photodynamic therapy of abscess cavities using patient-specific optical properties measured prior to illumination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297420. [PMID: 37961683 PMCID: PMC10635177 DOI: 10.1101/2023.10.23.23297420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Photodynamic therapy (PDT) is an effective antimicrobial therapy that we used to treat human abscess cavities in a recently completed Phase 1 clinical trial. This trial included pre-PDT measurements of abscess optical properties, which affect the expected light dose to the abscess wall and eventual PDT response. Purpose The objective of this study was to simulate PDT treatment planning for the 13 subjects that received optical spectroscopy prior to clinical abscess PDT. Our goal was to determine the impact of these measured optical properties on our ability to achieve fluence rate targets in 95% of the abscess wall. Methods During a Phase 1 clinical trial, 13 subjects received diffuse reflectance spectroscopy prior to PDT in order to determine the optical properties of their abscess wall. Retrospective treatment plans seeking to achieve fluence rate targets in 95% of the abscess wall were evaluated for all subjects for 3 conditions: (1) at the laser power delivered clinically with assumed optical properties, (2) at the laser power delivered clinically with measured optical properties, and (3) with patient-specific treatment planning using these measured optical properties. Factors modified in treatment planning included delivered laser power and intra-cavity Intralipid (scatterer) concentration. The effects of laser fiber type were also simulated. Results Using a flat-cleaved laser fiber, the proportion of subjects that achieved 95% abscess wall coverage decreased significantly when incorporating measured optical properties for both the 4 mW/cm 2 (92% vs. 38%, p=0.01) and 20 mW/cm 2 (62% vs. 15%, p=0.04) fluence rate thresholds. However, when measured optical properties were incorporated into treatment planning, a fluence rate of 4 mW/cm 2 was achieved in 95% of the abscess wall for all cases. In treatment planning, the optimal Intralipid concentration across subjects was found to be 0.14 ± 0.09% and the optimal laser power varied from that delivered clinically but with no clear trend (p=0.79). The required laser power to achieve 4 mW/cm 2 in 95% of the abscess wall was significantly correlated with measured µ a at the abscess wall (ρ=0.7, p=0.008), but not abscess surface area (ρ=0.2, p=0.53). When using spherical diffuser fibers as the illumination source, the optimal intralipid concentration decreased to 0.028 ± 0.026% (p=0.0005), and the required laser power decreased also (p=0.0002), compared to flat cleaved fibers. If the intra-cavity lipid emulsion (Intralipid) was replaced with a non-scattering fluid, all subjects could achieve the 4 mW/cm 2 fluence rate threshold in 95% of the abscess wall using a spherical diffuser, while only 69% of subjects could reach the same criterion using a flat cleaved fiber. Conclusions The range of optical properties measured in human abscesses reduced coverage of the abscess wall at desirable fluence rates. Patient-specific treatment planning including these measured optical properties could bring the coverage back to desirable levels by altering the Intralipid concentration and delivered optical power. These results motivate a future Phase 2 clinical trial to directly compare the efficacy of patient-specific-treatment planning with fixed doses of Intralipid and light.Clinical Trial Registration: The parent clinical trial from which these data were acquired is registered on ClinicalTrials.gov as "Safety and Feasibility Study of Methylene Blue Photodynamic Therapy to Sterilize Deep Tissue Abscess Cavities," with ClinicalTrials.gov identifier NCT02240498 .
Collapse
|
3
|
Sandberg E, Srambickal CV, Piguet J, Liu H, Widengren J. Local monitoring of photosensitizer transient states provides feedback for enhanced efficiency and targeting selectivity in photodynamic therapy. Sci Rep 2023; 13:16829. [PMID: 37803073 PMCID: PMC10558575 DOI: 10.1038/s41598-023-43625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Photodynamic therapy (PDT) fundamentally relies on local generation of PDT precursor states in added photosensitizers (PS), particularly triplet and photo-radical states. Monitoring these states in situ can provide important feedback but is difficult in practice. The states are strongly influenced by local oxygenation, pH and redox conditions, often varying significantly at PDT treatment sites. To overcome this problem, we followed local PDT precursor state populations of PS compounds, via their fluorescence intensity response to systematically varied excitation light modulation. Thereby, we could demonstrate local monitoring of PDT precursor states of methylene blue (MB) and IRdye700DX (IR700), and determined their transitions rates under different oxygenation, pH and redox conditions. By fiber-optics, using one fiber for both excitation and fluorescence detection, the triplet and photo-radical state kinetics of locally applied MB and IR700 could then be monitored in a tissue sample. Finally, potassium iodide and ascorbate were added as possible PDT adjuvants, enhancing intersystem crossing and photoreduction, respectively, and their effects on the PDT precursor states of MB and IR700 could be locally monitored. Taken together, the presented procedure overcomes current methodological limitations and can offer feedback, guiding both excitation and PDT adjuvant application, and thereby more efficient and targeted PDT treatments.
Collapse
Affiliation(s)
- Elin Sandberg
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91, Stockholm, Sweden
| | - Chinmaya V Srambickal
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91, Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91, Stockholm, Sweden
| | - Haichun Liu
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Hannan MN, Sharma AK, Baran TM. Preliminary measurements of optical properties in human abscess cavities prior to methylene blue photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12359:123590A. [PMID: 37860151 PMCID: PMC10585982 DOI: 10.1117/12.2648453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
As part of our ongoing Phase 1 clinical trial to establish the safety and feasibility of methylene blue photodynamic therapy (MB-PDT) for human deep tissue abscess cavities, we have shown that determination of abscess wall optical properties is vital for the design of personalized treatment plans aiming to optimize light dose. To that end, we have developed and validated an optical spectroscopy system for the assessment of optical properties at the cavity wall, including a compact fiber-optic probe that can be inserted through the catheter used for the standard of care abscess drainage. Here we report preliminary findings from the first three human subjects to receive these optical spectroscopy measurements. We observed wide variability in concentrations of oxy- and deoxy-hemoglobin prior to MB administration, ranging from 7.3-213 μM and 0.1-47.2 μM, respectively. Reduced scattering coefficients also showed inter-patient variability, but recovered values were more similar between subjects (5.5-10.9 cm-1 at 665 nm). Further, methylene blue uptake was found to vary between subjects, and was associated with a reduction in oxygen saturation. These measured optical properties, along with pre-procedure computed tomography (CT) images, will be used with our previously developed Monte Carlo simulation framework to generate personalized treatment plans for individual patients, which could significantly improve the efficacy of MB-PDT while ensuring safety.
Collapse
Affiliation(s)
- Md Nafiz Hannan
- Department of Physics and Astronomy, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642
| | - Ashwani K. Sharma
- Department of Imaging Sciences, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642
| | - Timothy M. Baran
- Department of Imaging Sciences, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642
- The Institute of Optics, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642
| |
Collapse
|
5
|
Li Z, Nguyen L, Bass DA, Baran TM. Effects of patient-specific treatment planning on eligibility for photodynamic therapy of deep tissue abscess cavities: retrospective Monte Carlo simulation study. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083007. [PMID: 35146973 PMCID: PMC8831513 DOI: 10.1117/1.jbo.27.8.083007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Antimicrobial photodynamic therapy (PDT) effectively kills bacterial strains found in deep tissue abscess cavities. PDT response hinges on multiple factors, including light dose, which depends on patient optical properties. AIM Computed tomography images for 60 abscess drainage subjects were segmented and used for Monte Carlo (MC) simulation. We evaluated effects of optical properties and abscess morphology on PDT eligibility and generated treatment plans. APPROACH A range of abscess wall absorptions (μa , wall) and intra-cavity Intralipid concentrations were simulated. At each combination, the threshold optical power and optimal Intralipid concentration were found for a fluence rate target, with subjects being eligible for PDT if the target was attainable with <2000 mW of source light. Further simulations were performed with absorption within the cavity (μa , cavity). RESULTS Patient-specific treatment planning substantially increased the number of subjects expected to achieve an efficacious light dose for antimicrobial PDT, especially with Intralipid modification. The threshold optical power and optimal Intralipid concentration increased with increasing μa , wall (p < 0.001). PDT eligibility improved with patient-specific treatment planning (p < 0.0001). With μa , wall = 0.2 cm - 1, eligibility increased from 42% to 92%. Increasing μa , cavity reduced PDT eligibility (p < 0.0001); modifying the delivered optical power had the greatest impact in this case. CONCLUSIONS MC-based treatment planning greatly increases eligibility for PDT of abscess cavities.
Collapse
Affiliation(s)
- Zihao Li
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Lam Nguyen
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - David A. Bass
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| | - Timothy M. Baran
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States
| |
Collapse
|
6
|
Yassine AA, Lilge L, Betz V. Optimizing Interstitial Photodynamic Therapy Planning With Reinforcement Learning-Based Diffuser Placement. IEEE Trans Biomed Eng 2021; 68:1668-1679. [PMID: 33471748 DOI: 10.1109/tbme.2021.3053197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interstitial photodynamic therapy (iPDT) has shown promising results recently as a minimally invasive stand-alone or intra-operative cancer treatment. The development of non-toxic photosensitizing drugs with improved target selectivity has increased its efficacy. However, personalized treatment planning that determines the number of photon emitters, their positions and their input powers while taking into account tissue anatomy and treatment response is still lacking to further improve outcomes. OBJECTIVE To develop new algorithms that generate high-quality plans by optimizing over the light source positions, along with their powers, to minimize the damage to organs-at-risk while eradicating the tumor. The optimization algorithms should also accurately model the physics of light propagation through the use of Monte-Carlo simulators. METHODS We use simulated-annealing as a baseline algorithm to place the sources. We propose different source perturbations that are likely to provide better outcomes and study their impact. To minimize the number of moves attempted (and effectively runtime) without degrading result quality, we use a reinforcement learning-based method to decide which perturbation strategy to perform in each iteration. We simulate our algorithm on virtual brain tumors modeling real glioblastoma multiforme cases, assuming a 5-ALA PpIX induced photosensitizer that is activated at [Formula: see text] wavelength. RESULTS The algorithm generates plans that achieve an average of 46% less damage to organs-as-risk compared to the manual placement used in current clinical studies. SIGNIFICANCE Having a general and high-quality planning system makes iPDT more effective and applicable to a wider variety of oncological indications. This paves the way for more clinical trials.
Collapse
|
7
|
Optimized Cylindrical Diffuser Powers for Interstitial PDT Breast Cancer Treatment Planning: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2061509. [PMID: 32280680 PMCID: PMC7125442 DOI: 10.1155/2020/2061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/31/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Purpose It is well known that interstitial photodynamic therapy (iPDT) of large tumors requires effective planning to ensure efficient delivery of therapeutic dose to the target tumors. This should be achieved in parallel with minimal damage to the nearby intact tissues. To that end, clinical iPDT can be attained using cylindrical diffusing optical fibers (CDFs) as light sources. In this work, we optimize output CDF powers in order to deliver a prescribed light dose to a spherical volume such as a tumor node. Methods Four CDFs are placed vertically inside the tumor node. The fluence rate is calculated using the diffusion equation. Therapeutic target dose is (20-50) J·cm−2. The optical properties (μa = 0.085 cm−1, μs′ = 16 cm−1) of a breast tumor and the treatment time of 150 sec are used to calculate the fluence rate. Results For four CDFs, the therapeutic target dose (20-50) J·cm−2 is delivered to more than 90%. This is the ratio of the total points that receive the target dose in proportion to the total points in the volume of the node of 3 cm in diameter, whereas, in larger nodes, the ratio is decreased to approximately 67%. Five CDFs are required to improve this ratio by more than 10%. Conclusion Optimizing delivered powers enables the distribution of the therapeutic dose uniformly in the medium. In addition, this simulation study represents an essential part of a development dosimetry system for measuring and controlling the optical dose in the breast tumors.
Collapse
|
8
|
A diffusion equation based algorithm for determination of the optimal number of fibers used for breast cancer treatment planning in photodynamic therapy. BIOMEDICAL PHOTONICS 2020. [DOI: 10.24931/2413-9432-2019-8-4-17-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Photodynamic therapy of deep tissue abscess cavities: Retrospective image‐based feasibility study using Monte Carlo simulation. Med Phys 2019; 46:3259-3267. [DOI: 10.1002/mp.13557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023] Open
|
10
|
Beeson KW, Parilov E, Potasek M, Kim MM, Zhu TC. Validation of combined Monte Carlo and photokinetic simulations for the outcome correlation analysis of benzoporphyrin derivative-mediated photodynamic therapy on mice. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 30873764 PMCID: PMC6416474 DOI: 10.1117/1.jbo.24.3.035006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/05/2019] [Indexed: 05/16/2023]
Abstract
We compare previously reported benzoporphyrin derivative (BPD)-mediated photodynamic therapy (PDT) results for reactive singlet oxygen concentration (also called singlet oxygen dose) on mice with simulations using a computational device, Dosie™, that calculates light transport and photokinetics for PDT in near real-time. The two sets of results are consistent and validate the use of the device in PDT treatment planning to predict BPD-mediated PDT outcomes in mice animal studies based on singlet oxygen dose, which showed a much better correlation with the cure index than the conventional light dose.
Collapse
Affiliation(s)
- Karl W. Beeson
- Simphotek, Inc., Newark, New Jersey, United States
- Address all correspondence to Karl W. Beeson, E-mail:
| | | | - Mary Potasek
- Simphotek, Inc., Newark, New Jersey, United States
| | - Michele M. Kim
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Timothy C. Zhu
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
11
|
Yassine AA, Lilge L, Betz V. Optimizing interstitial photodynamic therapy with custom cylindrical diffusers. JOURNAL OF BIOPHOTONICS 2019; 12:e201800153. [PMID: 30178604 DOI: 10.1002/jbio.201800153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/02/2018] [Indexed: 05/07/2023]
Abstract
Interstitial photodynamic therapy (iPDT) has shown promise recently as a minimally invasive cancer treatment, partially due to the development of non-toxic photosensitizers in the absence of activation light. However, a major challenge in iPDT is the pre-treatment planning process that specifies the number of diffusers needed, along with their positions and allocated powers, to confine the light distribution to the target volume as much as possible. In this work, a new power allocation algorithm for cylindrical light diffusers including those that can produce customized longitudinal (tailored) emission profiles is introduced. The proposed formulation is convex to guarantee the minimum over-dose possible on the surrounding organs-at-risk. The impact of varying the diffuser lengths and penetration angles on the quality of the plan is evaluated. The results of this study are demonstrated for different photosensitizers activated at different wavelengths and simulated on virtual tumors modeling virtual glioblastoma multiforme cases. Results show that manufacturable cylindrical diffusers with tailored emission profiles can significantly outperform those with conventional flat profiles with an average damage reduction on white matter of 15% to 55% and on gray matter of 23% to 58%.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Yassine AA, Kingsford W, Xu Y, Cassidy J, Lilge L, Betz V. Automatic interstitial photodynamic therapy planning via convex optimization. BIOMEDICAL OPTICS EXPRESS 2018; 9:898-920. [PMID: 29552420 PMCID: PMC5854086 DOI: 10.1364/boe.9.000898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 05/23/2023]
Abstract
Finding a high-quality treatment plan is an essential, yet difficult, stage of Photodynamic therapy (PDT) as it will determine the therapeutic efficacy in eradicating malignant tumors. A high-quality plan is patient-specific, and provides clinicians with the number of fiber-based spherical diffusers, their powers, and their interstitial locations to deliver the required light dose to destroy the tumor while minimizing the damage to surrounding healthy tissues. In this work, we propose a general convex light source power allocation algorithm that, given light source locations, guarantees optimality of the resulting solution in minimizing the over/under-dosage of volumes of interest. Furthermore, we provide an efficient framework for source selection with concomitant power reallocation to achieve treatment plans with a clinically feasible number of sources and comparable quality. We demonstrate our algorithms on virtual test cases that model glioblastoma multiforme tumors, and evaluate the performance of four different photosensitizers with different activation wavelengths and specific tissue uptake ratios. Results show an average reduction of the damage to organs-at-risk (OAR) by 29% to 31% with comparable runtime to existing power allocation techniques.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S3G8, Canada
| | - William Kingsford
- Division of Engineering Science, University of Toronto, 27 King's College Circle, Toronto, ON M5S1A1, Canada
| | - Yiwen Xu
- Department of Mathematics, University of British Columbia, 1980 Mathematics Road, Vancouver, BC V6T1Z2, Canada
| | - Jeffrey Cassidy
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S3G8, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S3G8, Canada
| |
Collapse
|
13
|
Betrouni N, Boukris S, Benzaghou F. Vascular targeted photodynamic therapy with TOOKAD® Soluble (WST11) in localized prostate cancer: efficiency of automatic pre-treatment planning. Lasers Med Sci 2017; 32:1301-1307. [PMID: 28569345 DOI: 10.1007/s10103-017-2241-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
Vascular targeted photodynamic therapy (VTP) with WST11 is a novel non-thermal focal treatment for localized prostate cancer that has shown favorable and early efficacy results in previously published studies. In this work, we investigate the efficiency of automatic dosimetric treatment planning. An action model established in a previous study was used in an image-guided optimization scheme to define the personalized optimal light dose for each patient. The calculated light dose is expressed as the number of optical cylindrical fibers to be used, their positions according to an external insertion grid, and the lengths of their diffuser parts. Evaluation of the method was carried out on data collected from 17 patients enrolled in two multi-centric clinical trials. The protocol consisted of comparing the method-simulated necrosis to the result observed on day 7 MR enhanced images. The method performances showed that the final result can be estimated with an accuracy of 10%, corresponding to a margin of 3 mm. In addition, this process was compatible with clinical conditions in terms of calculation times. The overall process took less than 10 min. Different aspects of the VTP procedure were already defined and optimized. Personalized treatment planning definition remained as an issue needing further investigation. The method proposed herein completes the standardization of VTP and opens new pathways for the clinical development of the technique.
Collapse
Affiliation(s)
- N Betrouni
- INSERM, U1189, 1 Avenue Oscar Lambret, Cedex 08, 59037, Lille, France.
| | - S Boukris
- Medical Department, Steba biotech, 32 Boulevard Flandrin, Paris, France
| | - F Benzaghou
- Medical Department, Steba biotech, 32 Boulevard Flandrin, Paris, France
| |
Collapse
|
14
|
Pitzschke A, Bertholet J, Lovisa B, Zellweger M, Wagnières G. Determination of the radiance of cylindrical light diffusers: design of a one-axis charge-coupled device camera-based goniometer setup. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:35004. [PMID: 28280841 DOI: 10.1117/1.jbo.22.3.035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
A one-axis charge-coupled device camera-based goniometer setup was developed to measure the three-dimensional radiance profile (longitudinal, azimuthal, and polar) of cylindrical light diffusers in air and water. An algorithm was programmed to project the two-dimensional camera data onto the diffuser coordinates. The optical system was designed to achieve a spatial resolution on the diffuser surface in the submillimeter range. The detection threshold of the detector was well below the values of measured radiance. The radiance profiles of an exemplary cylindrical diffuser measured in air showed local deviations in radiance below 10% for wavelengths at 635 and 671 nm. At 808 nm, deviations in radiance became larger, up to 45%, most probable due to the manufacturing process of the diffuser. Radiance profiles measured in water were less Lambertian than in air due to the refractive index matching privileging the radial decoupling of photons from the optical fiber.
Collapse
Affiliation(s)
- Andreas Pitzschke
- Swiss Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Jenny Bertholet
- Swiss Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Blaise Lovisa
- Swiss Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Matthieu Zellweger
- Swiss Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Georges Wagnières
- Swiss Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| |
Collapse
|
15
|
Oakley E, Bellnier DA, Hutson A, Wrazen B, Arshad H, Quon H, Shafirstein G. Surface markers for guiding cylindrical diffuser fiber insertion in interstitial photodynamic therapy of head and neck cancer. Lasers Surg Med 2017; 49:599-608. [PMID: 28185275 DOI: 10.1002/lsm.22644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Image-based treatment planning can be used to compute the delivered light dose during interstitial photodynamic therapy (I-PDT) of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). The objectives of this work were to evaluate the use of surface fiducial markers and flexible adhesive grids in guiding interstitial placement of laser fibers, and to quantify the impact of discrepancies in fiber location on the expected light dose volume histograms (DVHs). METHODS Seven gel-based phantoms were made to mimic geometries of LA-HNSCC. Clinical flexible grids and fiducial markers were used to guide the insertion of optically transparent catheters, which are used to place cylindrical diffuser fibers within the phantoms. A computed tomography (CT) was used to image the markers and phantoms before and after catheter insertion and to determine the difference between the planned and actual location of the catheters. A finite element method was utilized to compute the light DVHs. Statistical analysis was employed to evaluate the accuracy of fiber placement and to investigate the correlation between the location of the fibers and the calculated DVHs. RESULTS There was a statistically significant difference (P = 0.018) between all seven phantoms in terms of the mean displacement. There was also statistically significant correlation between DVHs and depth of insertion (P = 0.0027), but not with the lateral displacement (P = 0.3043). The maximum difference between actual and planned DVH was related to the number of fibers (P = 0.0025) and the treatment time. CONCLUSIONS Surface markers and a flexible grid can be used to assist in the administration of a prescribed DVH within 15% of the target dose provided that the treatment fibers are placed within 1.3 cm of the planned depth of insertion in anatomies mimicking LA-HNSCC. The results suggest that the number of cylindrical diffuser fibers and treatment time can impact the delivered DVHs. Lasers Surg. Med. 49:599-608, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily Oakley
- Photodynamic Therapy Center, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| | - David A Bellnier
- Photodynamic Therapy Center, Roswell Park Cancer Institute (RPCI), Buffalo, New York.,Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| | - Brian Wrazen
- Photodynamic Therapy Center, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| | - Hassan Arshad
- Photodynamic Therapy Center, Roswell Park Cancer Institute (RPCI), Buffalo, New York.,Department of Head and Neck Surgery, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Otorhinolaryngology-Head and Neck Surgery, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Gal Shafirstein
- Photodynamic Therapy Center, Roswell Park Cancer Institute (RPCI), Buffalo, New York.,Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York.,Department of Head and Neck Surgery, Roswell Park Cancer Institute (RPCI), Buffalo, New York
| |
Collapse
|
16
|
Baran TM. Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:77001. [PMID: 27447954 PMCID: PMC4956772 DOI: 10.1117/1.jbo.21.7.077001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/07/2016] [Indexed: 05/26/2023]
Abstract
We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.
Collapse
Affiliation(s)
- Timothy M. Baran
- University of Rochester Medical Center, Department of Imaging Sciences, 601 Elmwood Avenue, Box 648, Rochester, New York 14642, United States
| |
Collapse
|
17
|
Swartling J, Höglund OV, Hansson K, Södersten F, Axelsson J, Lagerstedt AS. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:28002. [PMID: 26886806 DOI: 10.1117/1.jbo.21.2.028002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.
Collapse
Affiliation(s)
| | - Odd V Höglund
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| | - Kerstin Hansson
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| | - Fredrik Södersten
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Box 7028, Uppsala 750 07, Sweden
| | - Johan Axelsson
- Lund University, Division of Atomic Physics, Physics Department, Box 118, Lund 221 00, Sweden
| | - Anne-Sofie Lagerstedt
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| |
Collapse
|
18
|
Baran TM, Foster TH. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys 2014; 41:022701. [PMID: 24506647 DOI: 10.1118/1.4862078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. METHODS Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. RESULTS When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. CONCLUSIONS For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642
| | - Thomas H Foster
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642
| |
Collapse
|
19
|
Liang X, Wang KKH, Zhu TC. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fibers for prostate PDT. Phys Med Biol 2013; 58:3461-80. [PMID: 23629149 DOI: 10.1088/0031-9155/58/10/3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1 cm(-2)) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT.
Collapse
Affiliation(s)
- Xing Liang
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, PA 19104, USA
| | | | | |
Collapse
|
20
|
Baran TM, Foster TH. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:085003. [PMID: 21895311 PMCID: PMC3166340 DOI: 10.1117/1.3613920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 05/22/2023]
Abstract
We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μ(s)'∕μ(a) = 8 in the tissue and 70 to 88% is collected in this region for μ(s)'∕μ(a) = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy.
Collapse
Affiliation(s)
- Timothy M Baran
- University of Rochester, The Institute of Optics, Rochester, New York 14627, USA
| | | |
Collapse
|
21
|
Betrouni N, Lopes R, Puech P, Colin P, Mordon S. A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD Soluble WST11. Phys Med Biol 2011; 56:4771-83. [PMID: 21753234 DOI: 10.1088/0031-9155/56/15/009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial photodynamic therapy is becoming an interesting modality to treat some early stage prostate cancers. A light-sensitive drug is injected to the patient and activated by light using optical fibres inserted inside the prostate. In this work, we were interested in the characterization of the light action model for the WST11 (Tookad® Soluble) drug. A retrospective analysis was performed on results from 28 patients enrolled in phase I and II trials with the WST11 drug. A drug dose of 4 mg/kg patient, dose light of 200 J cm(-1) and wavelength of 753 nm were used. Correlation between the illuminated volume and the obtained necrosis, measured at day 7 MR images, was clearly established. This result suggests that photodynamic therapy planning is possible based on this model.
Collapse
Affiliation(s)
- Nacim Betrouni
- Inserm U703, 152 rue du Docteur Yersin, 59120 Loos, France. Université Lille Nord de France, F-59000 Lille, France. CHU Lille, F-59000 Lille, France.
| | | | | | | | | |
Collapse
|
22
|
Moore CM, Mosse CA, Allen C, Payne H, Emberton M, Bown SG. Light penetration in the human prostate: a whole prostate clinical study at 763 nm. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:015003. [PMID: 21280905 DOI: 10.1117/1.3528638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photodynamic therapy (PDT) is being investigated as a treatment for localized prostate cancer. Photodynamic therapy uses a photosensitizing drug which is activated by a specific wavelength of light, in the presence of oxygen. The activated drug reacts with tissue oxygen to produce reactive oxygen species which are responsible for localized tissue necrosis. One of the determinants of the PDT effect is the penetration of light in the prostate. This study assesses the penetration depth of 763 nm light throughout the prostate. Eight men undergoing multiple hollow needle insertion for high dose rate brachytherapy were recruited. 763 nm light, produced by a diode laser, was delivered to the prostate using cylindrically diffusing optical fibers within the plastic needles. Light was detected at different distances from the source, using an isotropic detector within nearby needles. Penetration depth was calculated using the Boltzmann approximation to the diffusion equation. Delivery detector fiber separation was measured on computed tomography. The mean penetration depth was 0.57 cm, but there was within patient variation of a mean factor of 4.3. Further work is ongoing to assess the effect of such variability in light penetration, on the PDT effect.
Collapse
Affiliation(s)
- Caroline M Moore
- National Medical Laser Centre, University College London, Department of Urology, University College London Hospitals Trust, London, NW1 2PG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Garnica-Garza HM. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization. Phys Med Biol 2010; 56:341-55. [DOI: 10.1088/0031-9155/56/2/004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Swartling J, Axelsson J, Ahlgren G, Kälkner KM, Nilsson S, Svanberg S, Svanberg K, Andersson-Engels S. System for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:058003. [PMID: 21054129 DOI: 10.1117/1.3495720] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The first results from a clinical study for Temoporfin-mediated photodynamic therapy (PDT) of low-grade (T1c) primary prostate cancer using online dosimetry are presented. Dosimetric feedback in real time was applied, for the first time to our knowledge, in interstitial photodynamic therapy. The dosimetry software IDOSE provided dose plans, including optical fiber positions and light doses based on 3-D tissue models generated from ultrasound images. Tissue optical property measurements were obtained using the same fibers used for light delivery. Measurements were taken before, during, and after the treatment session. On the basis of these real-time measured optical properties, the light-dose plan was recalculated. The aim of the treatment was to ablate the entire prostate while minimizing exposure to surrounding organs. The results indicate that online dosimetry based on real-time tissue optical property measurements enabled the light dose to be adapted and optimized. However, histopathological analysis of tissue biopsies taken six months post-PDT treatment showed there were still residual viable cancer cells present in the prostate tissue sections. The authors propose that the incomplete treatment of the prostate tissue could be due to a too low light threshold dose, which was set to 5 J∕cm2.
Collapse
|
25
|
Svanberg K, Bendsoe N, Axelsson J, Andersson-Engels S, Svanberg S. Photodynamic therapy: superficial and interstitial illumination. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041502. [PMID: 20799780 DOI: 10.1117/1.3466579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photodynamic therapy (PDT) is reviewed using the treatment of skin tumors as an example of superficial lesions and prostate cancer as an example of deep-lying lesions requiring interstitial intervention. These two applications are among the most commonly studied in oncological PDT, and illustrate well the different challenges facing the two modalities of PDT-superficial and interstitial. They thus serve as good examples to illustrate the entire field of PDT in oncology. PDT is discussed based on the Lund University group's over 20 yr of experience in the field. In particular, the interplay between optical diagnostics and dosimetry and the delivery of the therapeutic light dose are highlighted. An interactive multiple-fiber interstitial procedure to deliver the required therapeutic dose based on the assessment of light fluence rate and sensitizer concentration and oxygen level throughout the tumor is presented.
Collapse
|
26
|
Zhu TC, Altschuler MD, Hu Y, Wang K, Finlay JC, Dimofte A, Cengel K, Hahn SM. A heterogeneous optimization algorithm for reacted singlet oxygen for interstitial PDT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2010; 7551:75510E. [PMID: 25995533 PMCID: PMC4435729 DOI: 10.1117/12.842968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Singlet oxygen (1O2) is the major cytotoxic agent for type II photodynamic therapy (PDT). The production of 1O2 involves the complex reactions among light, oxygen molecule, and photosensitizer. From universal macroscopic kinetic equations which describe the photochemical processes of PDT, the reacted 1O2 concentration, [1O2]rx, with cell target can be expressed in a form related to time integration of the product of 1O2 quantum yield and the PDT dose rate. The object of this study is to develop optimization procedures that account for the optical heterogeneity of the patient prostate, the tissue photosensitizer concentrations, and tissue oxygenation, thereby enable delivery of uniform reacted singlet oxygen to the gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel. Several methods are used to optimize the positions and intensities of CDFs. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to optimize the weights of the light sources at each step of the iterative selection. Maximum and minimum dose limits chosen for sample points in the prostate constrain the solution for the intensities of the linear light sources. The study shows that optimization of individual light source positions and intensities is feasible for the heterogeneous prostate during PDT. To study how different photosensitizer distributions as well as tissue oxygenation in the prostate affect optimization, comparisons of light fluence rate were made with measured distribution of photosensitizer in prostate under different tissue oxygenation conditions.
Collapse
Affiliation(s)
- Timothy C. Zhu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin D. Altschuler
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yida Hu
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ken Wang
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jarod C. Finlay
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andreea Dimofte
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Keith Cengel
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen M. Hahn
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
27
|
Davidson SRH, Weersink RA, Haider MA, Gertner MR, Bogaards A, Giewercer D, Scherz A, Sherar MD, Elhilali M, Chin JL, Trachtenberg J, Wilson BC. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Phys Med Biol 2009; 54:2293-313. [PMID: 19305043 DOI: 10.1088/0031-9155/54/8/003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately +/-2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D(90), was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D(90) less than 23 J cm(-2) had complete biopsy response, while 8/13 (62%) of patients with a D(90) greater than 23 J cm(-2) had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.
Collapse
Affiliation(s)
- Sean R H Davidson
- Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Altschuler MD, Zhu TC, Hu Y, Finlay JC, Dimofte A, Wang K, Li J, Cengel K, Malkowicz SB, Hahn SM. A heterogeneous algorithm for PDT dose optimization for prostate. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7164:71640B. [PMID: 25914793 DOI: 10.1117/12.809897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The object of this study is to develop optimization procedures that account for both the optical heterogeneity as well as photosensitizer (PS) drug distribution of the patient prostate and thereby enable delivery of uniform photodynamic dose to that gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel (table). PS distribution is then multiplied with the light fluence kernel to form the PDT dose kernel. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to choose the weights of the light sources to optimize PDT dose. Maximum and minimum PDT dose limits chosen for sample points in the prostate constrain the solution for the source strengths of the cylindrical diffuser fibers (CDF). We tested the Cimmino optimization procedures using the light fluence kernel generated for heterogeneous optical properties, and compared the optimized treatment plans with those obtained using homogeneous optical properties. To study how different photosensitizer distributions in the prostate affect optimization, comparisons of light fluence rate and PDT dose distributions were made with three distributions of photosensitizer: uniform, linear spatial distribution, and the measured PS distribution. The study shows that optimization of individual light source positions and intensities are feasible for the heterogeneous prostate during PDT.
Collapse
Affiliation(s)
- Martin D Altschuler
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Yida Hu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ken Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jun Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Keith Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - S B Malkowicz
- Department of Urology, University of Pennsylvania, Philadelphia, PA
| | - Stephen M Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Axelsson J, Swartling J, Andersson-Engels S. In vivo photosensitizer tomography inside the human prostate. OPTICS LETTERS 2009; 34:232-4. [PMID: 19183615 DOI: 10.1364/ol.34.000232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interstitial photodynamic therapy (IPDT) provides a promising means to treat large cancerous tumors and solid organs inside the human body. The treatment outcome is dependent on the distributions of light, photosensitizer, and tissue oxygenation. We present a scheme for reconstructing the spatial distribution of a fluorescent photosensitizer. The reconstruction is based on measurements performed in the human prostate, acquired during an ongoing IPDT clinical trial, as well as in optical phantoms. We show that in an experimental setup we can quantitatively reconstruct a fluorescent inclusion in a fluorescent background. We also show reconstructions from a patient showing a heterogeneous distribution of the photosensitizer mTHPC in the human prostate.
Collapse
|
30
|
Lo WCY, Redmond K, Luu J, Chow P, Rose J, Lilge L. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy [corrected] treatment planning. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014019. [PMID: 19256707 DOI: 10.1117/1.3080134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Monte Carlo (MC) simulations are being used extensively in the field of medical biophysics, particularly for modeling light propagation in tissues. The high computation time for MC limits its use to solving only the forward solutions for a given source geometry, emission profile, and optical interaction coefficients of the tissue. However, applications such as photodynamic therapy treatment planning or image reconstruction in diffuse optical tomography require solving the inverse problem given a desired dose distribution or absorber distribution, respectively. A faster means for performing MC simulations would enable the use of MC-based models for accomplishing such tasks. To explore this possibility, a digital hardware implementation of a MC simulation based on the Monte Carlo for Multi-Layered media (MCML) software was implemented on a development platform with multiple field-programmable gate arrays (FPGAs). The hardware performed the MC simulation on average 80 times faster and was 45 times more energy efficient than the MCML software executed on a 3-GHz Intel Xeon processor. The resulting isofluence lines closely matched those produced by MCML in software, diverging by only less than 0.1 mm for fluence levels as low as 0.00001 cm(-2) in a skin model.
Collapse
Affiliation(s)
- William Chun Yip Lo
- University of Toronto, Department of Medical Biophysics, Rm. 8-324,610 University Avenue, Toronto, Ontario M5G 2M9 Canada
| | | | | | | | | | | |
Collapse
|
31
|
Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer—a review of current status and future promise. ACTA ACUST UNITED AC 2009; 6:18-30. [DOI: 10.1038/ncpuro1274] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/17/2008] [Indexed: 11/09/2022]
|
32
|
Abstract
Photodynamic therapy (PDT) is an emerging treatment modality that employs the photochemical interaction of three components: light, photosensitizer, and oxygen. Tremendous progress has been made in the last 2 decades in new technical development of all components as well as understanding of the biophysical mechanism of PDT. The authors will review the current state of art in PDT research, with an emphasis in PDT physics. They foresee a merge of current separate areas of research in light production and delivery, PDT dosimetry, multimodality imaging, new photosensitizer development, and PDT biology into interdisciplinary combination of two to three areas. Ultimately, they strongly believe that all these categories of research will be linked to develop an integrated model for real-time dosimetry and treatment planning based on biological response.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
33
|
Li J, Altschuler MD, Hahn SM, Zhu TC. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate. Phys Med Biol 2008; 53:4107-21. [PMID: 18612172 DOI: 10.1088/0031-9155/53/15/007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
34
|
Rendon A, Beck JC, Lilge L. Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate. Phys Med Biol 2008; 53:1131-49. [PMID: 18263963 DOI: 10.1088/0031-9155/53/4/021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial photodynamic therapy (PDT) has seen a rebirth, partially prompted by the development of photosensitizers with longer absorption wavelengths that enable the treatment of larger tissue volumes. Here, we study whether using diffusers with customizable longitudinal emission profiles, rather than conventional ones with flat emission profiles, improves our ability to conform the light dose to the prostate. We present a modified Cimmino linear feasibility algorithm to solve the treatment planning problem, which improves upon previous algorithms by (1) correctly minimizing the cost function that penalizes deviations from the prescribed light dose, and (2) regularizing the inverse problem. Based on this algorithm, treatment plans were obtained under a variety of light delivery scenarios using 5-15 standard or tailored diffusers. The sensitivity of the resulting light dose distributions to uncertainties in the optical properties, and the placement of diffusers was also studied. We find that tailored diffusers only marginally outperform conventional ones in terms of prostate coverage and rectal sparing. Furthermore, it is shown that small perturbations in optical properties can lead to large changes in the light dose distribution, but that those changes can be largely corrected with a simple light dose re-normalization. Finally, we find that prostate coverage is only minimally affected by small changes in diffuser placement. Our results suggest that prostate PDT is not likely to benefit from the use of tailored diffusers. Other locations with more complex geometries might see a better improvement.
Collapse
Affiliation(s)
- Augusto Rendon
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
35
|
Li J, Zhu TC, Zhou X, Andreea D, Finlay JC. Integrated light dosimetry system for prostate photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2008; 6845:68450Q. [PMID: 26113761 PMCID: PMC4477956 DOI: 10.1117/12.763806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A light dosimetry system is developed for prostate PDT, which integrates four main components: a light fluence rate calculation engine, an optimization tool for treatment planning, a light delivery system, and an in vivo light fluence rate measurement system. Three-dimensional light fluence rate distribution in a prostate is calculated using a kernel algorithm, which takes into account of heterogeneous optical properties. A Cimmino optimization algorithm is used to optimize the parameters of the cylindrical diffusing fibers (CDFs) to generate uniform PDT dose (or light fluence rate under uniform drug distribution) to cover the heterogeneous prostate. The light delivery system is composed of a 12-channel beamsplitter and the intensities of each channel (i.e., source) are controlled individually by programmable motorized attenuators. Our tests show that the light fluence rate calculation is fast and the accuracy is close to that of a finite-element method model, and the approach that uses the treatment CDFs to determine optical properties, improves the accuracy of light fluence rate prediction. The light delivery system allows real time control of the light source intensities for both PDT dosimetry and PDT light delivery. Integrating the fast light fluence rate calculation, optimization, instant source intensity adjustment, and in vivo light fluence rate measurement, the dosimetry system is suitable for prostate PDT.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaodong Zhou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| | - Dimofte Andreea
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Chin LCL, Worthington AE, Whelan WM, Vitkin IA. Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:064027. [PMID: 18163843 DOI: 10.1117/1.2821406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Interstitial quantification of the optical properties of tissue is important in biomedicine for both treatment planning of minimally invasive laser therapies and optical spectroscopic characterization of tissues, for example, prostate cancer. In a previous study, we analyzed a method first demonstrated by Dickey et al., [Phys. Med. Biol. 46, 2359 (2001)] to utilize relative interstitial steady-state radiance measurements for recovering the optical properties of turbid media. The uniqueness of point radiance measurements were demonstrated in a forward sense, and strategies were suggested for improving performance under noisy experimental conditions. In this work, we test our previous conclusions by fitting the P3 approximation for radiance to Monte Carlo predictions and experimental data in tissue-simulating phantoms. Fits are performed at: 1. a single sensor position (0.5 or 1 cm), 2. two sensor positions (0.5 and 1 cm), and 3. a single sensor position (0.5 or 1 cm) with input knowledge of the sample's effective attenuation coefficient. The results demonstrate that single sensor radiance measurements can be used to retrieve optical properties to within approximately 20%, provided the transport albedo is greater than approximately 0.9. Furthermore, compared to the single sensor fits, employing radiance data at two sensor positions did not significantly improve the accuracy of recovered optical properties. However, with knowledge of the effective attenuation coefficient of the medium, optical properties can be retrieved experimentally to within approximately 10% for an albedo greater or equal to 0.5.
Collapse
Affiliation(s)
- Lee C L Chin
- University of Toronto and Ontario Cancer Institute, Department of Medical Biophysics, 610 University Avenue 13-206, Toronto M5G 2M9, Canada.
| | | | | | | |
Collapse
|
37
|
Johansson A, Axelsson J, Andersson-Engels S, Swartling J. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Med Phys 2007; 34:4309-21. [DOI: 10.1118/1.2790585] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Finlay JC, Zhu TC, Zhou X, Dimofte A, Malkowicz SB, Hahn SM. A method to improve reconstruction of the distribution of hemoglobin, oxygenation, and MLu concentration in the human prostate before and after photodynamic therapy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2007; 6427:64270K. [PMID: 26136614 PMCID: PMC4484876 DOI: 10.1117/12.699545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Explicit dosimetry of photodynamic therapy requires detailed knowledge of the light, drug, and oxygenation distributions within the target tissue. We present a method for the optical detection and three-dimensional reconstruction of hemoglobin concentration and oxygenation and sensitizer concentration within the human prostate. Spectrally resolved diffuse transmission measurements were made using a small isotropic fiber-based white light source and an isotropic detector inserted into the prostate via parallel closed transparent catheters. The spectra were modeled using the diffusion approximation appropriate for infinite media. The optical absorption of the prostate was assumed to be a linear combination of the absorption spectra of oxy- and deoxyhemoglobin and MLu, and the scattering was assumed to be of the form A(λ/λ0)-b. The separation of absorption and scattering coefficients was accomplished based on the spectral shape of the diffuse transmission, rather than the spatial variation in intensity. By making multiple measurements at various source-detector separations, we investigate the signal-to-noise sensitivity of our algorithm. In addition, the redundancy in our source-detector position matrix creates several positions in which the tissue parameters can be reconstructed from multiple independent measurements, allowing an assessment of the repeatability of the algorithm. We find significant heterogeneity in the reconstructed optical properties; however the recovery of spectrally consistent absorption and scattering spectra is improved compared to wavelength-wise reconstruction algorithms.
Collapse
Affiliation(s)
- Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| | - Xiaodong Zhou
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| | - S B Malkowicz
- Department of Urology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| | - Stephen M Hahn
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA USA 19104
| |
Collapse
|
39
|
Svensson T, Andersson-Engels S, Einarsdóttír M, Svanberg K. In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:014022. [PMID: 17343497 DOI: 10.1117/1.2435175] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of photodynamic therapy into a modality for treatment of prostate cancer calls for reliable optical dosimetry. We employ, for the first time, interstitial time-resolved spectroscopy to determine in vivo optical properties of human prostate tissue. Nine patients are included in the study, and measurements are conducted prior to primary brachytherapy treatment of prostate cancer. Intrasubject variability is examined by measuring across three tissue volumes within each prostate. The time-resolved instrumentation proves its usefulness by producing good signal levels in all measurements. We are able to present consistent values on reduced scattering coefficients (mu(s)'), absorption coefficients (mu(a)), and effective attenuation (mu(eff)) at the wavelengths 660, 786, and 916 nm. At 660 nm, mu(s)' is found to be 9+/-2 cm(-1), and mu(a) is 0.5+/-0.1 cm(-1). Derived values of mu(eff) are in the range of 3 to 4 cm(-1) at 660 nm, a result in good agreement with previously published steady state data. Total hemoglobin concentration (THC) and oxygen saturation are spectroscopically determined using derived absorption coefficients. Derived THC values are fairly variable (215+/-65 microM), while derived values of oxygen saturation are gathered around 75% (76+/-4%). Intrasubject variations in derived parameters correlate (qualitatively) with the heterogeneity exhibited in acquired ultrasound images.
Collapse
Affiliation(s)
- Tomas Svensson
- Lund University, Department of Physics, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
40
|
Zhu TC, Finlay JC. Prostate PDT dosimetry. Photodiagnosis Photodyn Ther 2006; 3:234-46. [PMID: 25046988 PMCID: PMC4469490 DOI: 10.1016/j.pdpdt.2006.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/17/2006] [Accepted: 08/22/2006] [Indexed: 11/15/2022]
Abstract
We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers.
Collapse
Affiliation(s)
- Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street/2 Doner Bldg., Philadelphia, PA 19104, USA
| | - Jarod C. Finlay
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street/2 Doner Bldg., Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Rendon A, Weersink R, Lilge L. Towards conformal light delivery using tailored cylindrical diffusers: attainable light dose distributions. Phys Med Biol 2006; 51:5967-75. [PMID: 17110763 DOI: 10.1088/0031-9155/51/23/001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interstitial light delivery for therapeutic applications requires the use of fibre-based light diffusers. Such diffusers are presently manufactured to emit with a flat longitudinal power profile. Recently, diffusers with tailored longitudinal emission profiles have become available opening an avenue to improve conformal light delivery. This paper explores the ability of tailored diffusers to improve light dose confinement to the target volume. A formalism to calculate the light dose from an arbitrary source distribution is presented based on the convolution with an appropriate point source function. By choosing a source distribution corresponding to a cylindrical diffuser emitting with a sinusoidal profile, the set of attainable light dose distributions is characterized via a relationship between the diffuser's spatial frequency, the radial distance and the amplitude of the isodose contour.
Collapse
Affiliation(s)
- Augusto Rendon
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | | | | |
Collapse
|