1
|
Stolz J, Rogal K, Bicher S, Winter J, Ahmed M, Raulefs S, Combs SE, Bartzsch SH, Schmid TE. The Combination of Temporal and Spatial Dose Fractionation in Microbeam Radiation Therapy. Biomedicines 2025; 13:678. [PMID: 40149654 PMCID: PMC11940479 DOI: 10.3390/biomedicines13030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. Methods: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). Results: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. Conclusions: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT.
Collapse
Affiliation(s)
- Jessica Stolz
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Kristina Rogal
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Sandra Bicher
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Johanna Winter
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Mabroor Ahmed
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Susanne Raulefs
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Stefan H. Bartzsch
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| | - Thomas E. Schmid
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University Munich, 81675 Munich, Germany; (J.S.); (S.R.)
- Helmholtz Zentrum München, Institute of Radiation Medicine (IRM), Neuherberg, 85764 Munich, Germany
| |
Collapse
|
2
|
Tsubouchi T, Umemura M, Minami K, Hamatani N, Saruwatari N, Yagi M, Furutani KM, Takashina M, Shimizu S, Kanai T. Quantitative assessment of delivered dose in carbon ion spatially fractionated radiotherapy (C-SFRT) and biological response to C-SFRT. Biomed Phys Eng Express 2025; 11:027002. [PMID: 39819762 DOI: 10.1088/2057-1976/ada964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Objective. Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation.Approach. Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model. The sensitive volume of the detector used in measurements was also considered. If the measurements and simulations show good agreement, the dose distribution and absolute dose delivered by SFB can be accurately estimated. Three types of dose distributions were delivered to human salivary gland cells (HSGc-C5): uniform dose distribution (UDD), and one-dimensional (1D) grid-like dose distributions (GDD) with 6 mm and 8 mm spacing. These provided high (Peak-to-Valley Dose Ratio, PVDR = 4.0) and low (PVDR = 1.64) dose differences between peak and valley doses, respectively. Linear-Quadratic (LQ) model parameters for HSGc-C5 were derived from the UDD and cell survival fractions (SF) were simulated for 1D GDD using these values.Main results. Good agreement was observed between measurements and simulations when accounting for detector volume. However, the TPS results overestimated dose in steep gradient region, likely due to the 2.0 mm calculation resolution. LQ parameters for HSGc-C5 wereα= 0.34 andβ= 0.057. The 1D GDD with 6 mm spacing showed good agreement between simulations and experiments, but the 8.0 mm spacing resulted in lower experimental cell survival.Significance. We successfully simulated the GDD and conducted SF simulations. The results suggest potential cell-killing effects due to high-dose differences in SFB.
Collapse
Affiliation(s)
- Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Misato Umemura
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazumasa Minami
- Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Naoto Saruwatari
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Medical Technology, University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keith M Furutani
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, United States of America
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuaki Kanai
- Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Kraus KM, Winter J, Zhang Y, Ahmed M, Combs SE, Wilkens JJ, Bartzsch S. Treatment Planning Study for Microbeam Radiotherapy Using Clinical Patient Data. Cancers (Basel) 2022; 14:685. [PMID: 35158953 PMCID: PMC8833598 DOI: 10.3390/cancers14030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Microbeam radiotherapy (MRT) is a novel, still preclinical dose delivery technique. MRT has shown reduced normal tissue effects at equal tumor control rates compared to conventional radiotherapy. Treatment planning studies are required to permit clinical application. The aim of this study was to establish a dose comparison between MRT and conventional radiotherapy and to identify suitable clinical scenarios for future applications of MRT. We simulated MRT treatment scenarios for clinical patient data using an inhouse developed planning algorithm based on a hybrid Monte Carlo dose calculation and implemented the concept of equivalent uniform dose (EUD) for MRT dose evaluation. The investigated clinical scenarios comprised fractionated radiotherapy of a glioblastoma resection cavity, a lung stereotactic body radiotherapy (SBRT), palliative bone metastasis irradiation, brain metastasis radiosurgery and hypofractionated breast cancer radiotherapy. Clinically acceptable treatment plans were achieved for most analyzed parameters. Lung SBRT seemed the most challenging treatment scenario. Major limitations comprised treatment plan optimization and dose calculation considering the tissue microstructure. This study presents an important step of the development towards clinical MRT. For clinical treatment scenarios using a sophisticated dose comparison concept based on EUD and EQD2, we demonstrated the capability of MRT to achieve clinically acceptable dose distributions.
Collapse
Affiliation(s)
- Kim Melanie Kraus
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Johanna Winter
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Yating Zhang
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mabroor Ahmed
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Stephanie Elisabeth Combs
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), 80336 Munich, Germany
| | - Jan Jakob Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Laissue JA, Barré S, Bartzsch S, Blattmann H, Bouchet AM, Djonov VG, Haberthür D, Hlushchuk R, Kaser-Hotz B, Laissue PP, LeDuc G, Reding SO, Serduc R. Tolerance of Normal Rabbit Facial Bones and Teeth to Synchrotron X-Ray Microbeam Irradiation. Radiat Res 2021; 197:233-241. [PMID: 34755190 DOI: 10.1667/rade-21-00032.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Microbeam radiation therapy, an alternative radiosurgical treatment under preclinical investigation, aims to safely treat muzzle tumors in pet animals. This will require data on the largely unknown radiation toxicity of microbeam arrays for bones and teeth. To this end, the muzzle of six young adult New Zealand rabbits was irradiated by a lateral array of microplanar beamlets with peak entrance doses of 200, 330 or 500 Gy. The muzzles were examined 431 days postirradiation by computed microtomographic imaging (micro-CT) ex vivo, and extensive histopathology. The boundaries of the radiation field were identified histologically by microbeam tracks in cartilage and other tissues. There was no radionecrosis of facial bones in any rabbit. Conversely, normal incisor teeth exposed to peak entrance doses of 330 Gy or 500 Gy developed marked caries-like damage, whereas the incisors of the two rabbits exposed to 200 Gy remained unscathed. A single, unidirectional array of microbeams with a peak entrance dose ≤200 Gy (valley dose14 Gy) did not damage normal bone, teeth and soft tissues of the muzzle of normal rabbits longer than one year after irradiation. Because of that, Microbeam radiation therapy of muzzle tumors in pet animals is unlikely to cause sizeable damage to normal teeth, bone and soft tissues, if a single array as used here delivers a limited entrance dose of 200 Gy and a valley dose of ≤14 Gy.
Collapse
Affiliation(s)
- Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Sébastien Barré
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Stefan Bartzsch
- Department of Radiation Oncology, Klinikum rechts der Isar - TU Munich, Germany
| | - Hans Blattmann
- Niederwiesstrasse 13C, CH-5417 Untersiggenthal, Switzerland
| | - Audrey M Bouchet
- INSERM UA8, "Radiations : Défense, Santé, Environnement," 69008 Lyon, France
| | | | - David Haberthür
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Smyth LML, Crosbie JC, Sloggett C, Rogers PAW, Donoghue JF. Spatially Fractionated X-Ray Microbeams Elicit a More Sustained Immune and Inflammatory Response in the Brainstem than Homogenous Irradiation. Radiat Res 2021; 196:355-365. [PMID: 34270776 DOI: 10.1667/rade-20-00082.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2021] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation therapy (MRT) is a preclinical irradiation technique which could be used to treat intracranial malignancies. The goal of this work was to discern differences in gene expression and the predicted regulation of molecular pathways in the brainstem after MRT versus synchrotron broad-beam radiation therapy (SBBR). Healthy C57BL/6 mice received whole-head irradiation with median acute toxic doses of MRT (241 Gy peak dose) or SBBR (13 Gy). Brains were harvested 4 and 48 h postirradiation and RNA was extracted from the brainstem. RNA-sequencing was performed to identify differentially expressed genes (false discovery rate < 0.01) relative to nonirradiated controls and significantly regulated molecular pathways and biological functions were identified (Benjamini-Hochberg corrected P < 0.05). Differentially expressed genes and regulated pathways largely reflected a pro-inflammatory response 4 h after both MRT and SBBR which was sustained at 48 h postirradiation for MRT. Pathways relating to radiation-induced viral mimicry, including HMGB1, NF-κB and interferon signaling cascades, were predicted to be uniquely activated by MRT. Local microglia, as well as circulating leukocytes, including T cells, were predicted to be activated by MRT. Our findings affirm that the transcriptomic signature of MRT is distinct from broad-beam radiotherapy, with a sustained inflammatory and immune response up to 48 h postirradiation.
Collapse
Affiliation(s)
- Lloyd M L Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | | | - Clare Sloggett
- Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - Peter A W Rogers
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| |
Collapse
|
6
|
Laissue JA. Elke Bräuer-Krisch: dedication, creativity and generosity: May 17, 1961-September 10, 2018. Int J Radiat Biol 2021; 98:280-287. [PMID: 34129423 DOI: 10.1080/09553002.2021.1941385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This extraordinary woman worked her professional way from a radiation protection engineer to become the successful principal investigator of a prestigious international European project for a new radiation therapy (ERC Synergy grant, HORIZON 2020). The evaluation of the submitted proposal was very positive. The panel proposed that it be funded. Elke tragically passed away a few days before this conclusion of the panel. The present account describes her gradual career development; it includes many episodes that Elke personally chronicled in her curriculum of 2017. METHODS An internet literature search was performed using Google Scholar and other sources to assist in the writing of this narrative review and account. CONCLUSIONS In parallel to the development of the new Biomedical Beamline ID17 at the European Synchrotron Radiation Facility in Grenoble in the late nineties, Elke focused her interest and her personal and professional priorities on MRT, particularly on its clinical goals. She outlined her main objectives in several documents: (1) develop a new paradigm of cancer care by broadening the foundation for MRT. (2) Filling the gaps in basic biological knowledge about the mechanisms of MRT effects on normal and neoplastic tissues. (3) Broaden the preclinical level of evidence for the low normal organ toxicity of MRT versus standard X-ray irradiations; preclinical experiments involved the application of MRT to animal tumor patients, to animals of larger size than laboratory rodents, using larger radiation field sizes, and irradiating in a real-time scenario comparable to the one planned for human patients. (4) To foster the specific purpose of radiosurgical MRT of tumor patients at the ESRF that required development of new, specific state of the art modalities and tools for treatment planning, dosimetry, dose calculation, patient positioning and, of particular importance, redundant levels of patient safety. Just as she was about to take responsibility as principal investigator for a prestigious international European project on a new radiation therapy, death called Elke in.
Collapse
Affiliation(s)
- Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Schültke E, Fiedler S, Menk RH, Jaekel F, Dreossi D, Casarin K, Tromba G, Bartzsch S, Kriesen S, Hildebrandt G, Arfelli F. Perspectives for microbeam irradiation at the SYRMEP beamline. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:410-418. [PMID: 33650552 PMCID: PMC7941286 DOI: 10.1107/s1600577521000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 05/10/2023]
Abstract
It has been shown previously both in vitro and in vivo that microbeam irradiation (MBI) can control malignant tumour cells more effectively than the clinically established concepts of broad beam irradiation. With the aim to extend the international capacity for microbeam research, the first MBI experiment at the biomedical beamline SYRMEP of the Italian synchrotron facility ELETTRA has been conducted. Using a multislit collimator produced by the company TECOMET, arrays of quasi-parallel microbeams were successfully generated with a beam width of 50 µm and a centre-to-centre distance of 400 µm. Murine melanoma cell cultures were irradiated with a target dose of approximately 65 Gy at a mean photon energy of ∼30 keV with a dose rate of 70 Gy s-1 and a peak-to-valley dose of ∼123. This work demonstrated a melanoma cell reduction of approximately 80% after MBI. It is suggested that, while a high energy is essential to achieve high dose rates in order to deposit high treatment doses in a short time in a deep-seated target, for in vitro studies and for the treatment of superficial tumours a spectrum in the lower energy range might be equally suitable or even advantageous.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ralf Hendrik Menk
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
| | - Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Katia Casarin
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University Munich, Munich, Germany
- Institute for Innovative Radiotherapy, Helmholtz-Zentrum Munich (HMGU), Munich, Germany
| | - Stephan Kriesen
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Fulvia Arfelli
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 14:74-81. [PMID: 33458318 PMCID: PMC7807643 DOI: 10.1016/j.phro.2020.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023]
Abstract
Line-focus X-ray tubes are suitable for clinical microbeam radiation therapy (MRT). A modular high-voltage supply safely enables high electron beam powers. An electron accelerator was designed to generate an eccentric focal spot. We simulated a peak-to-valley dose ratio above 20 for single-field MRT. Microbeam arc therapy spares healthy brain tissue compared to single-field MRT.
Background and purpose Microbeam radiotherapy (MRT) is a preclinical concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Experiments demonstrated a superior normal tissue sparing at similar tumor control rates with MRT compared to conventional radiotherapy. Possible clinical applications are currently limited to large third-generation synchrotrons. Here, we investigated the line-focus X-ray tube as an alternative microbeam source. Materials and methods We developed a concept for a high-voltage supply and an electron source. In Monte Carlo simulations, we assessed the influence of X-ray spectrum, focal spot size, electron incidence angle, and photon emission angle on the microbeam dose distribution. We further assessed the dose distribution of microbeam arc therapy and suggested to interpret this complex dose distribution by equivalent uniform dose. Results An adapted modular multi-level converter can supply high-voltage powers in the megawatt range for a few seconds. The electron source with a thermionic cathode and a quadrupole can generate an eccentric, high-power electron beam of several 100 keV energy. Highest dose rates and peak-to-valley dose ratios (PVDRs) were achieved for an electron beam impinging perpendicular onto the target surface and a focal spot smaller than the microbeam cross-section. The line-focus X-ray tube simulations demonstrated PVDRs above 20. Conclusion The line-focus X-ray tube is a suitable compact source for clinical MRT. We demonstrated its technical feasibility based on state-of-the-art high-voltage and electron-beam technology. Microbeam arc therapy is an effective concept to increase the target-to-entrance dose ratio of orthovoltage microbeams.
Collapse
|
9
|
Zabihzadeh M, Rabiei A, Shahbazian H, Razmjoo S. Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 11:45-51. [PMID: 34026590 PMCID: PMC8043115 DOI: 10.4103/jmss.jmss_12_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND High-radiation therapeutic gain could be achieved by the modern technique of microbeam radiation treatment (MRT). The aim of this study was to investigate the dosimetric properties of MRT. METHODS The EGSnrc Monte Carlo (MC) code system was used to transport photons and electrons in MRT. The mono-energetic beams (1 cm × 1 cm array) of 50, 100, and 150 keV and the spectrum photon beam (European Synchrotron Radiation Facility [ESRF]) were modeled to transport through multislit collimators with the aperture's widths of 25 and 50 μm and the center-to-center (c-t-c) distance between two adjacent microbeams (MBs) of 200 μm. The calculated phase spaces at the upper surface of water phantom (1 cm × 1 cm) were implemented in DOSXYZnrc code to calculate the percentage depth dose (PDD), the dose profile curves (in depths of 0-1, 1-2, and 3-4 cm), and the peak-to-valley dose ratios (PVDRs). RESULTS The PDD, dose profile curves, and PVDRs were calculated for different effective parameters. The more flatness of lateral dose profile was obtained for the ESRF spectrum MB. With constant c-t-c distance, an increase in the MB size increased the peak and valley dose; simultaneously, the PVDR was larger for the 25 μm MB (33.5) compared to 50 μm MB (21.9) beam, due to the decreased scattering photons followed to the lower overlapping of the adjacent MBs. An increase in the depth decreased the PVDRs (i.e., 54.9 in depth of 0-1 cm). CONCLUSION Our MC model of MRT successfully calculated the effect of dosimetric parameters including photon's energy, beam width, and depth to estimate the dose distribution.
Collapse
Affiliation(s)
- Mansour Zabihzadeh
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Rabiei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojattollah Shahbazian
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sasan Razmjoo
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
A Monte Carlo intercomparison of peak-to-valley dose ratios and output factors for microbeam radiation therapy. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dipuglia A, Cameron M, Davis JA, Cornelius IM, Stevenson AW, Rosenfeld AB, Petasecca M, Corde S, Guatelli S, Lerch MLF. Validation of a Monte Carlo simulation for Microbeam Radiation Therapy on the Imaging and Medical Beamline at the Australian Synchrotron. Sci Rep 2019; 9:17696. [PMID: 31776395 PMCID: PMC6881291 DOI: 10.1038/s41598-019-53991-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Microbeam Radiation Therapy (MRT) is an emerging cancer treatment modality characterised by the use of high-intensity synchrotron-generated x-rays, spatially fractionated by a multi-slit collimator (MSC), to ablate target tumours. The implementation of an accurate treatment planning system, coupled with simulation tools that allow for independent verification of calculated dose distributions are required to ensure optimal treatment outcomes via reliable dose delivery. In this article we present data from the first Geant4 Monte Carlo radiation transport model of the Imaging and Medical Beamline at the Australian Synchrotron. We have developed the model for use as an independent verification tool for experiments in one of three MRT delivery rooms and therefore compare simulation results with equivalent experimental data. The normalised x-ray spectra produced by the Geant4 model and a previously validated analytical model, SPEC, showed very good agreement using wiggler magnetic field strengths of 2 and 3 T. However, the validity of absolute photon flux at the plane of the Phase Space File (PSF) for a fixed number of simulated electrons was unable to be established. This work shows a possible limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic field. To account for this limitation, experimentally derived normalisation factors for each wiggler field strength determined under reference conditions were implemented. Experimentally measured broadbeam and microbeam dose distributions within a Gammex RMI457 Solid Water® phantom were compared to simulated distributions generated by the Geant4 model. Simulated and measured broadbeam dose distributions agreed within 3% for all investigated configurations and measured depths. Agreement between the simulated and measured microbeam dose distributions agreed within 5% for all investigated configurations and measured depths.
Collapse
Affiliation(s)
- Andrew Dipuglia
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Matthew Cameron
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Jeremy A Davis
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Iwan M Cornelius
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Andrew W Stevenson
- CSIRO, Clayton, 3168, Australia
- Imaging and Medical Beamline, ANSTO/Australian Synchrotron, Melbourne, 3168, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Marco Petasecca
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Stéphanie Corde
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
- Department of Radiation Oncology, Prince of Wales Hospital, Randwick, 2031, Australia
| | - Susanna Guatelli
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Michael L F Lerch
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia.
| |
Collapse
|
13
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
14
|
Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: A treatment planning study. Phys Med 2019; 60:111-119. [DOI: 10.1016/j.ejmp.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
|
15
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
16
|
Esplen NM, Chergui L, Johnstone CD, Bazalova-Carter M. Monte Carlo optimization of a microbeam collimator design for use on the small animal radiation research platform (SARRP). ACTA ACUST UNITED AC 2018; 63:175004. [DOI: 10.1088/1361-6560/aad7e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Smyth LM, Rogers PAW, Crosbie JC, Donoghue JF. Characterization of Diffuse Intrinsic Pontine Glioma Radiosensitivity using Synchrotron Microbeam Radiotherapy and Conventional Radiation Therapy In Vitro. Radiat Res 2018; 189:146-155. [PMID: 29364085 DOI: 10.1667/rr4633.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation therapy is a promising preclinical radiotherapy modality that has been proposed as an alternative to conventional radiation therapy for diseases such as diffuse intrinsic pontine glioma (DIPG), a devastating pediatric tumor of the brainstem. The primary goal of this study was to characterize and compare the radiosensitivity of two DIPG cell lines (SF7761 and JHH-DIPG-1) to microbeam and conventional radiation. We hypothesized that these DIPG cell lines would exhibit differential responses to each radiation modality. Single cell suspensions were exposed to microbeam (112, 250, 560, 1,180 Gy peak dose) or conventional (2, 4, 6 and 8 Gy) radiation to produce clonogenic cell-survival curves. Apoptosis induction and the cell cycle were also analyzed five days postirradiation using flow cytometry. JHH-DIPG-1 cells displayed greater radioresistance than SF7761 to both microbeam and conventional radiation, with higher colony formation and increased accumulation of G2/M-phase cells. Apoptosis was significantly increased in SF7761 cells compared to JHH-DIPG-1 after microbeam irradiation, demonstrating cell-line specific differential radiosensitivity to microbeam radiation. Additionally, biologically equivalent doses to microbeam and conventional radiation were calculated based on clonogenic survival, furthering our understanding of the response of cancer cells to these two radiotherapy modalities.
Collapse
Affiliation(s)
- L M Smyth
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia.,b Epworth Radiation Oncology, Epworth HealthCare, Richmond 3121, Australia
| | - P A W Rogers
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - J C Crosbie
- c School of Science, RMIT University, Melbourne 3001, Australia.,d William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne 3004, Australia; and
| | - J F Donoghue
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia.,c School of Science, RMIT University, Melbourne 3001, Australia.,e Hudson Institute of Medical Research, Monash University, Clayton 3168, Australia
| |
Collapse
|
18
|
Barbone GE, Bravin A, Romanelli P, Mittone A, Bucci D, Gaaβ T, Le Duc G, Auweter S, Reiser MF, Kraiger MJ, Hrabě de Angelis M, Battaglia G, Coan P. Micro-imaging of Brain Cancer Radiation Therapy Using Phase-contrast Computed Tomography. Int J Radiat Oncol Biol Phys 2018; 101:965-984. [PMID: 29976510 DOI: 10.1016/j.ijrobp.2018.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Experimental neuroimaging provides a wide range of methods for the visualization of brain anatomic morphology down to subcellular detail. Still, each technique-specific detection mechanism presents compromises among the achievable field-of-view size, spatial resolution, and nervous tissue sensitivity, leading to partial sample coverage, unresolved morphologic structures, or sparse labeling of neuronal populations and often also to obligatory sample dissection or other sample invasive manipulations. X-ray phase-contrast imaging computed tomography (PCI-CT) is an experimental imaging method that simultaneously provides micrometric spatial resolution, high soft-tissue sensitivity, and ex vivo full organ rodent brain coverage without any need for sample dissection, staining or labeling, or contrast agent injection. In the present study, we explored the benefits and limitations of PCI-CT use for in vitro imaging of normal and cancerous brain neuromorphology after in vivo treatment with synchrotron-generated x-ray microbeam radiation therapy (MRT), a spatially fractionated experimental high-dose radiosurgery. The goals were visualization of the MRT effects on nervous tissue and a qualitative comparison of the results to the histologic and high-field magnetic resonance imaging findings. METHODS AND MATERIALS MRT was administered in vivo to the brain of both healthy and cancer-bearing rats. At 45 days after treatment, the brain was dissected out and imaged ex vivo using propagation-based PCI-CT. RESULTS PCI-CT visualizes the brain anatomy and microvasculature in 3 dimensions and distinguishes cancerous tissue morphology, necrosis, and intratumor accumulation of iron and calcium deposits. Moreover, PCI-CT detects the effects of MRT throughout the treatment target areas (eg, the formation of micrometer-thick radiation-induced tissue ablation). The observed neurostructures were confirmed by histologic and immunohistochemistry examination and related to the micro-magnetic resonance imaging data. CONCLUSIONS PCI-CT enabled a unique 3D neuroimaging approach for ex vivo studies on small animal models in that it concurrently delivers high-resolution insight of local brain tissue morphology in both normal and cancerous micro-milieu, localizes radiosurgical damage, and highlights the deep microvasculature. This method could assist experimental small animal neurology studies in the postmortem evaluation of neuropathology or treatment effects.
Collapse
Affiliation(s)
- Giacomo E Barbone
- Department of Physics, Ludwig Maximilians University, Garching, Germany
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | | | | | - Domenico Bucci
- Department of Molecular Pathology, Neuropharmacology Section, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Thomas Gaaβ
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | | | - Sigrid Auweter
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Maximilian F Reiser
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Markus J Kraiger
- Institute of Experimental Genetics and German Mouse Clinic, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, German Research Center for Environmental Health, Neuherberg, Germany; Department of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Section, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Paola Coan
- Department of Physics, Ludwig Maximilians University, Garching, Germany; Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
19
|
Donzelli M, Bräuer-Krisch E, Oelfke U, Wilkens JJ, Bartzsch S. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy. Phys Med Biol 2018; 63:045013. [PMID: 29324439 PMCID: PMC5964549 DOI: 10.1088/1361-6560/aaa705] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.
Collapse
Affiliation(s)
- Mattia Donzelli
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Author to whom any correspondence should be
addressed
| | - Elke Bräuer-Krisch
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
| | - Uwe Oelfke
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| | - Stefan Bartzsch
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| |
Collapse
|
20
|
Tsubouchi T, Henry T, Ureba A, Valdman A, Bassler N, Siegbahn A. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy. Med Phys 2018; 45:1210-1221. [PMID: 29319842 DOI: 10.1002/mp.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 12/03/2017] [Accepted: 12/23/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. METHODS The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. RESULTS The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. CONCLUSIONS The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups.
Collapse
Affiliation(s)
- Toshiro Tsubouchi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Thomas Henry
- Medical Radiation Physics, Department of Physics, Stockholm University, S-171 76, Stockholm, Sweden
| | - Ana Ureba
- Medical Radiation Physics, Department of Physics, Stockholm University, S-171 76, Stockholm, Sweden
| | - Alexander Valdman
- Department of Oncology and Pathology, Karolinska University Hospital, S-171 76, Stockholm, Sweden
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, S-171 76, Stockholm, Sweden
| | - Albert Siegbahn
- Medical Radiation Physics, Department of Physics, Stockholm University, S-171 76, Stockholm, Sweden
| |
Collapse
|
21
|
Fardone E, Pouyatos B, Bräuer-Krisch E, Bartzsch S, Mathieu H, Requardt H, Bucci D, Barbone G, Coan P, Battaglia G, Le Duc G, Bravin A, Romanelli P. Synchrotron-generated microbeams induce hippocampal transections in rats. Sci Rep 2018; 8:184. [PMID: 29317649 PMCID: PMC5760574 DOI: 10.1038/s41598-017-18000-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated γ-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis.
Collapse
Affiliation(s)
- Erminia Fardone
- European Synchrotron Radiation Facility (ESRF), Grenoble, France.,Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Benoît Pouyatos
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier, Grenoble, France
| | | | - Stefan Bartzsch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,The Institute of Cancer Research, London, United Kingdom
| | - Hervè Mathieu
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier, Grenoble, France
| | - Herwig Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - Giacomo Barbone
- Department of Physics, Ludwig Maximilians University, Garching, Germany
| | - Paola Coan
- Department of Physics, Ludwig Maximilians University, Garching, Germany.,Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | | | - Geraldine Le Duc
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Pantaleo Romanelli
- Brain Radiosurgery, Cyberknife Center, Centro Diagnostico Italiano (CDI), Milano, Italy.
| |
Collapse
|
22
|
Livingstone J, Stevenson AW, Häusermann D, Adam JF. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Phys Med 2017; 45:156-161. [PMID: 29472081 DOI: 10.1016/j.ejmp.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/30/2022] Open
Abstract
Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40-120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90-120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.
Collapse
Affiliation(s)
- Jayde Livingstone
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia.
| | - Andrew W Stevenson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Daniel Häusermann
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Jean-François Adam
- Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble-Alpes, Grenoble, France; Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
23
|
Lin H, Jing J, Xu L, Mao X. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy. Phys Med 2017; 44:96-107. [DOI: 10.1016/j.ejmp.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022] Open
|
24
|
Meyer J, Stewart RD, Smith D, Eagle J, Lee E, Cao N, Ford E, Hashemian R, Schuemann J, Saini J, Marsh S, Emery R, Dorman E, Schwartz J, Sandison G. Biological and dosimetric characterisation of spatially fractionated proton minibeams. Phys Med Biol 2017; 62:9260-9281. [PMID: 29053105 DOI: 10.1088/1361-6560/aa950c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bazyar S, Inscoe CR, O’Brian ET, Zhou O, Lee YZ. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies. ACTA ACUST UNITED AC 2017; 62:8924-8942. [DOI: 10.1088/1361-6560/aa926b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Fardone E, Bravin A, Conti A, Bräuer-Krisch E, Requardt H, Bucci D, Le Duc G, Battaglia G, Romanelli P. Rat sensorimotor cortex tolerance to parallel transections induced by synchrotron-generated X-ray microbeams. Sci Rep 2017; 7:14290. [PMID: 29085040 PMCID: PMC5662592 DOI: 10.1038/s41598-017-14757-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
Microbeam radiation therapy is a novel preclinical technique, which uses synchrotron-generated X-rays for the treatment of brain tumours and drug-resistant epilepsies. In order to safely translate this approach to humans, a more in-depth knowledge of the long-term radiobiology of microbeams in healthy tissues is required. We report here the result of the characterization of the rat sensorimotor cortex tolerance to microradiosurgical parallel transections. Healthy adult male Wistar rats underwent irradiation with arrays of parallel microbeams. Beam thickness, spacing and incident dose were 100 or 600 µm, 400 or 1200 µm and 360 or 150 Gy, respectively. Motor performance was carried over a 3-month period. Three months after irradiation rats were sacrificed to evaluate the effects of irradiation on brain tissues by histology and immunohistochemistry. Microbeam irradiation of sensorimotor cortex did not affect weight gain and motor performance. No gross signs of paralysis or paresis were also observed. The cortical architecture was not altered, despite the presence of cell death along the irradiation path. Reactive gliosis was evident in the microbeam path of rats irradiated with 150 Gy, whereas no increase was observed in rats irradiated with 360 Gy.
Collapse
Affiliation(s)
- Erminia Fardone
- European Synchrotron Radiation Facility, Grenoble, France.,Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France.
| | - Alfredo Conti
- Department of Neurosurgery, University of Messina, Messina, Italy
| | | | | | | | | | | | - Pantaleo Romanelli
- Centro Diagnostico Italiano, Brain Radiosurgery, Cyberknife Center, Milano, Italy. .,AB Medica, Lainate, Italy.
| |
Collapse
|
27
|
Abstract
Microbeam radiation therapy (MRT) is a treatment approach in radiation therapy where the treatment field is spatially fractionated into arrays of a few tens of micrometre wide planar beams of unusually high peak doses separated by low dose regions of several hundred micrometre width. In preclinical studies, this treatment approach has proven to spare normal tissue more effectively than conventional radiation therapy, while being equally efficient in tumour control. So far dose calculations in MRT, a prerequisite for future clinical applications are based on Monte Carlo simulations. However, they are computationally expensive, since scoring volumes have to be small. In this article a kernel based dose calculation algorithm is presented that splits the calculation into photon and electron mediated energy transport, and performs the calculation of peak and valley doses in typical MRT treatment fields within a few minutes. Kernels are analytically calculated depending on the energy spectrum and material composition. In various homogeneous materials peak, valley doses and microbeam profiles are calculated and compared to Monte Carlo simulations. For a microbeam exposure of an anthropomorphic head phantom calculated dose values are compared to measurements and Monte Carlo calculations. Except for regions close to material interfaces calculated peak dose values match Monte Carlo results within 4% and valley dose values within 8% deviation. No significant differences are observed between profiles calculated by the kernel algorithm and Monte Carlo simulations. Measurements in the head phantom agree within 4% in the peak and within 10% in the valley region. The presented algorithm is attached to the treatment planning platform VIRTUOS. It was and is used for dose calculations in preclinical and pet-clinical trials at the biomedical beamline ID17 of the European synchrotron radiation facility in Grenoble, France.
Collapse
Affiliation(s)
- Charlotte Debus
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Zeinali-Rafsanjani B, Mosleh-Shirazi MA, Haghighatafshar M, Jalli R, Saeedi-Moghadam M. Assessment of the dose distribution of Minibeam radiotherapy for lung tumors in an anthropomorphic phantom: A feasibility study. Technol Health Care 2017; 25:683-692. [DOI: 10.3233/thc-170818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Banafsheh Zeinali-Rafsanjani
- Nuclear Medicine and Molecular Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiotherapy and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haghighatafshar
- Nuclear Medicine and Molecular Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Saeedi-Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Cameron M, Cornelius I, Cutajar D, Davis J, Rosenfeld A, Lerch M, Guatelli S. Comparison of phantom materials for use in quality assurance of microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:866-876. [PMID: 28664894 DOI: 10.1107/s1600577517005641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Microbeam radiation therapy (MRT) is a promising radiotherapy modality that uses arrays of spatially fractionated micrometre-sized beams of synchrotron radiation to irradiate tumours. Routine dosimetry quality assurance (QA) prior to treatment is necessary to identify any changes in beam condition from the treatment plan, and is undertaken using solid homogeneous phantoms. Solid phantoms are designed for, and routinely used in, megavoltage X-ray beam radiation therapy. These solid phantoms are not necessarily designed to be water-equivalent at low X-ray energies, and therefore may not be suitable for MRT QA. This work quantitatively determines the most appropriate solid phantom to use in dosimetric MRT QA. Simulated dose profiles of various phantom materials were compared with those calculated in water under the same conditions. The phantoms under consideration were RMI457 Solid Water (Gammex-RMI, Middleton, WI, USA), Plastic Water (CIRS, Norfolk, VA, USA), Plastic Water DT (CIRS, Norfolk, VA, USA), PAGAT (CIRS, Norfolk, VA, USA), RW3 Solid Phantom (PTW Freiburg, Freiburg, Germany), PMMA, Virtual Water (Med-Cal, Verona, WI, USA) and Perspex. RMI457 Solid Water and Virtual Water were found to be the best approximations for water in MRT dosimetry (within ±3% deviation in peak and 6% in valley). RW3 and Plastic Water DT approximate the relative dose distribution in water (within ±3% deviation in the peak and 5% in the valley). PAGAT, PMMA, Perspex and Plastic Water are not recommended to be used as phantoms for MRT QA, due to dosimetric discrepancies greater than 5%.
Collapse
Affiliation(s)
- Matthew Cameron
- CMRP, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Dean Cutajar
- CMRP, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy Davis
- CMRP, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Michael Lerch
- CMRP, University of Wollongong, Wollongong, NSW 2522, Australia
| | | |
Collapse
|
30
|
Mukumoto N, Nakayama M, Akasaka H, Shimizu Y, Osuga S, Miyawaki D, Yoshida K, Ejima Y, Miura Y, Umetani K, Kondoh T, Sasaki R. Sparing of tissue by using micro-slit-beam radiation therapy reduces neurotoxicity compared with broad-beam radiation therapy. JOURNAL OF RADIATION RESEARCH 2017; 58:17-23. [PMID: 27422939 PMCID: PMC5321181 DOI: 10.1093/jrr/rrw065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Micro-slit-beam radiation therapy (MRT) using synchrotron-generated X-ray beams allows for extremely high-dose irradiation. However, the toxicity of MRT in central nervous system (CNS) use is still unknown. To gather baseline toxicological data, we evaluated mortality in normal mice following CNS-targeted MRT. Male C57BL/6 J mice were head-fixed in a stereotaxic frame. Synchrotron X-ray-beam radiation was provided by the SPring-8 BL28B2 beam-line. For MRT, radiation was delivered to groups of mice in a 10 × 12 mm unidirectional array consisting of 25-μm-wide beams spaced 100, 200 or 300 μm apart; another group of mice received the equivalent broad-beam radiation therapy (BRT) for comparison. Peak and valley dose rates of the MRT were 120 and 0.7 Gy/s, respectively. Delivered doses were 96-960 Gy for MRT, and 24-120 Gy for BRT. Mortality was monitored for 90 days post-irradiation. Brain tissue was stained using hematoxylin and eosin to evaluate neural structure. Demyelination was evaluated by Klüver-Barrera staining. The LD50 and LD100 when using MRT were 600 Gy and 720 Gy, respectively, and when using BRT they were 80 Gy and 96 Gy, respectively. In MRT, mortality decreased as the center-to-center beam spacing increased from 100 μm to 300 μm. Cortical architecture was well preserved in MRT, whereas BRT induced various degrees of cerebral hemorrhage and demyelination. MRT was able to deliver extremely high doses of radiation, while still minimizing neuronal death. The valley doses, influenced by beam spacing and irradiated dose, could represent important survival factors for MRT.
Collapse
Affiliation(s)
- Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Saki Osuga
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuo Ejima
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Yasushi Miura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Takeshi Kondoh
- Department of Neurosurgery, Shinsuma Hospital, Kobe, Hyogo, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
31
|
Stevenson AW, Crosbie JC, Hall CJ, Häusermann D, Livingstone J, Lye JE. Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). JOURNAL OF SYNCHROTRON RADIATION 2017; 24:110-141. [PMID: 28009552 DOI: 10.1107/s1600577516015563] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
A critical early phase for any synchrotron beamline involves detailed testing, characterization and commissioning; this is especially true of a beamline as ambitious and complex as the Imaging & Medical Beamline (IMBL) at the Australian Synchrotron. IMBL staff and expert users have been performing precise experiments aimed at quantitative characterization of the primary polychromatic and monochromatic X-ray beams, with particular emphasis placed on the wiggler insertion devices (IDs), the primary-slit system and any in vacuo and ex vacuo filters. The findings from these studies will be described herein. These results will benefit IMBL and other users in the future, especially those for whom detailed knowledge of the X-ray beam spectrum (or `quality') and flux density is important. This information is critical for radiotherapy and radiobiology users, who ultimately need to know (to better than 5%) what X-ray dose or dose rate is being delivered to their samples. Various correction factors associated with ionization-chamber (IC) dosimetry have been accounted for, e.g. ion recombination, electron-loss effects. A new and innovative approach has been developed in this regard, which can provide confirmation of key parameter values such as the magnetic field in the wiggler and the effective thickness of key filters. IMBL commenced operation in December 2008 with an Advanced Photon Source (APS) wiggler as the (interim) ID. A superconducting multi-pole wiggler was installed and operational in January 2013. Results are obtained for both of these IDs and useful comparisons are made. A comprehensive model of the IMBL has been developed, embodied in a new computer program named spec.exe, which has been validated against a variety of experimental measurements. Having demonstrated the reliability and robustness of the model, it is then possible to use it in a practical and predictive manner. It is hoped that spec.exe will prove to be a useful resource for synchrotron science in general, and for hard X-ray beamlines, whether they are based on bending magnets or insertion devices, in particular. In due course, it is planned to make spec.exe freely available to other synchrotron scientists.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jeffrey C Crosbie
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Christopher J Hall
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniel Häusermann
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jayde Livingstone
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jessica E Lye
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
32
|
Peucelle C, Martínez-Rovira I, Prezado Y. Spatial fractionation of the dose using neon and heavier ions: A Monte Carlo study. Med Phys 2016; 42:5928-36. [PMID: 26429267 DOI: 10.1118/1.4930960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work explores a new radiation therapy approach which might trigger a renewed use of neon and heavier ions to treat cancers. These ions were shown to be extremely efficient in radioresistant tumor killing. Unfortunately, the efficient region also extends into the normal tissue in front of the tumor. The strategy the authors propose is to profit from the well-established sparing effect of thin spatially fractionated beams, so that the impact on normal tissues might be minimized while a high tumor control is achieved. The main goal of this work is to provide a proof of concept of this new approach. With that aim, a dosimetric study was carried out as a first step to evaluate the interest of further explorations of this avenue. METHODS The gate/geant4 v.6.1 Monte Carlo simulation platform was employed to simulate arrays of rectangular minibeams (700 μm × 2 cm) of four ions (Ne, Si, Ar, and Fe). The irradiations were performed with a 2 cm-long spread-out Bragg peak centered at 7 cm-depth. Dose distributions in a water phantom were scored considering two minibeams center-to-center distances: 1400 and 3500 μm. Peak and valley doses, peak-to-valley dose ratios (PVDRs), beam penumbras, and relative contribution of nuclear fragments and electromagnetic processes were assessed as figures of merit. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. RESULTS Extremely high PVDR values (>100) and low valley doses were obtained. The higher the atomic number (Z) of the primary ion is, the lower the valleys and the narrower the penumbras. Although the yield of secondary nuclear products increases with Z, the actual dose being deposited by the secondary nuclear fragments in the valleys starts to be the dominant contribution at deeper points, helping in the sparing of proximal normal tissues. Additionally, a wider center-to-center distance leads to a minimized contribution of heavier secondary fragments in valleys. CONCLUSIONS The computed dose distributions suggest that a spatial fractionation of the dose combined to the use of submillimetric field sizes might allow profiting from the high efficiency of neon and heavier ions for the treatment of radioresistant tumors, while preserving normal tissues. The authors' results support the further exploration of this avenue. Next steps include the realization of biological experiment to confirm the shifting of normal tissue complication probability curves.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
33
|
Fournier P, Crosbie JC, Cornelius I, Berkvens P, Donzelli M, Clavel AH, Rosenfeld AB, Petasecca M, Lerch MLF, Bräuer-Krisch E. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates. Phys Med Biol 2016; 61:N349-61. [DOI: 10.1088/0031-9155/61/14/n349] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Smyth LML, Senthi S, Crosbie JC, Rogers PAW. The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 2016; 92:302-11. [DOI: 10.3109/09553002.2016.1154217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lloyd M. L. Smyth
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth Radiation Oncology, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeffrey C. Crosbie
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter A. W. Rogers
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Belley MD, Stanton IN, Hadsell M, Ger R, Langloss BW, Lu J, Zhou O, Chang SX, Therien MJ, Yoshizumi TT. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam. Med Phys 2015; 42:1966-72. [PMID: 25832087 DOI: 10.1118/1.4915078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). METHODS The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. RESULTS The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s(-1), a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s(-1)). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). CONCLUSIONS This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.
Collapse
Affiliation(s)
- Matthew D Belley
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian N Stanton
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Mike Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel Ger
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian W Langloss
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Sha X Chang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599; and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Michael J Therien
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Terry T Yoshizumi
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705;Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710; and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Bräuer-Krisch E, Adam JF, Alagoz E, Bartzsch S, Crosbie J, DeWagter C, Dipuglia A, Donzelli M, Doran S, Fournier P, Kalef-Ezra J, Kock A, Lerch M, McErlean C, Oelfke U, Olko P, Petasecca M, Povoli M, Rosenfeld A, Siegbahn EA, Sporea D, Stugu B. Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys Med 2015; 31:568-83. [PMID: 26043881 DOI: 10.1016/j.ejmp.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25-75 micron-wide microplanar beams separated by wider (100-400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.
Collapse
Affiliation(s)
- Elke Bräuer-Krisch
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France.
| | | | - Enver Alagoz
- University of Bergen Department of Physics and Technology, PB 7803 5020, Norway
| | - Stefan Bartzsch
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Jeff Crosbie
- RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Mattia Donzelli
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Simon Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Pauline Fournier
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France; Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - John Kalef-Ezra
- Medical Physics Laboratory, University of Ioannina, 451.10, Ioannina, Greece
| | - Angela Kock
- Sintef Minalab, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Ciara McErlean
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Uwe Oelfke
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Pawel Olko
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342, Krawkow, Poland
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Marco Povoli
- University of Oslo, Department of Physics, 0316, Oslo, Norway
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Erik A Siegbahn
- Department of Oncolgy-Pathology, Karolinska Institutet, S-177176, Stockholm, Sweden
| | - Dan Sporea
- National Institute for Laser, Plasma and Radiation Physics, Magurele, RO-077125, Romania
| | - Bjarne Stugu
- University of Bergen, Department of Physics and Technology, PB 7803, 5020, Bergen, Norway
| |
Collapse
|
37
|
Microradiosurgical cortical transections generated by synchrotron radiation. Phys Med 2015; 31:642-6. [DOI: 10.1016/j.ejmp.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/15/2015] [Accepted: 05/13/2015] [Indexed: 11/22/2022] Open
|
38
|
Crosbie JC, Fournier P, Bartzsch S, Donzelli M, Cornelius I, Stevenson AW, Requardt H, Bräuer-Krisch E. Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1035-1041. [PMID: 26134808 DOI: 10.1107/s1600577515008115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to validate the kilovoltage X-ray energy spectrum on the ID17 beamline at the European Synchrotron Radiation Facility (ESRF). The purpose of such validation was to provide an accurate energy spectrum as the input to a computerized treatment planning system, which will be used in synchrotron microbeam radiotherapy trials at the ESRF. Calculated and measured energy spectra on ID17 have been reported previously but recent additions and safety modifications to the beamline for veterinary trials warranted a fresh investigation. The authors used an established methodology to compare X-ray attenuation measurements in copper sheets (referred to as half value layer measurements in the radiotherapy field) with the predictions of a theoretical model. A cylindrical ionization chamber in air was used to record the relative attenuation of the X-ray beam intensity by increasing thicknesses of high-purity copper sheets. The authors measured the half value layers in copper for two beamline configurations, which corresponded to differing spectral conditions. The authors obtained good agreement between the measured and predicted half value layers for the two beamline configurations. The measured first half value layer was 1.754 ± 0.035 mm Cu and 1.962 ± 0.039 mm Cu for the two spectral conditions, compared with theoretical predictions of 1.763 ± 0.039 mm Cu and 1.984 ± 0.044 mm Cu, respectively. The calculated mean energies for the two conditions were 105 keV and 110 keV and there was not a substantial difference in the calculated percentage depth dose curves in water between the different spectral conditions. The authors observed a difference between their calculated energy spectra and the spectra previously reported by other authors, particularly at energies greater than 100 keV. The validation of the beam spectrum by the copper half value layer measurements means the authors can provide an accurate spectrum as an input to a treatment planning system for the forthcoming veterinary trials of microbeam radiotherapy to spontaneous tumours in cats and dogs.
Collapse
Affiliation(s)
- Jeffrey C Crosbie
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | | | | | - Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | | | | | | |
Collapse
|
39
|
Anderson DL, Mirzayans R, Andrais B, Siegbahn EA, Fallone BG, Warkentin B. Spatial and temporal distribution of γH2AX fluorescence in human cell cultures following synchrotron-generated X-ray microbeams: lack of correlation between persistent γH2AX foci and apoptosis. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:801-810. [PMID: 24971978 DOI: 10.1107/s1600577514011424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
Formation of γH2AX foci (a marker of DNA double-strand breaks), rates of foci clearance and apoptosis were investigated in cultured normal human fibroblasts and p53 wild-type malignant glioma cells after exposure to high-dose synchrotron-generated microbeams. Doses up to 283 Gy were delivered using beam geometries that included a microbeam array (50 µm wide, 400 µm spacing), single microbeams (60-570 µm wide) and a broad beam (32 mm wide). The two cell types exhibited similar trends with respect to the initial formation and time-dependent clearance of γH2AX foci after irradiation. High levels of γH2AX foci persisted as late as 72 h post-irradiation in the majority of cells within cultures of both cell types. Levels of persistent foci after irradiation via the 570 µm microbeam or broad beam were higher when compared with those observed after exposure to the 60 µm microbeam or microbeam array. Despite persistence of γH2AX foci, these irradiation conditions triggered apoptosis in only a small proportion (<5%) of cells within cultures of both cell types. These results contribute to the understanding of the fundamental biological consequences of high-dose microbeam irradiations, and implicate the importance of non-apoptotic responses such as p53-mediated growth arrest (premature senescence).
Collapse
Affiliation(s)
- Danielle L Anderson
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Razmik Mirzayans
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Bonnie Andrais
- Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - E Albert Siegbahn
- Medical Physics, Stockholm University, Box 260, S-17176 Stockholm, Sweden
| | - B Gino Fallone
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Brad Warkentin
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
40
|
Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PAW, Paiva P. An evaluation of dose equivalence between synchrotron microbeam radiation therapy and conventional broad beam radiation using clonogenic and cell impedance assays. PLoS One 2014; 9:e100547. [PMID: 24945301 PMCID: PMC4063937 DOI: 10.1371/journal.pone.0100547] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments. AIM To develop an in vitro approach to determine biological dose equivalence between MRT and BB using two different cell-based assays. METHODS The acute response of tumour and normal cell lines (EMT6.5, 4T1.2, NMuMG, EMT6.5ch, 4T1ch5, SaOS-2) to MRT (50-560 Gy) and BB (1.5-10 Gy) irradiation was investigated using clonogenic and real time cell impedance sensing (RT-CIS)/xCELLigence assays. MRT was performed using a lattice of 25 or 50 µm-wide planar, polychromatic kilovoltage X-ray microbeams with 200 µm peak separation. BB irradiations were performed using a Co60 teletherapy unit or a synchrotron radiation source. BB doses that would generate biological responses similar to MRT were calculated by data interpolation and verified by clonogenic and RT-CIS assays. RESULTS For a given cell line, MRT equivalent BB doses identified by RT-CIS/xCELLigence were similar to those identified by clonogenic assays. Dose equivalence between MRT and BB were verified in vitro in two cell lines; EMT6.5ch and SaOS-2 by clonogenic assays and RT-CIS/xCELLigence. We found for example, that BB doses of 3.4±0.1 Gy and 4.40±0.04 Gy were radiobiologically equivalent to a peak, microbeam dose of 112 Gy using clonogenic and RT-CIS assays respectively on EMT6.5ch cells. CONCLUSION Our data provides the first determination of biological dose equivalence between BB and MRT modalities for different cell lines and identifies RT-CIS/xCELLigence assays as a suitable substitute for clonogenic assays. These results will be useful for the safe selection of MRT doses for future veterinary and clinical trials.
Collapse
Affiliation(s)
- Mohammad Johari Ibahim
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Jeffrey C. Crosbie
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Australia
| | - Yuqing Yang
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Zaitseva
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew W. Stevenson
- Australian Synchrotron Imaging and Medical Beamline, Clayton, Australia
- CSIRO Materials Science & Engineering, Clayton, Australia
| | - Peter A. W. Rogers
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Premila Paiva
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Hadsell M, Cao G, Zhang J, Burk L, Schreiber T, Schreiber E, Chang S, Lu J, Zhou O. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med Phys 2014; 41:061710. [PMID: 24877805 PMCID: PMC4032446 DOI: 10.1118/1.4873683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. METHODS The microbeam dose distribution was generated by our CNT micro-CT scanner (100 μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. RESULTS Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300 μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ~10 was found when the phantom translation distance was roughly 4x the beam width. The first prototype CNT-based x-ray tube dedicated to the development of compact MRT technology development was proposed and planned based on the preliminary experimental results presented here and the previous corresponding Monte Carlo simulations. CONCLUSIONS The authors have demonstrated the feasibility of creating microbeam dose distributions at a high dose rate using a proposed compact MRT system. The flexibility of CNT field emission x-ray sources could possibly bring compact and low cost MRT devices to the larger research community and assist in the translational research of this promising new approach to radiation therapy.
Collapse
Affiliation(s)
- Mike Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Guohua Cao
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jian Zhang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laurel Burk
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Torsten Schreiber
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric Schreiber
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
42
|
Cornelius I, Guatelli S, Fournier P, Crosbie JC, Sanchez Del Rio M, Bräuer-Krisch E, Rosenfeld A, Lerch M. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:518-528. [PMID: 24763641 DOI: 10.1107/s1600577514004640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.
Collapse
Affiliation(s)
- Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Jeffrey C Crosbie
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria 3152, Australia
| | | | | | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
43
|
Bartzsch S, Lerch M, Petasecca M, Bräuer-Krisch E, Oelfke U. Influence of polarization and a source model for dose calculation in MRT. Med Phys 2014; 41:041703. [DOI: 10.1118/1.4867858] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Kim SR, Kim EH. Effect of acidic environment on the response of endothelial cells to irradiation: implications for microbeam radiation therapy. Int J Radiat Biol 2014; 90:325-33. [PMID: 24467329 DOI: 10.3109/09553002.2014.887867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Microbeam radiation therapy (MRT) is a novel experimental radiotherapy regimen, which delivers high doses of synchrotron-generated X-rays in the form of quasi-parallel arrays of microbeam separated by microplanar spaces. The repair or healing of irradiated regions (Peak) via migration of endothelial cells (EC) from unirradiated regions (Valley) plays an important role in the response of tumors and normal tissues to MRT. It is known that intratumor microenvironment is acidic. We investigated the influence of environmental acidity on the response of EC to ionizing radiation. MATERIALS AND METHODS Effects of irradiation on the viability, clonogenicity and migration rate of endothelial cells were studied using human umbilical vascular endothelial cells and mouse endothelial cells in pH 7.3 and 6.4 environments. RESULTS An exposure to acidic environment (pH 6.4) for 2-4 days exerted little effect on the viability of EC. On the other hand, acidic environment significantly retarded the migration of control and irradiated EC. The migration of EC into 2000 μm-wide wound was slower than that into 1000 μm-side wounds. CONCLUSION The microenvironmental acidity and the size of beam opening in MRT may greatly affect the repair of irradiated peak regions via migration of EC from unirradiated valley regions.
Collapse
Affiliation(s)
- So-Ra Kim
- Radiation Bioengineering Laboratory, Department of Nuclear Engineering, Seoul National University , Seoul , Republic of Korea
| | | |
Collapse
|
45
|
Hadsell M, Zhang J, Laganis P, Sprenger F, Shan J, Zhang L, Burk L, Yuan H, Chang S, Lu J, Zhou O. A first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology. APPLIED PHYSICS LETTERS 2013; 103:183505. [PMID: 24273330 PMCID: PMC3829915 DOI: 10.1063/1.4826587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
We have developed a compact microbeam radiation therapy device using carbon nanotube cathodes to create a linear array of narrow focal line segments on a tungsten anode and a custom collimator assembly to select a slice of the resulting wedge-shaped radiation pattern. Effective focal line width was measured to be 131 μm, resulting in a microbeam width of ∼300 μm. The instantaneous dose rate was projected to be 2 Gy/s at full-power. Peak to valley dose ratio was measured to be >17 when a 1.4 mm microbeam separation was employed. Finally, multiple microbeams were delivered to a mouse with beam paths verified through histology.
Collapse
Affiliation(s)
- M Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Doran SJ, Abdul Rahman AT, Bräuer-Krisch E, Brochard T, Adamovics J, Nisbet A, Bradley D. Establishing the suitability of quantitative optical CT microscopy of PRESAGE® radiochromic dosimeters for the verification of synchrotron microbeam therapy. Phys Med Biol 2013; 58:6279-97. [PMID: 23965895 DOI: 10.1088/0031-9155/58/18/6279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous research on optical computed tomography (CT) microscopy in the context of the synchrotron microbeam has shown the potential of the technique and demonstrated high quality images, but has left two questions unanswered: (i) are the images suitably quantitative for 3D dosimetry? and (ii) what is the impact on the spatial resolution of the system of the limited depth-of-field of the microscope optics? Cuvette and imaging studies are reported here that address these issues. Two sets of cuvettes containing the radiochromic plastic PRESAGE® were irradiated at the ID17 biomedical beamline of the European Synchrotron Radiation facility over the ranges 0-20 and 0-35 Gy and a third set of cuvettes was irradiated over the range 0-20 Gy using a standard medical linac. In parallel, three cylindrical PRESAGE® samples of diameter 9.7 mm were irradiated with test patterns that allowed the quantitative capabilities of the optical CT microscope to be verified, and independent measurements of the imaging modulation transfer function (MTF) to be made via two different methods. Both spectrophotometric analysis and imaging gave a linear dose response, with gradients ranging from 0.036-0.041 cm(-1) Gy(-1) in the three sets of cuvettes and 0.037 (optical CT units) Gy(-1) for the imaging. High-quality, quantitative imaging results were obtained throughout the 3D volume, as illustrated by depth-dose profiles. These profiles are shown to be monoexponential, and the linear attention coefficient of PRESAGE® for the synchrotron-generated x-ray beam is measured to be (0.185 ± 0.02) cm(-1) in excellent agreement with expectations. Low-level (<5%) residual image artefacts are discussed in detail. It was possible to resolve easily slit patterns of width 37 µm (which are smaller than many of the microbeams used on ID-17), but some uncertainty remains as to whether the low values of MTF for the higher spatial frequencies are scanner related or a result of genuine (but non-ideal) dose distributions. We conclude that microscopy images from our scanner do indeed have intensities that are proportional to spectrophotometric optical density and can thus be used as the basis for accurate dosimetry. However, further investigations are necessary before the microscopy images can be used to make the quantitative measures of peak-to-valley ratios for small-diameter microbeams. We suggest various strategies for moving forward and are optimistic about the future potential of this system.
Collapse
Affiliation(s)
- Simon J Doran
- Department of Physics, University of Surrey, Guildford, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. METHODS Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. RESULTS Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. CONCLUSIONS The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.
Collapse
Affiliation(s)
- Y Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, Orsay, France.
| | | |
Collapse
|
48
|
Romanelli P, Bravin A. Synchrotron-generated microbeam radiosurgery: a novel experimental approach to modulate brain function. Neurol Res 2013; 33:825-31. [DOI: 10.1179/016164111x13123658647445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Martínez-Rovira I, Sempau J, Prezado Y. Monte Carlo-based dose calculation engine for minibeam radiation therapy. Phys Med 2013; 30:57-62. [PMID: 23597423 DOI: 10.1016/j.ejmp.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022] Open
Abstract
Minibeam radiation therapy (MBRT) is an innovative radiotherapy approach based on the well-established tissue sparing effect of arrays of quasi-parallel micrometre-sized beams. In order to guide the preclinical trials in progress at the European Synchrotron Radiation Facility (ESRF), a Monte Carlo-based dose calculation engine has been developed and successfully benchmarked with experimental data in anthropomorphic phantoms. Additionally, a realistic example of treatment plan is presented. Despite the micron scale of the voxels used to tally dose distributions in MBRT, the combination of several efficiency optimisation methods allowed to achieve acceptable computation times for clinical settings (approximately 2 h). The calculation engine can be easily adapted with little or no programming effort to other synchrotron sources or for dose calculations in presence of contrast agents.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Service Hospitalier Frédéric Joliot (DSV/I2BM/SHFJ), Commissariat à l'Énergie Atomique et aux énergies alternatives (CEA), 4, Place du Général Leclerc, F-91401 Orsay, France; Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Diagonal 647, E-08028 Barcelona, Spain; ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France.
| | - J Sempau
- Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Diagonal 647, E-08028 Barcelona, Spain; Networking Research Centre, CIBER-BBN, Barcelona, Spain
| | - Y Prezado
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, Centre National de la Recherche Scientifique (CNRS), 15 rue Georges Clemenceau, Bât. 440F-91406 Orsay Cedex, France
| |
Collapse
|
50
|
Fernandez-Palomo C, Schültke E, Smith R, Bräuer-Krisch E, Laissue J, Schroll C, Fazzari J, Seymour C, Mothersill C. Bystander effects in tumor-free and tumor-bearing rat brains following irradiation by synchrotron X-rays. Int J Radiat Biol 2013; 89:445-53. [PMID: 23363251 DOI: 10.3109/09553002.2013.766770] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is a radiosurgery concept in the preclinical stage, developed mainly for brain tumor treatment. Experimental studies suggest that with MRT a better therapeutic index can be obtained than with homogenous field radiotherapy, but the underlying cellular mechanisms need further understanding. The aim of this study was to investigate the dynamics of radiation-induced bystander effects (RIBE) in rats after exposing one brain hemisphere to either MRT or homogenous synchrotron radiation (HSR). MATERIALS AND METHODS Healthy and tumor-bearing Wistar rats were exposed to doses of 17.5, 35, 70 or 350 Gy, applied either as MRT or HSR to the right cerebral hemisphere. Rats were euthanized at 4, 8 and 12 hours after irradiation to assess the release of bystander signals. Brains and urinary bladders were dissected, and explants for bystander clonogenic reporter assays were set up. RESULTS Clonogenic survival showed that RIBE occurred in both the non-irradiated brain hemisphere and in bladder of normal and tumor-bearing rats, while the irradiated hemisphere showed the direct effects of radiation. CONCLUSION The RIBE observed in our reporter cells shows that both MRT and HSR yield a demonstrable abscopal effect after high doses of irradiation; presumably as part of a systemic response.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|