1
|
Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study. PLoS One 2015; 10:e0131951. [PMID: 26158464 PMCID: PMC4497661 DOI: 10.1371/journal.pone.0131951] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Collapse
|
2
|
Specificity of hemodynamic brain responses to painful stimuli: a functional near-infrared spectroscopy study. Sci Rep 2015; 5:9469. [PMID: 25820289 PMCID: PMC4377554 DOI: 10.1038/srep09469] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain.
Collapse
|
3
|
Milej D, Gerega A, Wabnitz H, Liebert A. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model. Phys Med Biol 2014; 59:1407-24. [DOI: 10.1088/0031-9155/59/6/1407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Martelli F, Di Ninni P, Zaccanti G, Contini D, Spinelli L, Torricelli A, Cubeddu R, Wabnitz H, Mazurenka M, Macdonald R, Sassaroli A, Pifferi A. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:076011. [PMID: 25023415 DOI: 10.1117/1.jbo.19.7.076011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/05/2014] [Indexed: 05/19/2023]
Abstract
We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt.18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.
Collapse
Affiliation(s)
- Fabrizio Martelli
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Di Ninni
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Giovanni Zaccanti
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rinaldo Cubeddu
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalycIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Mikhail Mazurenka
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalycIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
5
|
Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014; 85 Pt 1:28-50. [DOI: 10.1016/j.neuroimage.2013.05.106] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 05/21/2013] [Indexed: 02/02/2023] Open
|
6
|
Martelli F, Pifferi A, Contini D, Spinelli L, Torricelli A, Wabnitz H, Macdonald R, Sassaroli A, Zaccanti G. Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: Basic concepts. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:066014. [PMID: 23778947 PMCID: PMC4023647 DOI: 10.1117/1.jbo.18.6.066014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/17/2013] [Accepted: 05/06/2013] [Indexed: 05/20/2023]
Abstract
The design of inhomogeneous phantoms for diffuse optical imaging purposes using totally absorbing objects embedded in a diffusive medium is proposed and validated. From time-resolved and continuous-wave Monte Carlo simulations, it is shown that a given or desired perturbation strength caused by a realistic absorbing inhomogeneity of a certain absorption and volume can be approximately mimicked by a small totally absorbing object of a so-called equivalent black volume (equivalence relation). This concept can be useful in two ways. First, it can be exploited to design realistic inhomogeneous phantoms with different perturbation strengths simply using a set of black objects with different volumes. Further, it permits one to grade physiological or pathological changes on a reproducible scale of perturbation strengths given as equivalent black volumes, thus facilitating the performance assessment of clinical instruments. A set of plots and interpolating functions to derive the equivalent black volume corresponding to a given absorption change is provided. The application of the equivalent black volume concept for grading different optical perturbations is demonstrated for some examples.
Collapse
Affiliation(s)
- Fabrizio Martelli
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zucchelli L, Contini D, Re R, Torricelli A, Spinelli L. Method for the discrimination of superficial and deep absorption variations by time domain fNIRS. BIOMEDICAL OPTICS EXPRESS 2013; 4:2893-910. [PMID: 24409389 PMCID: PMC3862167 DOI: 10.1364/boe.4.002893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 05/03/2023]
Abstract
A method for the discrimination of superficial and deep absorption variations by time domain functional near infrared spectroscopy is presented. The method exploits the estimate of the photon time-dependent pathlength in different domains of the sampled medium and makes use of an approach based on time-gating of the photon distribution of time-of-flights. Validation of the method is performed in the two-layer geometry to focus on muscle and head applications. Numerical simulations varied the thickness of the upper layer, the interfiber distance, the shape of the instrument response function and the photon counts. Preliminary results from in vivo data are also shown.
Collapse
Affiliation(s)
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | | | | |
Collapse
|
8
|
Vermeij A, van Beek AHEA, Olde Rikkert MGM, Claassen JAHR, Kessels RPC. Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study. PLoS One 2012; 7:e46210. [PMID: 23029437 PMCID: PMC3460859 DOI: 10.1371/journal.pone.0046210] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during working-memory performance using functional Near-Infrared Spectroscopy (fNIRS), a noninvasive neuroimaging technique. Seventeen healthy young (21–32 years) and 17 healthy older adults (64–81 years) performed a verbal working-memory task (n-back). Oxygenated and deoxygenated hemoglobin concentration changes were registered by two fNIRS channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition in older adults, but not in young participants. In both young and older adults, prefrontal activation increased with rising working-memory load. Young adults showed slight right-hemispheric dominance at low levels of working-memory load, while no hemispheric differences were apparent in older adults. Analysis of the time-activation curve during the high working-memory load condition revealed a continuous increase of the hemodynamic response in the young. In contrast to that, a quadratic pattern of activation was found in the older participants. Based on these results it could be hypothesized that young adults were better able to keep the prefrontal cortex recruited over a prolonged period of time. To conclude, already at low levels of working-memory load do older adults recruit both hemispheres, possibly in an attempt to compensate for the observed aging-related decline in performance. Also, our study shows that aging effects on the time course of the hemodynamic response must be taken into account in the interpretation of the results of neuroimaging studies that rely on blood oxygen levels, such as fMRI.
Collapse
Affiliation(s)
- Anouk Vermeij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Bari V, Calcagnile P, Molteni E, Re R, Contini D, Spinelli L, Caffini M, Torricelli A, Cubeddu R, Cerutti S, Bianchi AM. From neurovascular coupling to neurovascular cascade: a study on neural, autonomic and vascular transients in attention. Physiol Meas 2012; 33:1379-97. [DOI: 10.1088/0967-3334/33/8/1379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Molteni E, Contini D, Caffini M, Baselli G, Spinelli L, Cubeddu R, Cerutti S, Bianchi AM, Torricelli A. Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056005. [PMID: 22612128 DOI: 10.1117/1.jbo.17.5.056005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.
Collapse
Affiliation(s)
- Erika Molteni
- Dipartimento di Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012; 63:921-35. [PMID: 22510258 DOI: 10.1016/j.neuroimage.2012.03.049] [Citation(s) in RCA: 1089] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 12/14/2022] Open
Abstract
This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes.
Collapse
Affiliation(s)
- Marco Ferrari
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
12
|
Mazurenka M, Jelzow A, Wabnitz H, Contini D, Spinelli L, Pifferi A, Cubeddu R, Mora AD, Tosi A, Zappa F, Macdonald R. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. OPTICS EXPRESS 2012; 20:283-90. [PMID: 22274351 DOI: 10.1364/oe.20.000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report results of the proof-of-principle tests of a novel non-contact tissue imaging system. The system utilizes a quasi-null source-detector separation approach for time-domain near-infrared spectroscopy, taking advantage of an innovative state-of-the-art fast-gated single photon counting detector. Measurements on phantoms demonstrate the feasibility of the non-contact approach for the detection of optically absorbing perturbations buried up to a few centimeters beneath the surface of a tissue-like turbid medium. The measured depth sensitivity and spatial resolution of the new system are close to the values predicted by Monte Carlo simulations for the inhomogeneous medium and an ideal fast-gated detector, thus proving the feasibility of the non-contact approach for high density diffuse reflectance measurements on tissue. Potential applications of the system are also discussed.
Collapse
Affiliation(s)
- M Mazurenka
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Elisee J, Gibson A, Arridge S. Diffuse optical cortical mapping using the boundary element method. BIOMEDICAL OPTICS EXPRESS 2011; 2:568-78. [PMID: 21412462 PMCID: PMC3047362 DOI: 10.1364/boe.2.000568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 05/24/2023]
Abstract
Cortical mapping, also called optical topography is a new medical imaging modality which allows the non-invasive investigation of the outer layers of the cortex. This technique is challenging and the geometry of the subject is very often over-simplified. We aim here to localize activated regions of an anatomically accurate brain. A Boundary Element Method is used for the forward model. The reconstruction of perturbations in the absorption coefficient is demonstrated in a geometrically realistic simulation and in vivo. These results show that diffuse optical imaging of the head can provide reliable activity maps when anatomical data is available.
Collapse
Affiliation(s)
- Josias Elisee
- Center for Medical Image Computing, Department of Computer Science and Department of Medical Physics, University College London, LONDON WC1E 6BT, UK
| | - Adam Gibson
- Center for Medical Image Computing, Department of Computer Science and Department of Medical Physics, University College London, LONDON WC1E 6BT, UK
| | - Simon Arridge
- Center for Medical Image Computing, Department of Computer Science and Department of Medical Physics, University College London, LONDON WC1E 6BT, UK
| |
Collapse
|
14
|
Tana MG, Montin E, Cerutti S, Bianchi AM. Exploring cortical attentional system by using fMRI during a Continuous Perfomance Test. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2010; 2010:329213. [PMID: 20011033 PMCID: PMC2780828 DOI: 10.1155/2010/329213] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 08/20/2009] [Indexed: 11/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) was performed in eight healthy subjects to identify the localization, magnitude, and volume extent of activation in brain regions that are involved in blood oxygen level-dependent (BOLD) response during the performance of Conners' Continuous Performance Test (CPT). An extensive brain network was activated during the task including frontal, temporal, and occipital cortical areas and left cerebellum. The more activated cluster in terms of volume extent and magnitude was located in the right anterior cingulate cortex (ACC). Analyzing the dynamic trend of the activation in the identified areas during the entire duration of the sustained attention test, we found a progressive decreasing of BOLD response probably due to a habituation effect without any deterioration of the performances. The observed brain network is consistent with existing models of visual object processing and attentional control and may serve as a basis for fMRI studies in clinical populations with neuropsychological deficits in Conners' CPT performance.
Collapse
Affiliation(s)
- M G Tana
- Department of Bioengineering, IIT Unit, Politecnico di Milano, Milan, Italy.
| | | | | | | |
Collapse
|