1
|
Galeone C, Steinsberger T, Donetti M, Martire MC, Milian FM, Sacchi R, Vignati A, Volz L, Durante M, Giordanengo S, Graeff C. Real-time delivered dose assessment in carbon ion therapy of moving targets. Phys Med Biol 2024; 69:205001. [PMID: 39299266 DOI: 10.1088/1361-6560/ad7d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Objective. Real-time adaptive particle therapy is being investigated as a means to maximize the treatment delivery accuracy. To react to dosimetric errors, a system for fast and reliable verification of the agreement between planned and delivered doses is essential. This study presents a clinically feasible, real-time 4D-dose reconstruction system, synchronized with the treatment delivery and motion of the patient, which can provide the necessary feedback on the quality of the delivery.Approach. A GPU-based analytical dose engine capable of millisecond dose calculation for carbon ion therapy has been developed and interfaced with the next generation of the dose delivery system (DDS) in use at Centro Nazionale di Adroterapia Oncologica (CNAO). The system receives the spot parameters and the motion information of the patient during the treatment and performs the reconstruction of the planned and delivered 4D-doses. After each iso-energy layer, the results are displayed on a graphical user interface by the end of the spill pause of the synchrotron, permitting verification against the reference dose. The framework has been verified experimentally at CNAO for a lung cancer case based on a virtual phantom 4DCT. The patient's motion was mimicked by a moving Ionization Chamber (IC) 2D-array.Mainresults. For the investigated static and 4D-optimized treatment delivery cases, real-time dose reconstruction was achieved with an average pencil beam dose calculation speed up to more than one order of magnitude smaller than the spot delivery. The reconstructed doses have been benchmarked against offline log-file based dose reconstruction with the TRiP98 treatment planning system, as well as QA measurements with the IC 2D-array, where an average gamma-index passing rate (3%/3 mm) of 99.8% and 98.3%, respectively, were achieved.Significance. This work provides the first real-time 4D-dose reconstruction engine for carbon ion therapy. The framework integration with the CNAO DDS paves the way for a swift transition to the clinics.
Collapse
Affiliation(s)
- C Galeone
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - T Steinsberger
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Donetti
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - M C Martire
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| | - F M Milian
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
- Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - R Sacchi
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - A Vignati
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - L Volz
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - M Durante
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Condensed Matter Physics, TU Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica, Università Federico II, Napoli, Italy
| | - S Giordanengo
- Istituto Nazionale di Fisica Nucleare, Torino, Italy
| | - C Graeff
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
He P, Mori S, Ono T, Nomoto A, Ishikawa H. Impact of varying the number of irradiation fields on dose distribution: A four-dimensional scanned carbon-ion lung radiotherapy. Radiat Phys Chem Oxf Engl 1993 2023; 212:111183. [DOI: 10.1016/j.radphyschem.2023.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
3
|
Sheng Y, Volz L, Wang W, Durante M, Graeff C. Evaluation of proton and carbon ion beam models in TReatment Planning for Particles 4D (TRiP4D) referring to a commercial treatment planning system. Z Med Phys 2023:S0939-3889(23)00079-X. [PMID: 37455229 DOI: 10.1016/j.zemedi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To investigate the accuracy of the treatment planning system (TPS) TRiP4D in reproducing doses computed by the clinically used TPS SyngoRT. METHODS Proton and carbon ion beam models in TRiP4D were converted from SyngoRT. Cubic plans with different depths in a water-tank phantom (WP) and previously treated and experimentally verified patient plans from SyngoRT were recalculated in TRiP4D. The target mean dose deviation (ΔDmean,T) and global gamma index (2%-2 mm for the absorbed dose and 3%-3mm for the RBE-weighted dose with 10% threshold) were evaluated. RESULTS The carbon and proton absorbed dose gamma passing rates (γ-PRs) were ≥99.93% and ΔDmean,T smaller than -0.22%. On average, the RBE-weighted dose Dmean,T was -1.26% lower for TRiP4D than SyngoRT for cubic plans. In TRiP4D, the faster analytical 'low dose approximation' (Krämer, 2006) was used, while SyngoRT used a stochastic implementation (Krämer, 2000). The average ΔDmean, T could be reduced to -0.59% when applying the same biological effect calculation algorithm. However, the dose recalculation time increased by a factor of 79-477. ΔDmean,T variation up to -2.27% and -2.79% was observed for carbon absorbed and RBE-weighted doses in patient plans. The γ-PRs were ≥93.92% and ≥91.83% for patient plans, except for one proton beam with a range shifter (γ-PR of 64.19%). CONCLUSION The absorbed dose between TRiP4D and SyngoRT were identical for both proton and carbon ion plans in the WP. Compared to SyngoRT, TRiP4D underestimated the target RBE-weighted dose; however more efficient in RBE-weighted dose calculation. Large variation for proton beam with range shifter was observed. TRiP4D will be used to evaluate doses delivered to moving targets. Uncertainties inherent to the 4D-dose reconstruction calculation are expected to be significantly larger than the dose errors reported here. For this reason, the residual differences between TRiP4D and SyngoRT observed in this study are considered acceptable. The study was approved by the Institutional Research Board of Shanghai Proton and Heavy Ion Center (approval number SPHIC-MP-2020-04, RS).
Collapse
Affiliation(s)
- Yinxiangzi Sheng
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lennart Volz
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Marco Durante
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Institute of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
4
|
Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 2023; 131:104046. [PMID: 37207092 PMCID: PMC7614547 DOI: 10.1016/j.ppnp.2023.104046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) radiotherapy. However, the fraction of patients treated with accelerated particles is still very small and the therapy is only applied to a few solid cancer indications. The growth of particle therapy strongly depends on technological innovations aiming to make the therapy cheaper, more conformal and faster. The most promising solutions to reach these goals are superconductive magnets to build compact accelerators; gantryless beam delivery; online image-guidance and adaptive therapy with the support of machine learning algorithms; and high-intensity accelerators coupled to online imaging. Large international collaborations are needed to hasten the clinical translation of the research results.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica “Ettore Pancini”, University Federico II, Naples, Italy
| |
Collapse
|
5
|
Steinsberger T, Donetti M, Lis M, Volz L, Wolf M, Durante M, Graeff C. Experimental Validation of a Real-Time Adaptive 4D-Optimized Particle Radiotherapy Approach to Treat Irregularly Moving Tumors. Int J Radiat Oncol Biol Phys 2023; 115:1257-1268. [PMID: 36462690 DOI: 10.1016/j.ijrobp.2022.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Treatment of locally advanced lung cancer is limited by toxicity and insufficient local control. Particle therapy could enable more conformal treatment than intensity modulated photon therapy but is challenged by irregular tumor motion, associated range changes, and tumor deformations. We propose a new strategy for robust, online adaptive particle therapy, synergizing 4-dimensional optimization with real-time adaptive beam tracking. The strategy was tested and the required motion monitoring precision was determined. METHODS AND MATERIALS In multiphase 4-dimensional dose delivery (MP4D), a dedicated quasistatic treatment plan is delivered to each motion phase of periodic 4-dimensional computed tomography (4DCT). In the new extension, "MP4D with residual tracking" (MP4DRT), lateral beam tracking compensates for the displacement of the tumor center-of-mass relative to the current phase in the planning 4DCT. We implemented this method in the dose delivery system of a clinical carbon facility and tested it experimentally for a lung cancer plan based on a periodic subset of a virtual lung 4DCT (planned motion amplitude 20 mm). Treatments were delivered in a quality assurance-like setting to a moving ionization chamber array. We considered variable motion amplitudes and baseline drifts. The required motion monitoring precision was evaluated by adding noise to the motion signal. Log-file-based dose reconstructions were performed in silico on the entire 4DCT phantom data set capable of simulating nonperiodic motion. MP4DRT was compared with MP4D, rescanned beam tracking, and internal target volume plans. Treatment quality was assessed in terms of target coverage (D95), dose homogeneity (D5-D95), conformity number, and dose to heart and lung. RESULTS For all considered motion scenarios and metrics, MP4DRT produced the most favorable metrics among the tested motion mitigation strategies and delivered high-quality treatments. The conformity was similar to static treatments. The motion monitoring precision required for D95 >95% was 1.9 mm. CONCLUSIONS With clinically feasible motion monitoring, MP4DRT can deliver highly conformal dose distributions to irregularly moving targets.
Collapse
Affiliation(s)
- Timo Steinsberger
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Institute for Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Marco Donetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Michelle Lis
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Physics Research, Leo Cancer Care, Middleton, Wisconsin; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana
| | - Lennart Volz
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Moritz Wolf
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Institute for Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Department of Electrical Engineering and Information Technology, Technical University, Darmstadt, Germany.
| |
Collapse
|
6
|
Duetschler A, Prendi J, Safai S, Weber DC, Lomax AJ, Zhang Y. Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion. Phys Med Biol 2022; 68. [PMID: 36571234 DOI: 10.1088/1361-6560/aca9b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Objective.4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion.Approach.For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∼4-18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4-200 ms) or with 8 phases per breathing cycle (500-1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (Vdosediff>5%) and differences in CTVV95%andD5%-D95%compared to the free breathing scenario were evaluated.Main results.Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted inVdosediff>5%of on average 34%, which resulted in an overestimation ofV95%up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the averageVdosediff>5%to 16% (overestimationV95%up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (Vdosediff>5%up to 55%) and differences due to temporal resolution were much smaller (Vdosediff>5%up to 10%).Significance.It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects.
Collapse
Affiliation(s)
- A Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - J Prendi
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, University of Basel, 4056 Basel, CH, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - A J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
7
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
8
|
Hamatani N, Tsubouchi T, Takashina M, Yagi M, Kanai T. Commissioning of carbon-ion radiotherapy for moving targets at the Osaka Heavy-Ion Therapy Center. Med Phys 2021; 49:801-812. [PMID: 34894413 PMCID: PMC9306684 DOI: 10.1002/mp.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose Herein, we report the methods and results of the Hitachi carbon‐ion therapy facility commissioning to determine the optimum values of the magnitude of movement and repaint number in respiratory‐gated irradiation. Methods A virtual‐cylinder target was created using the treatment‐planning system (VQA Plan), and measurements were performed to study the effects of respiratory movements using a two‐dimensional ionization‐chamber array detector and a phantom with movable wedge and stage. For simulations, we selected a 10 × 10 × 10 cm3 cubic irradiation pattern with a uniform physical dose and two actual cases of liver‐cancer treatments, whose prescribed doses were 60 Gy(RBE)/4 fraction (Case 1) and 60 Gy(RBE)/12 fraction (Case 2). We employed two types of repainting methods, one produced by the algorithm of VQA Plan (VQA algorithm) and the other by ideal repainting. The latter completely repeats all spots with set number of repaintings. We performed flatness calculations and gamma analysis to evaluate the effects of each condition. Results From the measurements, the gamma passing rates for which the criteria were 3%/3 mm exceeded 95% for displacements in the head‐to‐tail direction if the repaint number was greater than 3 and the magnitude of the residual motions was less than 5.0 mm. In simulations with the cubic irradiation pattern, the gamma passing rates (with criteria of 2%/2 mm) exceeded 95% when the magnitude of the residual motions was 3.0 mm and the repaint number was greater than 3. When the repaint number was set to 4 in the VQA with the actual liver cases, the flatness results for Case 2 was minimal. For ideal repainting, the flatness results for all ports fell within ∼3.0% even when the magnitude of the residual motions was 5.0 mm if the repaint number was 6. However, the flatness was less than 3.0% for almost all ports if the magnitude of the residual motions was less than 3.0 mm with a repaint number of 4 in case of both types of repaint methods. Conclusions At our facility, carbon‐ion radiotherapy can be provided safely to a moving target with residual motions of 3.0 mm magnitude and with a repaint number of 4.
Collapse
Affiliation(s)
| | | | | | - Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
9
|
Extension of RBE-weighted 4D particle dose calculation for non-periodic motion. Phys Med 2021; 91:62-72. [PMID: 34715550 DOI: 10.1016/j.ejmp.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Highly conformal scanned Carbon Ion Radiotherapy (CIRT) might permit dose escalation and improved local control in advanced stage thoracic tumors, but is challenged by target motion. Dose calculation algorithms typically assume a periodically repeating, regular motion. To assess the effect of realistic, irregular motion, new algorithms of validated accuracy are needed. METHODS We extended an in-house treatment planning system to calculate RBE-weighted dose distributions in CIRT on non-periodic CT image sequences. Dosimetric accuracy was validated experimentally on a moving, time-resolved ionization chamber array. Log-file based dose reconstructions were compared by gamma analysis and correlation to measurements at every intermediate detector frame during delivery. The impact of irregular motion on treatment quality was simulated on a virtual 4DCT thorax phantom. Periodic motion was compared to motion with varying amplitude and period ± baseline drift. Rescanning as a mitigation strategy was assessed on all scenarios. RESULTS In experimental validation, average gamma pass rates were 99.89+-0.30% for 3%/3 mm and 88.2+-2.2% for 2%/2 mm criteria. Average correlation for integral dose distributions was 0.990±0.002. Median correlation for single 200 ms frames was 0.947±0.006. In the simulations, irregular motion deteriorated V95 target coverage to 81.2%, 76.6% and 79.0% for regular, irregular motion and irregular motion with base-line drift, respectively. Rescanning restored V95 to >98% for both scenarios without baseline drift, but not with additional baseline drift at 83.7%. CONCLUSIONS The validated algorithm permits to study the effects of irregular motion and to develop and adapt appropriate motion mitigation techniques.
Collapse
|
10
|
Alina G, Krieger M, Jud C, Duetschler A, Salomir R, Bieri O, Bauman G, Nguyen D, Weber DC, Lomax AJ, Zhang Y, Cattin PC. Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. ACTA ACUST UNITED AC 2020; 65:235050. [DOI: 10.1088/1361-6560/abaa26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Kostiukhina N, Palmans H, Stock M, Knopf A, Georg D, Knäusl B. Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy. Phys Med Biol 2020; 65:125015. [PMID: 32340002 DOI: 10.1088/1361-6560/ab8d79] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Four-dimensional dose calculation (4D-DC) is crucial for predicting the dosimetric outcome in the presence of intra-fractional organ motion. Time-resolved dosimetry can provide significant insights into 4D pencil beam scanning dose accumulation and is therefore irreplaceable for benchmarking 4D-DC. In this study a novel approach of time-resolved dosimetry using five PinPoint ionization chambers (ICs) embedded in an anthropomorphic dynamic phantom was employed and validated against beam delivery details. Beam intensity variations as well as the beam delivery time structure were well reflected with an accuracy comparable to the temporal resolution of the IC measurements. The 4D dosimetry approach was further applied for benchmarking the 4D-DC implemented in the RayStation 6.99 treatment planning system. Agreement between computed values and measurements was investigated for (i) partial doses based on individual breathing phases, and (ii) temporally distributed cumulative doses. For varied beam delivery and patient-related parameters the average unsigned dose difference for (i) was 0.04 ± 0.03 Gy over all considered IC measurement values, while the prescribed physical dose was 2 Gy. By implementing (ii), a strong effect of the dose gradient on measurement accuracy was observed. The gradient originated from scanned beam energy modulation and target motion transversal to the beam. Excluding measurements in the high gradient the relative dose difference between measurements and 4D-DCs for a given treatment plan at the end of delivery was 3.5% on average and 6.6% at maximum over measurement points inside the target. Overall, the agreement between 4D dose measurements in the moving phantom and retrospective 4D-DC was found to be comparable to the static dose differences for all delivery scenarios. The presented 4D-DC has been proven to be suitable for simulating treatment deliveries with various beam- as well as patient-specific parameters and can therefore be employed for dosimetric validation of different motion mitigation techniques.
Collapse
Affiliation(s)
- N Kostiukhina
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, Vienna, Austria. Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
12
|
He P, Mori S. Perturbation analysis of 4D dose distribution for scanned carbon-ion beam radiotherapy. Phys Med 2020; 74:74-82. [PMID: 32442912 DOI: 10.1016/j.ejmp.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To evaluate the patients' set-up error-induced perturbation effects on 4D dose distributions (4DDD) of range-adapted internal target volume-based (raITV) treatment plan using lung and liver 4DCT data sets. METHODS We enrolled 20 patients with lung and liver cancer treated with respiratory-gated carbon-ion beam scanning therapy. PTVs were generated by adding a 2 mm range-adapted set-up margin on the raITVs. Set-up errors were simulated by shifting the beam isocenter in three translational directions of ±2 mm, ±4 mm, and ±6 mm. 4DDDs were calculated for both nominal and isocenter-shifted situations. Dose metrics of CTV dose coverage (D95) and normal tissue sparing were evaluated. Statistical significance with p < 0.01 was considered by Wilcoxon signed rank test. RESULTS The CTV dose coverage was more sensitive to set-up errors for lung cases than for liver cases, and more serious in superior-inferior direction. The sufficient CTV-D95 > 98% could be achieved with set-up errors less than ±2 mm in all shift directions both for lung and liver cases. With the increase of set-up error, the CTV dose coverage decreased gradually. The clinical criterial of CTV-D95 > 95% could not be fulfilled with set-up error reached to ±4 mm for lung cases, and ±6 mm for liver cases. OAR doses did not have a significant difference with each set-up error for both lung and liver cases. CONCLUSIONS The range-adapted set-up margin successfully prevented dose degradation of 4DDDs in the presence of the same magnitude of set-up error for raITV-based carbon-ion beam scanning therapy.
Collapse
Affiliation(s)
- Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
13
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Zhang Y, Huth I, Weber DC, Lomax AJ. Dosimetric uncertainties as a result of temporal resolution in 4D dose calculations for PBS proton therapy. Phys Med Biol 2019; 64:125005. [PMID: 31035271 DOI: 10.1088/1361-6560/ab1d6f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work investigates the dosimetric impact on 4D dose distribution estimation for pencil beam scanned (PBS) proton therapy as function of the temporal resolution used for the time resolved dose calculation. For three liver patients (CTV volume: 403/122/264 cc), 10-phase 4DCT-MRI datasets with ~15 mm tumour motion were simulated for seven different motion periods (2-8 s). 4D dose distributions were calculated and compared by considering both coarser and finer temporal resolutions (200-800 ms and 20 ms). Single scanned 4D plans for seven fraction doses (0.7/2/4/6/8/10/12 Gy) were investigated, whose dose delivery timelines were simulated by assuming two types of PBS scanning modes: (1) layer-wise raster scanning with varying dose rate per layer and (2) fixed dose rate, discrete scanning. For both delivery scenarios, dosimetric assessments were performed by comparing corresponding dose distributions derived from the two 4D dose calculation (4DDC) results. Differences were quantified as the difference in D5-D95 of the CTV and by comparing total volume of the CTV receiving point-to-point absolute dose difference more than 5%. Our results show that varying temporal resolution in 4DDC has a direct influence on the final accumulated dose distribution. For all scenarios, patients, fraction doses and motion periods studied, pronounced dose differences can be observed between the two 4DDC results. However, the magnitude of differences varies depending on the selected PBS scanning model and prescribed dose per field. For fixed dose rate delivery, the average duration of the delivery of each spot increases for hypo-fractionated treatments, enhancing the benefit of using a finer temporal resolution for 4DDC. In particular, for fraction doses >4 Gy and motion periods less than 4 s, warping the dose between discrete 4DCT phases can over predict the interplay effect (D5-D95 in CTV) by 3%-10% compared to the use of a finer temporal resolution, resulting in more than 20% of CTV voxels having absolute dose differences of over 5% between the two 4DDC approaches. These findings emphasize the importance for PBS 4DDC using finer temporal resolutions than provided by conventional 4D dose accumulation techniques. In particular, the observed differences in dosimetric effects using the fine temporal resolution provided by dose warping cannot be neglected for hypo-fractionation and short breathing periods, especially when using constant dose rates for dose delivery.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Villigen-PSI, Switzerland. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
15
|
Giordanengo S, Vignati A, Attili A, Ciocca M, Donetti M, Fausti F, Manganaro L, Milian FM, Molinelli S, Monaco V, Russo G, Sacchi R, Varasteh Anvar M, Cirio R. RIDOS: A new system for online computation of the delivered dose distributions in scanning ion beam therapy. Phys Med 2019; 60:139-149. [PMID: 31000074 DOI: 10.1016/j.ejmp.2019.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To describe a new system for scanned ion beam therapy, named RIDOS (Real-time Ion DOse planning and delivery System), which performs real time delivered dose verification integrating the information from a clinical beam monitoring system with a Graphic Processing Unit (GPU) based dose calculation in patient Computed Tomography. METHODS A benchmarked dose computation algorithm for scanned ion beams has been parallelized and adapted to run on a GPU architecture. A workstation equipped with a NVIDIA GPU has been interfaced through a National Instruments PXI-crate with the dose delivery system of the Italian National Center of Oncological Hadrontherapy (CNAO) to receive in real-time the measured beam parameters. Data from a patient monitoring system are also collected to associate the respiratory phases with each spot during the delivery of the dose. Using both measured and planned spot properties, RIDOS evaluates during the few seconds of inter-spill time the cumulative delivered and prescribed dose distributions and compares them through a fast γ-index algorithm. RESULTS The accuracy of the GPU-based algorithms was assessed against the CPU-based ones and the differences were found below 1‰. The cumulative planned and delivered doses are computed at the end of each spill in about 300 ms, while the dose comparison takes approximatively 400 ms. The whole operation provides the results before the next spill starts. CONCLUSIONS RIDOS system is able to provide a fast computation of the delivered dose in the inter-spill time of the CNAO facility and allows to monitor online the dose deposition accuracy all along the treatment.
Collapse
Affiliation(s)
- S Giordanengo
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy.
| | - A Vignati
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - A Attili
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - M Ciocca
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - M Donetti
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - F Fausti
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L Manganaro
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - F M Milian
- Universidade Estadual de Santa Cruz, Rod Jorge Amado, km 16, 45652900 Ilheus, Brazil; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - S Molinelli
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - V Monaco
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - G Russo
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - R Sacchi
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - M Varasteh Anvar
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - R Cirio
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| |
Collapse
|
16
|
Biological Cardiac Tissue Effects of High-Energy Heavy Ions - Investigation for Myocardial Ablation. Sci Rep 2019; 9:5000. [PMID: 30899027 PMCID: PMC6428839 DOI: 10.1038/s41598-019-41314-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases. We have recently performed a feasibility study in a swine model using high doses of high-energy C-ions to target specific cardiac structures. Interruption of cardiac conduction was observed in some animals. Here we report the biological effects measured in the pig heart tissue of the same animals six months after the treatment. Immunohistological analysis of the target tissue showed (1.) long-lasting vascular damage, i.e. persistent hemorrhage, loss of microvessels, and occurrence of siderophages, (2.) fibrosis and (3.) loss of polarity of targeted cardiomyocytes and wavy fibers with vacuolization. We conclude that the observed physiological changes in heart function are produced by radiation-induced fibrosis and cardiomyocyte functional inactivation. No effects were observed in the normal tissue traversed by the particle beam, suggesting that charged particles have the potential to produce ablation of specific heart targets with minimal side effects.
Collapse
|
17
|
Graeff C, Bert C. Noninvasive cardiac arrhythmia ablation with particle beams. Med Phys 2018; 45:e1024-e1035. [DOI: 10.1002/mp.12595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Christian Graeff
- GSI Helmholzzentrum für Schwerionenforschung GmbH 64291 Darmstadt Germany
| | - Christoph Bert
- Department of Radiation Oncology Universitätsklinikum Erlangen Friedrich‐Alexander‐Universität 91054 Erlangen‐Nürnberg Germany
| |
Collapse
|
18
|
Liu C, Sio TT, Deng W, Shan J, Daniels TB, Rule WG, Lara PR, Korte SM, Shen J, Ding X, Schild SE, Bues M, Liu W. Small-spot intensity-modulated proton therapy and volumetric-modulated arc therapies for patients with locally advanced non-small-cell lung cancer: A dosimetric comparative study. J Appl Clin Med Phys 2018; 19:140-148. [PMID: 30328674 PMCID: PMC6236833 DOI: 10.1002/acm2.12459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose To compare dosimetric performance of volumetric‐modulated arc therapy (VMAT) and small‐spot intensity‐modulated proton therapy for stage III non‐small‐cell lung cancer (NSCLC). Methods and Materials A total of 24 NSCLC patients were retrospectively reviewed; 12 patients received intensity‐modulated proton therapy (IMPT) and the remaining 12 received VMAT. Both plans were generated by delivering prescription doses to clinical target volumes (CTV) on averaged 4D‐CTs. The dose‐volume‐histograms (DVH) band method was used to quantify plan robustness. Software was developed to evaluate interplay effects with randomized starting phases of each field per fraction. DVH indices were compared using Wilcoxon rank sum test. Results Compared with VMAT, IMPT delivered significantly lower cord Dmax, heart Dmean, and lung V5 Gy[RBE] with comparable CTV dose homogeneity, and protection of other OARs. In terms of plan robustness, the IMPT plans were statistically better than VMAT plans in heart Dmean, but were statistically worse in CTV dose coverage, cord Dmax, lung Dmean, and V5 Gy[RBE]. Other DVH indices were comparable. The IMPT plans still met the standard clinical requirements with interplay effects considered. Conclusions Small‐spot IMPT improves cord, heart, and lung sparing compared to VMAT and achieves clinically acceptable plan robustness at least for the patients included in this study with motion amplitude less than 11 mm. Our study supports the usage of IMPT to treat some lung cancer patients.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Deng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jie Shan
- Department of Biomedical Informatics, Arizona State University, Tempe, AZ, USA
| | | | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Pedro R Lara
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Shawn M Korte
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
19
|
Cummings D, Tang S, Ichter W, Wang P, Sturgeon JD, Lee AK, Chang C. Four-dimensional Plan Optimization for the Treatment of Lung Tumors Using Pencil-beam Scanning Proton Radiotherapy. Cureus 2018; 10:e3192. [PMID: 30402360 PMCID: PMC6200439 DOI: 10.7759/cureus.3192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to evaluate the effectiveness of four-dimensional (4D) robust optimization for proton pencil-beam scanning (PBS) treatment of lung tumors. Patients and methods In seven patients with lung cancer, proton beam therapy was planned using 4D robust optimization over 4D computed tomography (CT) data sets. The gross target volume (GTV) was contoured based on individual breathing phases, and a 5-mm expansion was used to generate the clinical target volume (CTV) for each phase. The 4D optimization was conducted directly on the 4D CT data set. The robust optimization settings included a CT Hounsfield unit (HU) uncertainty of 4% and a setup uncertainty of 5 mm to obtain the CTV. Additional target dose objectives such as those for the internal target volume (ITV) as well as the organ-at-risk (OAR) dose requirements were placed on the average CT. For comparison, three-dimensional (3D) robust optimization was also performed on the average CT. An additional verification 4D CT was performed to verify plan robustness against inter-fractional variations. Results Target coverages were generally higher for 4D optimized plans. The difference was most pronounced for ITV V70Gy when evaluating individual breathing phases. The 4D optimized plans were shown to be able to maintain the ITV coverage at full prescription, while 3D optimized plans could not. More importantly, this difference in ITV V70Gy between the 4D and 3D optimized plans was also consistently observed when evaluating the verification 4D CT, indicating that the 4D optimized plans were more robust against inter-fractional variations. Less difference was seen between the 4D and 3D optimized plans in the lungs criteria: V5Gy and V20Gy. Conclusion The proton PBS treatment plans optimized directly on the 4D CT were shown to be more robust when compared to those optimized on a regular 3D CT. Robust 4D optimization can improve the target coverage for the proton PBS lung treatments.
Collapse
Affiliation(s)
| | - Shikui Tang
- Medical Physics, Texas Center for Proton Therapy, Irving, USA
| | | | - Peng Wang
- Physics, Texas Center for Proton Therapy, Irving, USA
| | | | - Andrew K Lee
- Radiation Oncology, Texas Center for Proton Therapy, Irving, USA
| | - Chang Chang
- Medical Physics, Texas Center for Proton Therapy, Irving, USA
| |
Collapse
|
20
|
Pfeiler T, Bäumer C, Engwall E, Geismar D, Spaan B, Timmermann B. Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy. Z Med Phys 2018; 28:121-133. [DOI: 10.1016/j.zemedi.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
21
|
Krieger M, Klimpki G, Fattori G, Hrbacek J, Oxley D, Safai S, Weber DC, Lomax AJ, Zhang Y. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy. ACTA ACUST UNITED AC 2018; 63:055005. [DOI: 10.1088/1361-6560/aaad1e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Liu C, Schild SE, Chang JY, Liao Z, Korte S, Shen J, Ding X, Hu Y, Kang Y, Keole SR, Sio TT, Wong WW, Sahoo N, Bues M, Liu W. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer. Int J Radiat Oncol Biol Phys 2018; 101:479-489. [PMID: 29550033 DOI: 10.1016/j.ijrobp.2018.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. METHODS AND MATERIALS Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. RESULTS Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. CONCLUSIONS Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Shawn Korte
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yixiu Kang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
23
|
Anderle K, Stroom J, Vieira S, Pimentel N, Greco C, Durante M, Graeff C. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer. Phys Med Biol 2018; 63:025034. [PMID: 29165322 DOI: 10.1088/1361-6560/aa9c62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.
Collapse
Affiliation(s)
- Kristjan Anderle
- GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Bert C, Herfarth K. Management of organ motion in scanned ion beam therapy. Radiat Oncol 2017; 12:170. [PMID: 29110693 PMCID: PMC5674859 DOI: 10.1186/s13014-017-0911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategies for patient specific treatment planning such as an increased beam focus or the use of internal target volumes incorporating range changes.Several work packages of the Clinical Research Units 214 and 214/2 funded by the German Research Council investigated the management of organ motion in scanned ion beam therapy. A focus was laid on 4D treatment planning using TRiP4D and the development of motion mitigation strategies including their quality assurance. This review focuses on the activity in the second funding period covering adaptive treatment planning strategies, 4D treatment plan optimization, and the application of motion management in pre-clinical research on radiation therapy of cardiac arrhythmias.
Collapse
Affiliation(s)
- Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Richter D, Lehmann HI, Eichhorn A, Constantinescu AM, Kaderka R, Prall M, Lugenbiel P, Takami M, Thomas D, Bert C, Durante M, Packer DL, Graeff C. ECG-based 4D-dose reconstruction of cardiac arrhythmia ablation with carbon ion beams: application in a porcine model. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1361-6560/aa7b67] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Wölfelschneider J, Seregni M, Fassi A, Ziegler M, Baroni G, Fietkau R, Riboldi M, Bert C. Examination of a deformable motion model for respiratory movements and 4D dose calculations using different driving surrogates. Med Phys 2017; 44:2066-2076. [PMID: 28369900 DOI: 10.1002/mp.12243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate a surrogate-driven motion model based on four-dimensional computed tomography that is able to predict CT volumes corresponding to arbitrary respiratory phases. Furthermore, the comparison of three different driving surrogates is examined and the feasibility of using the model for 4D dose re-calculation will be discussed. METHODS The study is based on repeated 4DCTs of twenty patients treated for bronchial carcinoma and metastasis. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the model considers inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. The estimated volumes resulting from the model were compared to ground-truth clinical 4DCTs using absolute HU differences in the lung region and landmarks localized using the Scale Invariant Feature Transform. Finally, the γ-index was used to evaluate the dosimetric effects of the intensity differences measured between the estimated and the ground-truth CT volumes. RESULTS The results show absolute HU differences between estimated and ground-truth images with median value (± standard deviation) of (61.3 ± 16.7) HU. Median 3D distances, measured on about 400 matching landmarks in each volume, were (2.9 ± 3.0) mm. 3D errors up to 28.2 mm were found for CT images with artifacts or reduced quality. Pass rates for all surrogate approaches were above 98.9% with a γ-criterion of 2%/2 mm. CONCLUSION The results depend mainly on the image quality of the initial 4DCT and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however, uncertainties decrease for volumetric approaches. Application of the model for 4D dose calculations is feasible.
Collapse
Affiliation(s)
- Jens Wölfelschneider
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Matteo Seregni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
| | - Aurora Fassi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
| | - Marc Ziegler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marco Riboldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| |
Collapse
|
27
|
Evaluation of mesh- and binary-based contour propagation methods in 4D thoracic radiotherapy treatments using patient 4D CT images. Phys Med 2017; 36:46-53. [DOI: 10.1016/j.ejmp.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022] Open
|
28
|
Graeff C. Robustness of 4D-optimized scanned carbon ion beam therapy against interfractional changes in lung cancer. Radiother Oncol 2017; 122:387-392. [PMID: 28073579 DOI: 10.1016/j.radonc.2016.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Moving targets could be conformally treated with actively scanned carbon ion beams using 4D-optimization. As this heavily exploits 4D-CTs, an important question is whether the conformity also upholds in the context of interfractional changes, i.e. variable positioning, anatomy and breathing patterns. MATERIALS AND METHODS In 4 lung cancer patients, 6 weekly 4D-CTs were available. 4D-CTs and their phases were non-rigidly registered to propagate contours and 4D-doses. On the first 4D-CT, a 4D-optimized plan delivering a uniform dose to each motion phase (total dose 9.4Gy(RBE)) was simulated, as well as an ITV plan for comparison. On the five following 4D-CTs, 4D-dose was forward calculated and evaluated for target coverage and conformity. Variable uniform (3-7mm) and range margins (2mm/%) were investigated. RESULTS For all patients, target coverage (V95>95% accumulated over 5 fractions) could be achieved, but with variable margin size weakly depending on motion amplitude and range changes. The same margins were also necessary for ITV plans, which lead to lower conformity and higher integral doses. CONCLUSION 4D-optimization appears feasible also under interfractional changes and maintains a dosimetric advantage over less conformal ITV irradiations. Further studies are needed to identify patients benefiting most from the technically more complex 4D-optimization.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| |
Collapse
|
29
|
He P, Li Q, Zhao T, Liu X, Dai Z, Ma Y. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery. Phys Med Biol 2016; 61:8541-8552. [PMID: 27845937 DOI: 10.1088/0031-9155/61/24/8541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient's breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.
Collapse
Affiliation(s)
- Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci Rep 2016; 6:38895. [PMID: 27996023 PMCID: PMC5171237 DOI: 10.1038/srep38895] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.
Collapse
|
31
|
Kurz C, Bauer J, Unholtz D, Richter D, Herfarth K, Debus J, Parodi K. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion. Med Phys 2016; 43:975-82. [PMID: 26843257 DOI: 10.1118/1.4940356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. METHODS Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. RESULTS Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. CONCLUSIONS The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.
Collapse
Affiliation(s)
- Christopher Kurz
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Bauer
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Daniel Unholtz
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Daniel Richter
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, GermanyStrahlenklinik, Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Katia Parodi
- Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, GermanyDepartment of Medical Physics, Ludwig-Maximilians-University, Munich 85748, Germany
| |
Collapse
|
32
|
Anderle K, Stroom J, Pimentel N, Greco C, Durante M, Graeff C. In silico comparison of photons versus carbon ions in single fraction therapy of lung cancer. Phys Med 2016; 32:1118-23. [DOI: 10.1016/j.ejmp.2016.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
|
33
|
Matney JE, Park PC, Li H, Court LE, Zhu XR, Dong L, Liu W, Mohan R. Perturbation of water-equivalent thickness as a surrogate for respiratory motion in proton therapy. J Appl Clin Med Phys 2016; 17:368-378. [PMID: 27074459 PMCID: PMC5546214 DOI: 10.1120/jacmp.v17i2.5795] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/02/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Respiratory motion is traditionally assessed using tumor motion magnitude. In proton therapy, respiratory motion causes density variations along the beam path that result in uncertainties of proton range. This work has investigated the use of water‐equivalent thickness (WET) to quantitatively assess the effects of respiratory motion on calculated dose in passively scattered proton therapy (PSPT). A cohort of 29 locally advanced non‐small cell lung cancer patients treated with 87 PSPT treatment fields were selected for analysis. The variation in WET (ΔWET) along each field was calculated between exhale and inhale phases of the simulation four‐dimensional computed tomography. The change in calculated dose (ΔDose) between full‐inhale and full‐exhale phase was quantified for each field using dose differences, 3D gamma analysis, and differential area under the curve (ΔAUC) analysis. Pearson correlation coefficients were calculated between ΔDose and ΔWET. Three PSPT plans were redesigned using field angles to minimize variations in ΔWET and compared to the original plans. The median ΔWET over 87 treatment fields ranged from 1‐9 mm, while the ΔWET 95th percentile value ranged up to 42 mm. The ΔWET was significantly correlated (p<0.001) to the ΔDose for all metrics analyzed. The patient plans that were redesigned using ΔWET analysis to select field angles were more robust to the effects of respiratory motion, as ΔAUC values were reduced by more than 60% in all three cases. The tumor motion magnitude alone does not capture the potential dosimetric error due to respiratory motion because the proton range is sensitive to the motion of all patient anatomy. The use of ΔWET has been demonstrated to identify situations where respiratory motion can impact the calculated dose. Angular analysis of ΔWET may be capable of designing radiotherapy plans that are more robust to the effects of respiratory motion. PACS number(s): 87.55.‐x
Collapse
|
34
|
Wölfelschneider J, Friedrich T, Lüchtenborg R, Zink K, Scholz M, Dong L, Durante M, Bert C. Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment. Radiother Oncol 2016; 118:498-503. [DOI: 10.1016/j.radonc.2015.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
35
|
Constantinescu A, Lehmann HI, Packer DL, Bert C, Durante M, Graeff C. Treatment Planning Studies in Patient Data With Scanned Carbon Ion Beams for Catheter-Free Ablation of Atrial Fibrillation. J Cardiovasc Electrophysiol 2016; 27:335-44. [PMID: 26638826 DOI: 10.1111/jce.12888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Catheter ablation with isolation of the pulmonary veins is a common treatment option for atrial fibrillation but still has insufficient success rates and carries several interventional risks. These treatment planning studies assessed if high-dose single fraction treatment with scanned carbon ions (12C) can be reliably delivered for AF ablation, while sparing risk structures and considering respiratory and contractile target motion. METHODS AND RESULTS Time resolved CT scans of complete respiratory and cardiac cycles of 9 and 5 patients, respectively, were obtained. Ablation lesions and organs at risk for beam delivery were contoured. Single fraction intensity-modulated particle therapy with target doses of 25 and 40 Gy were studied and motion influences on these deliveries mitigated. Respiration had a large influence on lesion displacement (≤ 2 cm). End expiration could be exploited as a stable gating window. Smaller, but less predictable, heartbeat displacements (< 6 mm) remained to be mitigated because cardiac contraction resulted in insufficient dose coverage (V95 < 90%) if uncompensated. Repeated irradiation (12C beam rescanning) during breath hold was used to accommodate contractile motion, resulting in good dose coverage. Dose depositions to all organs at risk were carefully examined and did not exceed values for X-ray cancer treatment. CONCLUSION Treatment planning of 12C with delivery of physical ionizing radiation doses that have been described to induce complete block is feasible for AF ablation, considering human anatomy, dose constraints, and encasing underlying motion patterns from respiration and cardiac contraction at the LA-PV junction into treatment planning.
Collapse
Affiliation(s)
- Anna Constantinescu
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - H Immo Lehmann
- Mayo Clinic Translational Interventional Electrophysiology Laboratory, Rochester, Minnesota, USA
| | - Douglas L Packer
- Mayo Clinic Translational Interventional Electrophysiology Laboratory, Rochester, Minnesota, USA
| | - Christoph Bert
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Department of Radiation Oncology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital, Erlangen, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christian Graeff
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
36
|
Brevet R, Richter D, Graeff C, Durante M, Bert C. Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion. Front Oncol 2015; 5:291. [PMID: 26734573 PMCID: PMC4689810 DOI: 10.3389/fonc.2015.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay), as well as interfractional anatomic changes. To compensate for dose deterioration caused by intrafractional motion, motion mitigation techniques, such as gating, have been developed. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of this study was to determine treatment-planning parameters that permit to recover good target coverage for each fraction of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (Houston, Texas), a total of 70 weekly time-resolved computed tomography (4DCT) datasets, which depict the evolution of the patient anatomy over the several fractions of the treatment, were available. Using the GSI in-house treatment planning system TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. The impact on target dose coverage (V 95%,CTV) of variations in focus size and length of the gating window, as well as different additional margins and the number of fields was analyzed. It appeared that interfractional variability could potentially have a larger impact on V 95%,CTV than intrafractional motion. However, among the investigated parameters, the use of a large beam spot size, a short gating window, additional margins, and multiple fields permitted to obtain an average V 95%,CTV of 96.5%. In the presented study, it was shown that optimized treatment parameters have an important impact on target dose coverage in the treatment of moving tumors. Indeed, intrafractional motion occurring during the treatment of lung tumors and interfractional variability were best mitigated using a large focus, a short gating window, additional margins, and three fields.
Collapse
Affiliation(s)
- Romain Brevet
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Daniel Richter
- FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen , Erlangen , Germany
| | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Christoph Bert
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
37
|
Hild S, Graeff C, Rucinski A, Zink K, Habl G, Durante M, Herfarth K, Bert C. Scanned ion beam therapy for prostate carcinoma. Strahlenther Onkol 2015; 192:118-26. [DOI: 10.1007/s00066-015-0925-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
|
38
|
Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys 2015; 95:523-533. [PMID: 26725727 DOI: 10.1016/j.ijrobp.2015.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. METHODS AND MATERIALS IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered. In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. RESULTS 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D95% CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D5%-D95% CTV: 10.3 vs 17.7, respectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D95% CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. CONCLUSIONS Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions.
Collapse
|
39
|
Lin L, Kang M, Huang S, Mayer R, Thomas A, Solberg TD, McDonough JE, Simone CB. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors. J Appl Clin Med Phys 2015; 16:5678. [PMID: 26699580 PMCID: PMC5691001 DOI: 10.1120/jacmp.v16i6.5678] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ±3% uncertainty in stopping power and ±3 mm uncertainty in patient setup in each direction, were used to create 8×12×10=960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p‐values <0.05, with the exception of the heart V45 (p=0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion‐related uncertainties is essential. PACS number: 87.55.D
Collapse
|
40
|
Hadronthérapie : quelle place et quelles perspectives en 2015 ? Cancer Radiother 2015; 19:519-25. [DOI: 10.1016/j.canrad.2015.07.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022]
|
41
|
Morel P, Wu X, Blin G, Vialette S, Flynn R, Hyer D, Wang D. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy. Front Oncol 2015; 5:119. [PMID: 26075184 PMCID: PMC4447005 DOI: 10.3389/fonc.2015.00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
Purpose This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. Materials and methods The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. Results For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. Conclusion The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.
Collapse
Affiliation(s)
- Paul Morel
- Laboratoire Informatique Gaspard Monge (LIGM), UMR CNRS 8049, Université Paris-Est , Paris , France
| | - Xiaodong Wu
- Department of Radiation Oncology, The University of Iowa , Iowa City, IA , USA ; Department of Electrical and Computer Engineering, The University of Iowa , Iowa City, IA , USA
| | - Guillaume Blin
- Laboratoire Informatique Gaspard Monge (LIGM), UMR CNRS 8049, Université Paris-Est , Paris , France ; UMR 5800, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux , Talence , France
| | - Stéphane Vialette
- Laboratoire Informatique Gaspard Monge (LIGM), UMR CNRS 8049, Université Paris-Est , Paris , France
| | - Ryan Flynn
- Department of Radiation Oncology, The University of Iowa , Iowa City, IA , USA
| | - Daniel Hyer
- Department of Radiation Oncology, The University of Iowa , Iowa City, IA , USA
| | - Dongxu Wang
- Department of Radiation Oncology, The University of Iowa , Iowa City, IA , USA
| |
Collapse
|
42
|
Eley JG, Newhauser WD, Richter D, Lüchtenborg R, Saito N, Bert C. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Phys Med Biol 2015; 60:1717-40. [PMID: 25650520 DOI: 10.1088/0031-9155/60/4/1717] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.
Collapse
Affiliation(s)
- John Gordon Eley
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, TX 77030, USA. Department of Radiation Oncology, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bert C, Graeff C, Riboldi M, Nill S, Baroni G, Knopf AC. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops. Technol Cancer Res Treat 2014; 13:485-95. [PMID: 24354749 PMCID: PMC4527425 DOI: 10.7785/tcrtexpress.2013.600274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022] Open
Abstract
We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.
Collapse
Affiliation(s)
- Christoph Bert
- University Clinic Erlangen, Radiation Oncology, Universitatsstrasse 27, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiother Oncol 2014; 113:290-5. [DOI: 10.1016/j.radonc.2014.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022]
|
45
|
Mori S, Inaniwa T, Miki K, Shirai T, Noda K. Implementation of a target volume design function for intrafractional range variation in a particle beam treatment planning system. Br J Radiol 2014; 87:20140233. [PMID: 25168286 DOI: 10.1259/bjr.20140233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Treatment planning for charged particle therapy in the thoracic and abdominal regions should take account of range uncertainty due to intrafractional motion. Here, we developed a design tool (4Dtool) for the target volume [field-specific target volume (FTV)], which accounts for this uncertainty using four-dimensional CT (4DCT). METHODS Target and normal tissue contours were input manually into a treatment planning system (TPS). These data were transferred to the 4Dtool via the picture archiving and communication system (PACS). Contours at the reference phase were propagated to other phases by deformable image registration. FTV was calculated using 4DCT on the 4Dtool. The TPS displays FTV contours using digital imaging and communications in medicine files imported from the PACS. These treatment parameters on the CT image at the reference phase were then used for dose calculation on the TPS. The tool was tested in single clinical case randomly selected from patients treated at our centre for lung cancer. RESULTS In this clinical case, calculation of dose distribution with the 4Dtool resulted in the successful delivery of carbon-ion beam at the reference phase of 95% of the prescribed dose to the clinical target volume (CTV). Application to the other phases also provided sufficient dose to the CTV. CONCLUSION The 4Dtool software allows the design of the target volume with consideration to intrafractional range variation and is now in routine clinical use at our institution. ADVANCES IN KNOWLEDGE Our alternative technique represents a practical approach to four-dimensional treatment planning within the current state of charged particle therapy.
Collapse
Affiliation(s)
- S Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | |
Collapse
|
46
|
Knopf A, Nill S, Yohannes I, Graeff C, Dowdell S, Kurz C, Sonke JJ, Biegun AK, Lang S, McClelland J, Champion B, Fast M, Wölfelschneider J, Gianoli C, Rucinski A, Baroni G, Richter C, van de Water S, Grassberger C, Weber D, Poulsen P, Shimizu S, Bert C. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013. Phys Med 2014; 30:809-15. [PMID: 25172392 DOI: 10.1016/j.ejmp.2014.07.341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 01/27/2023] Open
Abstract
This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including all critical aspects of time resolved delivery, such as in-room imaging, motion detection, motion managing, beam application, and quality assurance techniques. The report aims to revise achievements in the field and to discuss remaining challenges and potential solutions. As main achievements advances in the development of a standardized 4D phantom and in the area of 4D-treatment plan optimization were identified. Furthermore, it was noticed that MR imaging gains importance and high interest for sequential 4DCT/MR data sets was expressed, which represents a general trend of the field towards data covering a longer time period of motion. A new point of attention was work related to dose reconstructions, which may play a major role in verification of 4D treatment deliveries. The experimental validation of results achieved by 4D treatment planning and the systematic evaluation of different deformable image registration methods especially for inter-modality fusions were identified as major remaining challenges. A challenge that was also suggested as focus for future 4D workshops was the adaptation of image guidance approaches from conventional radiotherapy into particle therapy. Besides summarizing the last workshop, the authors also want to point out new evolving demands and give an outlook on the focus of the next workshop.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksandra K Biegun
- KVI-Center for Advanced Radiation Technology, University of Groningen, Netherlands
| | | | | | | | | | | | - Chiara Gianoli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Antoni Rucinski
- Radiation Oncology Department, SLK-Klinik Heilbronn, Germany
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Bioengineering Unit, CNAO Foundation, Pavia, Italy
| | - Christian Richter
- Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital C.G. Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, DKTK, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Graeff C. Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys Med 2014; 30:570-7. [DOI: 10.1016/j.ejmp.2014.03.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/26/2022] Open
|
48
|
Eley JG, Newhauser WD, Lüchtenborg R, Graeff C, Bert C. 4D optimization of scanned ion beam tracking therapy for moving tumors. Phys Med Biol 2014; 59:3431-52. [PMID: 24889215 DOI: 10.1088/0031-9155/59/13/3431] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
Collapse
Affiliation(s)
- John Gordon Eley
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Richter D, Saito N, Chaudhri N, Härtig M, Ellerbrock M, Jäkel O, Combs SE, Habermehl D, Herfarth K, Durante M, Bert C. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors. Int J Radiat Oncol Biol Phys 2014; 89:175-81. [DOI: 10.1016/j.ijrobp.2014.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
50
|
Graeff C, Constantinescu A, Lüchtenborg R, Durante M, Bert C. Multigating, a 4D optimized beam tracking in scanned ion beam therapy. Technol Cancer Res Treat 2013; 13:497-504. [PMID: 24354752 PMCID: PMC4527435 DOI: 10.7785/tcrtexpress.2013.600277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of moving tumors with a scanned ion beam is challenging due to interplay effects and changing beam range. We propose multigating, as a method for 4D-treatment optimization and delivery. In 3D beam tracking, tracking vectors are added during delivery to beam spot positions based on the detected motion phase. This has the disadvantage of dose errors in case of complex motion patterns and an uncertain out-of-target dose distribution. In multigating, the motion phase for each beam spot is predefined, which allows to add the tracking vector prior to beam weight optimization on all motion phases. The synchronization of delivery and target motion is assured by fast gating. The feasibility of the delivery was shown in a film experiment and required only minor software modification to the treatment planning system. In a treatment planning study in 4 lung cancer patients, target coverage could be restored to the level of a static reference plan by multigating (V95 > 99%) but not by standard beam tracking (V95 < 95%). The conformity of the multigating plans was only slightly lower than those of the static plan, with a conformity number of 72.0% (median, range 64.6–76.6%) compared to 75.8% (70.8–81.5%) in spite of target motion of up to 22 mm. In conclusion, we showed the technical feasibility of multigating, a 4D-optimization and delivery method using scanned beams that allows for conformal and homogeneous dose delivery to moving targets also in case of complex motion.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt, Germany.
| | | | | | | | | |
Collapse
|