1
|
Mandot S, Zannoni EM, Cai L, Nie X, Riviere PJL, Wilson MD, Meng LJ. A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography (XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a Compound-Eye Collimation Aperture. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1782-1791. [PMID: 38696285 PMCID: PMC11129545 DOI: 10.1109/tmi.2023.3348791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The advent of metal-based drugs and metal nanoparticles as therapeutic agents in anti-tumor treatment has motivated the advancement of X-ray fluorescence computed tomography (XFCT) techniques. An XFCT imaging modality can detect, quantify, and image the biodistribution of metal elements using the X-ray fluorescence signal emitted upon X-ray irradiation. However, the majority of XFCT imaging systems and instrumentation developed so far rely on a single or a small number of detectors. This work introduces the first full-ring benchtop X-ray fluorescence emission tomography (XFET) system equipped with 24 solid-state detectors arranged in a hexagonal geometry and a 96-pinhole compound-eye collimator. We experimentally demonstrate the system's sensitivity and its capability of multi-element detection and quantification by performing imaging studies on an animal-sized phantom. In our preliminary studies, the phantom was irradiated with a pencil beam of X-rays produced using a low-powered polychromatic X-ray source (90kVp and 60W max power). This investigation shows a significant enhancement in the detection limit of gadolinium to as low as 0.1 mg/mL concentration. The results also illustrate the unique capabilities of the XFET system to simultaneously determine the spatial distribution and accurately quantify the concentrations of multiple metal elements.
Collapse
|
2
|
DeBrosse H, Meng LJ, Rivière PL. Effect of detector placement on joint estimation in X-ray fluorescence emission tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:21-32. [PMID: 39069988 PMCID: PMC11281267 DOI: 10.1109/trpms.2023.3332288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Imaging the spatial distribution of low concentrations of metal is a growing problem of interest with applications in medical and material sciences. X-ray fluorescence emission tomography (XFET) is an emerging metal mapping imaging modality with potential sensitivity improvements and practical advantages over other methods. However, XFET detector placement must first be optimized to ensure accurate metal density quantification and adequate spatial resolution. In this work, we first use singular value decomposition of the imaging model and eigendecomposition of the object-specific Fisher information matrix to study how detector arrangement affects spatial resolution and feature preservation. We then perform joint image reconstructions of a numerical gold phantom. For this phantom, we show that two parallel detectors provide metal quantification with similar accuracy to four detectors, despite the resulting anisotropic spatial resolution in the attenuation map estimate. Two orthogonal detectors provide improved spatial resolution along one axis, but underestimate the metal concentration in distant regions. Therefore, this work demonstrates the minor effect of using fewer, but strategically placed, detectors in the case where detector placement is restricted. This work is a critical investigation into the limitations and capabilities of XFET prior to its translation to preclinical and benchtop uses.
Collapse
Affiliation(s)
| | - Ling Jian Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, IL
| | | |
Collapse
|
3
|
Wu C, Li L. First Demonstration of Compton Camera Used for X-Ray Fluorescence Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1314-1324. [PMID: 36455081 DOI: 10.1109/tmi.2022.3226329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
X-ray fluorescence computed tomography (XFCT) is a promising approach used for obtaining the distribution of high-Z elements in the target object. The characteristic energy of X-ray fluorescence (XRF) photons makes XFCT have higher sensitivity and contrast ratio. Conventional XFCT systems usually require mechanical collimators, which leads to a huge loss of incident photons and reduce photon collection efficiency. The Compton camera is an imaging modality that uses electronic collimation to obtain the incident direction of the photons, which brings advantages in the detection area and X-ray photon collection efficiency. Compton cameras can also achieve three-dimensional (3D) imaging with one or several views of scanning without rotation. Therefore, it is a good idea to realize XRF imaging by using Compton cameras, which may provide more potential applications and imaging possibilities, such as handheld XRF imaging or image-guided interventional operation. In this work, we demonstrate the first Compton camera platform which is used for XRF imaging. The proposed X-ray fluorescence Compton camera (XFCC) mainly consists of a conventional X-ray tube (150kVp) and a Timepix3 photon-counting detector (PCD). A PMMA phantom with insertions containing different concentrations of 4%, 6%, 8%, and 10% (weight/volume) Gd solution is scanned by a fan-beam X-ray. Besides, a Compton camera-based X-ray fluorescence imaging reconstruction method (CCFIRM) is developed to solve specific problems in XFCC reconstruction. The reconstruction images and the quantitative analyses of the contrast-to-noise ratio (CNR) are presented. The results indicate that the detectability limit of the proposed XFCC platform is 3.5139 wt.% (CNR =4 ).
Collapse
|
4
|
DeBrosse H, Chandler T, Meng LJ, La Rivière P. Joint Estimation of Metal Density and Attenuation Maps with Pencil Beam XFET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:191-202. [PMID: 37273411 PMCID: PMC10237365 DOI: 10.1109/trpms.2022.3201151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
X-ray fluorescence emission tomography (XFET) is an emerging imaging modality that images the spatial distribution of metal without requiring biochemical modification or radioactivity. This work investigates the joint estimation of metal and attenuation maps with a pencil-beam XFET system that allows for direct metal measurement in the absence of attenuation. Using singular value decomposition on a simplified imaging model, we show that reconstructing metal and attenuation voxels far from the detector is an ill-conditioned problem. Using simulated data, we develop and compare two image reconstruction methods for joint estimation. The first method alternates between updating the attenuation map with a separable paraboloidal surrogates algorithm and updating the metal map with a closed-form solution. The second method performs simultaneous joint estimation with conjugate gradients based on a linearized imaging model. The alternating approach outperforms the linearized approach for iron and gold numerical phantom reconstructions. Reconstructing an (8 cm)3 object containing gold concentrations of 5 mg/cm3 and an unknown beam attenuation map using the alternating approach yields an accurate gold map (NRMSE = 0.19) and attenuation map (NRMSE = 0.14). This simulation demonstrates an accurate joint reconstruction of metal and attenuation maps, from emission data, without previous knowledge of any attenuation map.
Collapse
Affiliation(s)
| | - Talon Chandler
- Department of Radiology, University of Chicago, Chicago, IL, and is now with Chan Zuckerberg Biohub, San Francisco, CA
| | - Ling Jian Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, IL
| | | |
Collapse
|
5
|
Moktan H, Ahmed MF, Jayarathna S, Deng L, Cho SH. Monte Carlo study of x-ray detection configurations for benchtop x-ray fluorescence computed tomography of gold nanoparticle-loaded objects. Phys Med Biol 2020; 65:175010. [PMID: 32869750 DOI: 10.1088/1361-6560/ab9774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the last decade, the performance of benchtop x-ray fluorescence computed tomography (XFCT) systems has been significantly enhanced through hardware and software optimizations. Recent studies have indicated the need of energy-resolving pixelated/array detectors in the x-ray detection component to further improve the sensitivity and image resolution of benchtop XFCT systems while meeting the realistic constraints of dose and scan time. Thus, it is of immediate interest in the research community to conduct the following investigations: (a) delineation of strengths/weaknesses of detection configurations that incorporate pixelated/array detectors in combination with two most frequently used (parallel-hole and pinhole) collimators; (b) one-to-one comparison of their performance under identical imaging conditions of benchtop XFCT. In this study, we developed a Geant4-based Monte Carlo model to investigate the effects of the aforementioned detection configurations on the sensitivity and image resolution of a benchtop XFCT system. Using this model, we simulated the detection of x-ray fluorescence and scattered photons from gold nanoparticle-containing phantoms using energy-resolving pixelated detectors coupled with parallel-hole and pinhole collimators. Simulation results demonstrated that the detector consisting of large pixels (1 mm × 1 mm) combined with a parallel-hole collimator had better sensitivity (i.e. lower detection limit) than the detector made of smaller pixels (0.25 mm × 0.25 mm) coupled with a pinhole collimator. In comparison, although slightly less sensitive, the latter detector configuration achieved better image resolution than did the former. Thus, a detection configuration consisting of a pixelated detector with submillimeter pixels and a pinhole collimator is preferable when image resolution is critical for benchtop XFCT applications. On the other hand, the detector with larger pixels coupled with a parallel-hole collimator is better suited for benchtop XFCT applications in which higher sensitivity and shorter scan time are essential.
Collapse
Affiliation(s)
- Hem Moktan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | | | | | | | | |
Collapse
|
6
|
George J, Giannoni L, Yoon BH, Meng LJ. Energy-modulated x-ray fluorescence and luminescence emissions from therapeutic nanoparticles. ACTA ACUST UNITED AC 2019; 64:035020. [DOI: 10.1088/1361-6560/aaeec3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Deng L, Wei B, He P, Zhang Y, Feng P. A Geant4-based Monte Carlo study of a benchtop multi-pinhole X-ray fluorescence computed tomography imaging. Int J Nanomedicine 2018; 13:7207-7216. [PMID: 30510413 PMCID: PMC6231504 DOI: 10.2147/ijn.s179875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background X-ray fluorescence (XRF) computed tomography (XFCT) has shown promise for molecular imaging of metal nanoparticles such as gold nanoparticles (GNPs) and benchtop XFCT is under active development due to its easy access, low-cost instrumentation and operation. Purpose To validate the performance of a Geant4-based Monte Carlo (MC) model of a benchtop multi-pinhole XFCT system for quantitative imaging of GNPs. Methods The MC mode consisted of a fan-beam x-ray source (125 kVp), which was used to stimulate the emission of XRF from the GNPs, a phantom (3 cm in diameter) which included six or nine inserts (3 mm in diameter), each of which contained the same (1 wt. %) or various (0.08–1 wt. %) concentrations of GNPs, a multi-pinhole collimator which could acquire multiple projections simultaneously and a one-sided or two-sided two-dimensional (2D) detector. Various pinhole diameters (3.7, 2, 1, 0.5 and 0.25 mm) and various particle numbers (20, 40, 80 and 100 billion) were simulated and the results for single pinhole and multi-pinhole (9 pinholes) imaging were compared. Results The image resolution for a 1 mm multi-pinhole was between 0.88 and 1.38 mm. The detection limit for multi-pinhole operation was about 0.09 wt. %, while that for the single pinhole was about 0.13 wt. %. For a fixed number of pinholes, noise increased with decreasing number of photons. Conclusion The MC mode could acquire 2D slice images of the object without rotation and demonstrated that a multi-pinhole XFCT imaging system could be a potential bioimaging modality for nanomedical applications.
Collapse
Affiliation(s)
- Luzhen Deng
- Key Laboratory of Optoelectronics Technology and System, Chongqing University, Ministry of Education, Chongqing 400044, China, .,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Biao Wei
- Key Laboratory of Optoelectronics Technology and System, Chongqing University, Ministry of Education, Chongqing 400044, China,
| | - Peng He
- Key Laboratory of Optoelectronics Technology and System, Chongqing University, Ministry of Education, Chongqing 400044, China, .,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Chongqing University, Ministry of Education, Chongqing 400044, Chinal,
| | - Yi Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Peng Feng
- Key Laboratory of Optoelectronics Technology and System, Chongqing University, Ministry of Education, Chongqing 400044, China, .,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Chongqing University, Ministry of Education, Chongqing 400044, Chinal,
| |
Collapse
|
8
|
Dunning CAS, Bazalova-Carter M. Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles. Med Phys 2018; 45:2572-2582. [PMID: 29604070 DOI: 10.1002/mp.12893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE X-ray fluorescence computed tomography (XFCT) experiments have typically used pencil beams for data acquisition, which yielded good quality images of gold nanoparticles (AuNP) but prolonged the imaging time. Here we propose three novel collimator geometries for use with faster sheet beam XFCT data acquisition. The feasibility of a multipinhole, parallel, and converging collimator was investigated in a Monte Carlo study. METHODS A cylindrical water phantom with 2 cm in diameter and 3 cm in height containing 0.5-2 mm diameter vials with 0.4%-1.6% AuNP concentrations was modelled by FLUKA. A 15 and 81 keV monoenergetic x-ray sheet beam of 0.4 mm in width was used to image the phantom with L-shell and K-shell XFCT, respectively, with a dose of 30 mGy. The collimator thickness for L-shell and K-shell data acquisition was 3.3 and 5.1 mm, respectively. The XFCT images resulting from three collimator geometries were generated using the maximum likelihood expectation maximization (MLEM) iterative reconstruction method. With a resolution of 0.4 mm they were corrected for x-ray attenuation. The sheet beam XFCT images were compared against pencil beam geometry images that were generated using 55 translations. To assess image quality, the contrast-to-noise ratio (CNR) was evaluated for each vial. The Rose criterion was used to determine the lowest AuNP concentration detectable for each image. RESULTS Among the three collimator geometry types, the sheet beam L-shell and K-shell parallel collimator XFCT images yielded AuNP sensitivity limits at 0.09% and 0.08%, respectively, for a 2 mm diameter vial. The AuNP sensitivity limits of the pencil beam XFCT images were 0.07% and 0.01% for L-shell and K-shell XFCT, respectively. The L-shell parallel collimator AuNP imaging sensitivity approached that of the pencil beam geometry with a 55-fold reduction in imaging time. The AuNP sensitivity limits for the 1 mm diameter vial for the L-shell and K-shell parallel collimator XFCT images were 0.19% and 0.16%, respectively, and those of the pencil beam XFCT images were 0.08% and 0.01% for L-shell and K-shell XFCT, respectively. The remaining two collimator geometries resulted in a lower CNR and poorer image quality. For a 2 mm diameter vial, the AuNP sensitivity limits for the L-shell and K-shell multipinhole collimator XFCT images were 0.23% and 0.52%, respectively, while for the L-shell and K-shell converging collimator XFCT images the AuNP sensitivity limits were 0.38% and 0.13%, respectively. CONCLUSION This work demonstrates the feasibility of sheet beam L-shell XFCT imaging for small animal studies using parallel-oriented lead collimators which can detect AuNP concentrations approaching the level of pencil beam images with reduced imaging time.
Collapse
Affiliation(s)
- Chelsea A S Dunning
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
9
|
Jung S, Sung W, Ye SJ. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study. Int J Nanomedicine 2017; 12:5805-5817. [PMID: 28860750 PMCID: PMC5565259 DOI: 10.2147/ijn.s141185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine.
Collapse
Affiliation(s)
- Seongmoon Jung
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Wonmo Sung
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Joon Ye
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Groll A, George J, Vargas P, La Rivière P, Meng LJ. Element Mapping in Organic Samples Utilizing a Benchtop X-Ray Fluorescence Emission Tomography (XFET) System. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2015; 62:2310-2317. [PMID: 26705368 PMCID: PMC4686274 DOI: 10.1109/tns.2015.2465380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
X-ray fluorescence computed tomography (XFCT) is an emerging imaging modality that maps the three-dimensional distribution of elements, generally metals, in ex vivo specimens and potentially in living animals and humans. Building on our previous synchrotron-based work, we experimentally explored the use of a benchtop X-ray fluorescence computed tomography system for mapping trace-metal ions in biological samples. This system utilizes a scanning pencil-beam to stimulate the object and then relies on a detection system, with single or multiple slit apertures placed in front of position-sensitive X-ray detectors, to collect the fluorescence X-rays and to form 3-D elemental map without the need for tomographic imaging reconstruction. The technique was used to generate images of the elemental distributions of a triple-tube phantom and an osmium-stained zebrafish.
Collapse
Affiliation(s)
- A. Groll
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - J. George
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA
| | - P. Vargas
- Department of Radiology, University of Chicago, IL 60637 USA, telephone: 773-702-6975
| | - P.J. La Rivière
- Department of Radiology, University of Chicago, IL 60637 USA, telephone: 773-702-6975
| | - L. J. Meng
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 USA, telephone: 217-333-7710
| |
Collapse
|
11
|
Modgil D, Rigie DS, Wang Y, Xiao X, Vargas PA, La Rivière PJ. Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors. Phys Med Biol 2015; 60:8025-45. [PMID: 26422059 DOI: 10.1088/0031-9155/60/20/8025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrate that a dual-layer, dual-color scintillator construct for microscopic CT, originally proposed to increase sensitivity in synchrotron imaging, can also be used to perform material quantification and classification when coupled with polychromatic illumination. We consider two different approaches to data handling: (1) a data-domain material decomposition whose estimation performance can be characterized by the Cramer-Rao lower bound formalism but which requires careful calibration and (2) an image-domain material classification approach that is more robust to calibration errors. The data-domain analysis indicates that useful levels of SNR (>5) could be achieved in one second or less at typical bending magnet fluxes for relatively large amounts of contrast (several mm path length, such as in a fluid flow experiment) and at typical undulator fluxes for small amount of contrast (tens of microns path length, such as an angiography experiment). The tools introduced could of course be used to study and optimize parameters for a wider range of potential applications. The image domain approach was analyzed in terms of its ability to distinguish different elemental stains by characterizing the angle between the lines traced out in a two-dimensional space of effective attenuation coefficient in the front and back layer images. This approach was implemented at a synchrotron and the results were consistent with simulation predictions.
Collapse
Affiliation(s)
- Dimple Modgil
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ahmad M, Bazalova-Carter M, Fahrig R, Xing L. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT). IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1140-1147. [PMID: 25474808 DOI: 10.1109/tmi.2014.2376813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).
Collapse
|
13
|
Bourassa D, Gleber SC, Vogt S, Yi H, Will F, Richter H, Shin CH, Fahrni CJ. 3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography. Metallomics 2015; 6:1648-55. [PMID: 24992831 DOI: 10.1039/c4mt00121d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development.
Collapse
Affiliation(s)
- Daisy Bourassa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Deng B, Du G, Zhou G, Wang Y, Ren Y, Chen R, Sun P, Xie H, Xiao T. 3D elemental sensitive imaging by full-field XFCT. Analyst 2015; 140:3521-5. [PMID: 25834844 DOI: 10.1039/c4an02401j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging. The FF-XFCT consists of a pinhole collimator and X-ray imaging detector with no energy resolution. A prototype imaging system was set up at the Shanghai Synchrotron Radiation Facility (SSRF) for imaging the phantom. The first FF-XFCT experimental results are presented. The cadmium (Cd) and iodine (I) distributions were reconstructed. The results demonstrate FF-XFCT is fit for 3D elemental imaging and the sensitivity of FF-XFCT is higher than a conventional CT system.
Collapse
Affiliation(s)
- Biao Deng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, 201204 Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bazalova M, Ahmad M, Pratx G, Xing L. L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin. Phys Med Biol 2013; 59:219-32. [PMID: 24334507 DOI: 10.1088/0031-9155/59/1/219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
X-ray fluorescence computed tomography (XFCT) imaging has been focused on the detection of K-shell x-rays. The potential utility of L-shell x-ray XFCT is, however, not well studied. Here we report the first Monte Carlo (MC) simulation of preclinical L-shell XFCT imaging of Cisplatin. We built MC models for both L- and K-shell XFCT with different excitation energies (15 and 30 keV for L-shell and 80 keV for K-shell XFCT). Two small-animal sized imaging phantoms of 2 and 4 cm diameter containing a series of objects of 0.6 to 2.7 mm in diameter at 0.7 to 16 mm depths with 10 to 250 µg mL(-1) concentrations of Pt are used in the study. Transmitted and scattered x-rays were collected with photon-integrating transmission detector and photon-counting detector arc, respectively. Collected data were rearranged into XFCT and transmission CT sinograms for image reconstruction. XFCT images were reconstructed with filtered back-projection and with iterative maximum-likelihood expectation maximization without and with attenuation correction. While K-shell XFCT was capable of providing an accurate measurement of Cisplatin concentration, its sensitivity was 4.4 and 3.0 times lower than that of L-shell XFCT with 15 keV excitation beam for the 2 cm and 4 cm diameter phantom, respectively. With the inclusion of excitation and fluorescence beam attenuation correction, we found that L-shell XFCT was capable of providing fairly accurate information of Cisplatin concentration distribution. With a dose of 29 and 58 mGy, clinically relevant Cisplatin Pt concentrations of 10 µg mg(-1) could be imaged with L-shell XFCT inside a 2 cm and 4 cm diameter object, respectively.
Collapse
|