1
|
Kretschmer J, Brodbek L, Looe HK, van der Graaf E, Jan van Goethem M, Kiewiet H, Olivari F, Meyer C, Poppe B, Brandenburg S. Investigating the lateral dose response functions of point detectors in proton beams. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac783c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Point detector measurements in proton fields are perturbed by the volume effect originating from geometrical volume-averaging within the extended detector’s sensitive volume and density perturbations by non-water equivalent detector components. Detector specific lateral dose response functions K(x) can be used to characterize the volume effect within the framework of a mathematical convolution model, where K(x) is the convolution kernel transforming the true dose profile D(x) into the measured signal profile of a detector M(x). The aim of this work is to investigate K(x) for detectors in proton beams. Approach. The K(x) for five detectors were determined by iterative deconvolution of measurements of D(x) and M(x) profiles at 2 cm water equivalent depth of a narrow 150 MeV proton beam. Monte Carlo simulations were carried out for two selected detectors to investigate a potential energy dependence, and to study the contribution of volume-averaging and density perturbation to the volume effect. Main results. The Monte Carlo simulated and experimentally determined K(x) agree within 2.1% of the maximum value. Further simulations demonstrate that the main contribution to the volume effect is volume-averaging. The results indicate that an energy or depth dependence of K(x) is almost negligible in proton beams. While the signal reduction from a Semiflex 3D ionization chamber in the center of a gaussian shaped field with 2 mm sigma is 32% for photons, it is 15% for protons. When measuring the field with a microDiamond the trend is less pronounced and reversed with a signal reduction for protons of 3.9% and photons of 1.9%. Significance. The determined K(x) can be applied to characterize the influence of the volume effect on detectors measured signal profiles at all clinical proton energies and measurement depths. The functions can be used to derive the actual dose distribution from point detector measurements.
Collapse
|
2
|
Wang W, Deng Y, Huang Z. Experimental dosimetry of EDR2 films in scanning carbon-ion irradiation. J Appl Clin Med Phys 2022; 23:e13636. [PMID: 35594015 PMCID: PMC9278678 DOI: 10.1002/acm2.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the dose-sensitometric response of extended dose range (EDR2) films to scanning carbon-ion beams and to evaluate the applications of the obtained response curves to carbon-ion dose distributions. METHODS EDR2 films were irradiated by mono-energetic scanning carbon-ion beams with different doses to obtain sensitometric curves at different integrated depth doses (DDDs). Six different DDDs were generated by using a proper buildup for each mono-energetic beam and were used to investigate the energy dependence. The sensitometric curves were obtained by fitting the net optical density (netOD) to dose at different DDDs. The dose difference between the value converted from the netOD and that calculated in the treatment planning system (TPS) was investigated to evaluate the application scope of the sensitometric curve. RESULTS Digitizing the EDR2 film with a resolution of 0.36 (72 dpi) provided a good signal-to-noise ratio, and the sensitometric curve was linear at all DDDs of clinically relevant incident kinetic energies in the netOD range of 0.02-1.70 for carbon-ion film dosimetry. The factors used to convert the netOD to absorbed dose were expressed as a linear function of DDDs, with which the depth dose difference between converted and TPS was less than 3% in the proximal area for incident kinetic energies lower than 307.5 MeV/u. CONCLUSION The EDR2 film is a feasible tool for scanning carbon-ion beam profile measurements by directly evaluating the netOD distribution with proper digitizing resolution and netOD range. By applying the conversion factors, the EDR2 film can also be employed to perform the percentage depth dose consistency checking and linear energy transfer comparison of carbon-ion lower than 307.5 MeV/u.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology(20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yu Deng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology(20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology(20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
3
|
Yagi M, Tsubouchi T, Hamatani N, Takashina M, Maruo H, Fujitaka S, Nihongi H, Ogawa K, Kanai T. Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams. PLoS One 2022; 17:e0268087. [PMID: 35536852 PMCID: PMC9089877 DOI: 10.1371/journal.pone.0268087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth–dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.
Collapse
Affiliation(s)
- Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
- * E-mail:
| | - Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
| | - Hiroyasu Maruo
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
| | | | - Hideaki Nihongi
- Hitachi, Ltd. Smart Life Business Management Division/Healthcare Business Division, KOIL TERRACE 3F 226-44-141-1, Wakashiba, Kashiwa-shi, Chiba, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Chuo-ku, Osaka-city, Osaka, Japan
| |
Collapse
|
4
|
Younkin JE, Robertson DG, Liu W, Hu Y, Morales DH, Bues M, Shen J, Ding X. Technical Note: Long-term monitoring of diode sensitivity degradation induced by proton irradiation. Med Phys 2021; 48:6634-6641. [PMID: 34608990 DOI: 10.1002/mp.15265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To measure diode sensitivity degradation (DSD) induced by cumulative proton dose delivered to a commercial daily quality assurance (QA) device. METHODS At our institution, six Daily QA 3 (DQA3, Sun Nuclear Corporation, Melbourne, FL, USA) devices have been used for daily proton pencil beam scanning QA in four proton gantry rooms over a span of 4 years. DQA3 diode counts were cross-calibrated using a homogenous field with a known dose of 1 Gy. The DSD rate (ΔR%/100 Gy) was calculated using linear regression on time-series plots of diode counts and an estimate of cumulative dose per year based on the cross-calibration. The effect of DSD on daily QA spot position measurements was quantified by converting DSD to baseline spot position shift. RESULTS The average dose delivered to the four inner DQA3 diodes was 104 ± 5 Gy/year, and the rate of DSD was -5.1% ± 1.0/100 Gy with the exception of one DQA3 device that had a significantly higher rate of DSD (-12%/100 Gy). The R2 s of the linear fit to time-series plots were between 0.92 and 0.98. The DSD rates were not constant but decreases with accumulated doses. The four center diodes, which received 40% of the cumulative dose received by inner diodes, had a DSD rate of -7.2% ± 0.9/100 Gy. For our daily QA program, 1 year of DSD was equivalent to a 0.2 mm shift in spot position. CONCLUSIONS The DSD rate of DQA3 diodes determined by long-term proton daily QA data was about -5%/100 Gy, which is more than 10 times greater than the reported DSD rate from photon irradiation. DQA3 diodes may be used for daily proton QA programs, provided that they are recalibrated at an appropriate frequency that should be determined specifically for different daily QA programs.
Collapse
Affiliation(s)
- James E Younkin
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Ricci JC, Hsi WC, Su Z, Mund K, Dawson R, Indelicato DJ. The root cause analysis on failed patient-specific measurements of pencil beam scanning protons using a 2D detection array with finite size ionization chambers. J Appl Clin Med Phys 2021; 22:175-190. [PMID: 34312997 PMCID: PMC8364270 DOI: 10.1002/acm2.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 02/01/2023] Open
Abstract
The aim of this report is to present the root cause analysis on failed patient‐specific quality assurance (QA) measurements of pencil beam scanning (PBS) protons; referred to as PBS‐QA measurement. A criterion to fail a PBS‐QA measurement is having a <95% passing rate in a 3.0%‐3.0 mm gamma index analysis. Clinically, we use a two‐dimensional (2D) gamma index analysis to obtain the passing rate. The IBA MatriXX PT 2D detection array with finite size ionization chamber was utilized. A total of 2488 measurements performed in our PBS beamline were cataloged. The percentage of measurements for the sites of head/neck, breast, prostate, and other are 53.3%, 22.7%, 10.5%, and 13.5%, respectively. The measurements with a passing rate of 100 to >94%, 94 to >88%, and <88% were 93.6%, 5.6%, and 0.8%, respectively. The percentage of failed measurements with a <95% passing rate was 10.9%. After removed the user errors of either re‐measurement or re‐analysis, 8.1% became acceptable. We observed a feature of >3% per mm dose gradient with respect to depth on the failed measurements. We utilized a 2D/three‐dimensional (3D) gamma index analysis toolkit to investigate the effect of depth dose gradient. By utilizing this 3D toolkit, 43.1% of the failed measurements were improved. A feature among measurements that remained sub‐optimal after re‐analysis was a sharp >3% per mm lateral dose gradient that may not be well handled using the detector size of 5.0 mm in‐diameter. An analysis of the sampling of finite size detectors using one‐dimensional (1D) error function showed a large dose deviation at locations of low‐dose areas between two high‐dose plateaus. User error, large depth dose gradient, and the effect of detector size are identified as root causes. With the mitigation of the root causes, the goals of patient‐specific QA, specifically detecting actual deviation of beam delivery or identifying limitations of the dose calculation algorithm of the treatment planning system, can be directly related to failure of the PBS‐QA measurements.
Collapse
Affiliation(s)
- Jacob C Ricci
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Radiation Oncology, University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Wen C Hsi
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Radiation Oncology, University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Zhong Su
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Radiation Oncology, University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Karl Mund
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Robert Dawson
- Department of Medical Physics, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Radiation Oncology, Ackerman Cancer Center, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Radiation Oncology, University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| |
Collapse
|
6
|
Yamada T, Takao S, Koyano H, Nihongi H, Fujii Y, Hirayama S, Miyamoto N, Matsuura T, Umegaki K, Katoh N, Yokota I, Shirato H, Shimizu S. Validation of dose distribution for liver tumors treated with real-time-image gated spot-scanning proton therapy by log data based dose reconstruction. JOURNAL OF RADIATION RESEARCH 2021; 62:626-633. [PMID: 33948661 PMCID: PMC8273791 DOI: 10.1093/jrr/rrab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Indexed: 06/12/2023]
Abstract
In spot scanning proton therapy (SSPT), the spot position relative to the target may fluctuate through tumor motion even when gating the radiation by utilizing a fiducial marker. We have established a procedure that evaluates the delivered dose distribution by utilizing log data on tumor motion and spot information. The purpose of this study is to show the reliability of the dose distributions for liver tumors treated with real-time-image gated SSPT (RGPT). In the evaluation procedure, the delivered spot information and the marker position are synchronized on the basis of log data on the timing of the spot irradiation and fluoroscopic X-ray irradiation. Then a treatment planning system reconstructs the delivered dose distribution. Dose distributions accumulated for all fractions were reconstructed for eight liver cases. The log data were acquired in all 168 fractions for all eight cases. The evaluation was performed for the values of maximum dose, minimum dose, D99, and D5-D95 for the clinical target volumes (CTVs) and mean liver dose (MLD) scaled by the prescribed dose. These dosimetric parameters were statistically compared between the planned dose distribution and the reconstructed dose distribution. The mean difference of the maximum dose was 1.3% (95% confidence interval [CI]: 0.6%-2.1%). Regarding the minimum dose, the mean difference was 0.1% (95% CI: -0.5%-0.7%). The mean differences of D99, D5-D95 and MLD were below 1%. The reliability of dose distributions for liver tumors treated with RGPT-SSPT was shown by the evaluation of the accumulated dose distributions.
Collapse
Affiliation(s)
- Takahiro Yamada
- Hitachi Ltd. 1-1 7-chome, Oomika-cho, Hitachi-shi, Ibaraki 319-1292, Japan
- Graduate School of Biomedical Science and Engineering, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Seishin Takao
- Corresponding author. Seishin Takao, Department of Medical Physics, Hokkaido University Hospital, North14 West5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan, Tel: (+81)11-706-5254, Fax: (+81) 11-706-5255, E-mail address:
| | - Hidenori Koyano
- Department of Medical Physics, Graduate School of Medicine, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hideaki Nihongi
- Hitachi Ltd. 1-1 7-chome, Oomika-cho, Hitachi-shi, Ibaraki 319-1292, Japan
| | - Yusuke Fujii
- Hitachi Ltd. 1-1 7-chome, Oomika-cho, Hitachi-shi, Ibaraki 319-1292, Japan
| | - Shusuke Hirayama
- Hitachi Ltd. 1-1 7-chome, Oomika-cho, Hitachi-shi, Ibaraki 319-1292, Japan
- Graduate School of Biomedical Science and Engineering, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, North14 West5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, North13 West8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, North14 West5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, North13 West8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kikuo Umegaki
- Department of Medical Physics, Hokkaido University Hospital, North14 West5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, North13 West8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Norio Katoh
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Department of Therapeutic Radiology, Faculty of Medicine, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroki Shirato
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Department of Proton Beam Therapy, Faculty of Medicine, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, North14 West5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Global Station of Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, North15 West7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
7
|
Brodbek L, Kretschmer J, Willborn K, Meijers A, Both S, Langendijk JA, Knopf AC, Looe HK, Poppe B. Analysis of the applicability of two-dimensional detector arrays in terms of sampling rate and detector size to verify scanned intensity-modulated proton therapy plans. Med Phys 2020; 47:4589-4601. [PMID: 32574383 DOI: 10.1002/mp.14346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The introduction of advanced treatment techniques in proton therapy, such as intensity-modulated proton therapy, leads to an increased need for patient-specific quality assurance, especially an accurate treatment plan verification becomes inevitable. In this study, signal theoretical analysis of dose distributions in scanned proton therapy is performed to investigate the feasibility and limits of two-dimensional (2D) detector arrays for treatment plan verification. METHODS 2D detector arrays are characterized by two main aspects: the distance between the single detectors on the array or the sampling frequency; and the lateral response functions of a single detector. The analysis is based on single spots, reference fields and on measured and calculated dose distributions of typical intensity-modulated proton therapy treatment plans with and without range shifter. Measurements were performed with Gafchromic EBT3 films (Ashland Speciality Ingredients G.P., Bridgewater, NJ, USA), the MatriXX PT detector array (IBA Dosimetry, Schwarzenbruck, Germany) and the OCTAVIUS detector array 1500XDR (PTW-Freiburg, Germany) at an IBA Proteus PLUS proton therapy system (Ion Beam Applications, Louvain-la-Neuve, Belgium). Dose calculations were performed with the treatment planning system RayStation 6 or 8 (RaySearch Laboratories, Sweden). RESULTS The Fourier analysis of the data of the treatment planning system and film measurements show maximum frequencies of 0.06/mm for the plan with range shifter and 0.083/mm for the plan without range shifter. According to the Nyquist theorem, this corresponds to minimum required sampling distances of 8.3 and 6 mm, respectively. By comparison, the sampling distances of the arrays of 7.6 mm (MatriXX PT) and 7.1 mm (OD1500XDR) are sufficient to reconstruct the dose distributions adequately from measurements if range shifters are used, whereas some fields of the plans without range shifter violated the Nyquist requirement. The lateral dose response functions of the single detectors within the arrays have clearly higher frequencies than the treatment plans and thus the volume effect only slightly influences the measurements. Consequently, the array measurements show high gamma passing rates with at least 96 % and a good agreement between the investigated line profiles. CONCLUSION The results indicate that the detector dimensions and sampling distances of the arrays are in most studied cases adequate not to substantially influence the measurement process when they are used for analyzing typical intensity-modulated proton therapy treatment plans. Nevertheless, clinical conditions have been identified, for instance treatment plans without range shifter, under which the Nyquist theorem is violated such that a full representation of the dose distributions with the measurements is not feasible. In these cases, analysis of measurements is limited to pointwise comparisons.
Collapse
Affiliation(s)
- Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Kay Willborn
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
8
|
Mori S, Kohno R. [13. Quality Assurance for Heavy Charged Particle Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:1200-1204. [PMID: 31631115 DOI: 10.6009/jjrt.2019_jsrt_75.10.1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinichiro Mori
- National Institute of Radiological Sciences Research Center for Charged Particle Therapy
| | - Ryosuke Kohno
- National Institute of Radiological Sciences Research Center for Charged Particle Therapy
| |
Collapse
|
9
|
Kozłowska WS, Böhlen TT, Cuccagna C, Ferrari A, Fracchiolla F, Magro G, Mairani A, Schwarz M, Vlachoudis V, Georg D. FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy. Phys Med Biol 2019; 64:075012. [PMID: 30695766 DOI: 10.1088/1361-6560/ab02cb] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While Monte Carlo (MC) codes are considered as the gold standard for dosimetric calculations, the availability of user friendly MC codes suited for particle therapy is limited. Based on the FLUKA MC code and its graphical user interface (GUI) Flair, we developed an easy-to-use tool which enables simple and reliable simulations for particle therapy. In this paper we provide an overview of functionalities of the tool and with the presented clinical, proton and carbon ion therapy examples we demonstrate its reliability and the usability in the clinical environment and show its flexibility for research purposes. The first, easy-to-use FLUKA MC platform for particle therapy with GUI functionalities allows a user with a minimal effort and reduced knowledge about MC details to apply MC at their facility and is expected to enhance the popularity of the MC for both research and clinical quality assurance and commissioning purposes.
Collapse
Affiliation(s)
- Wioletta S Kozłowska
- CERN-European Organization for Nuclear Research, Geneva, Switzerland. Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A pre-absorber optimization technique for pencil beam scanning proton therapy treatments. Phys Med 2019; 57:145-152. [PMID: 30738518 DOI: 10.1016/j.ejmp.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To implement a new proton therapy planning method for the treatment of shallow lesions with PBS and to compare it to the standard method. METHODS AND MATERIALS In order to treat shallow lesions, a pre-absorber, usually called range-shifter (RS), is needed: it is used to degrade the beam energy and treat tumors shallower than the minimum range available. Its use is associated to dose calculation uncertainties and plan quality degradation which should be minimized. We studied five tumor localizations requiring RS and created three plans for each case: a) standard method with the RS close to the patient surface, b) with the RS used only for the shallow part of the tumor (when strictly needed) and completely retracted and c) as the b) approach but with the RS close to the patient. We called these two approaches 'Range Shifter Optimization' (RSO) techniques. We compared those plans in terms of dose distribution quality, delivery time and patient-specific-QA results. RESULTS In most cases a good dose reduction to OARs with no significant loss in terms of target coverage was obtained when the RSO techniques were used. Patient-specific-QA gave very good results in terms of γ-Passing-Rate (PR) (3%, 3 mm) for both RSO techniques (mean 98.09%), while the standard had some very low PR (minimum 81.09%). The delivery time increased (5.0 min on average per treatment) but was still acceptable in terms of patient compliance. CONCLUSION We developed a new planning technique for shallow lesions and we demonstrated its superiority in terms of both plan quality and patient-specific-QA results with respect to the standard method. This technique is routinely used to treat patients in our center.
Collapse
|
11
|
Giordanengo S, Palmans H. Dose detectors, sensors, and their applications. Med Phys 2018; 45:e1051-e1072. [DOI: 10.1002/mp.13089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simona Giordanengo
- Istituto Nazionale di Fisica Nucleare, Section of Torino Via Giuria 1 10125 Torino Italy
| | - Hugo Palmans
- National Physical Laboratory Medical Radiation Science Hampton Road Teddington Middlesex TW11 0LW UK
- EBG MedAustron GmbH Marie‐Curiestraße 5 A‐2700 Wiener Neustadt Austria
| |
Collapse
|
12
|
Matter M, Nenoff L, Meier G, Weber DC, Lomax AJ, Albertini F. Alternatives to patient specific verification measurements in proton therapy: a comparative experimental study with intentional errors. ACTA ACUST UNITED AC 2018; 63:205014. [DOI: 10.1088/1361-6560/aae2f4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Mori S, Takei Y, Shirai T, Hara Y, Furukawa T, Inaniwa T, Tanimoto K, Tajiri M, Kuroiwa D, Kimura T, Yamamoto N, Yamada S, Tsuji H, Kamada T. Scanned carbon-ion beam therapy throughput over the first 7 years at National Institute of Radiological Sciences. Phys Med 2018; 52:18-26. [PMID: 30139605 DOI: 10.1016/j.ejmp.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/14/2018] [Accepted: 06/02/2018] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION In the 7 years since our facility opened, we have treated >2000 patients with pencil-beam scanned carbon-ion beam therapy. METHODS To summarize treatment workflow, we evaluated the following five metrics: i) total number of treated patients; ii) treatment planning time, not including contouring procedure; iii) quality assurance (QA) time (daily and patient-specific); iv) treatment room occupancy time, including patient setup, preparation time, and beam irradiation time; and v) daily treatment hours. These were derived from the oncology information system and patient handling system log files. RESULTS The annual number of treated patients reached 594, 7 years from the facility startup, using two treatment rooms. Mean treatment planning time was 6.0 h (minimum: 3.4 h for prostate, maximum: 9.3 h for esophagus). Mean time devoted to daily QA and patient-specific QA were 22 min and 13.5 min per port, respectively, for the irradiation beam system. Room occupancy time was 14.5 min without gating for the first year, improving to 9.2 min (8.2 min without gating and 12.8 min with gating) in the second. At full capacity, the system ran for 7.5 h per day. CONCLUSIONS We are now capable of treating approximately 600 patients per year in two treatment rooms. Accounting for the staff working time, this performance appears reasonable compared to the other facilities.
Collapse
Affiliation(s)
- Shinichiro Mori
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan.
| | - Yuka Takei
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Yousuke Hara
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Takuji Furukawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Katsuyuki Tanimoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Minoru Tajiri
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Daigo Kuroiwa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Taku Kimura
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Naoyoshi Yamamoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Shigeru Yamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Hiroshi Tsuji
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-0024, Japan
| |
Collapse
|
14
|
Giordanengo S, Manganaro L, Vignati A. Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Phys Med 2017; 43:79-99. [DOI: 10.1016/j.ejmp.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
|
15
|
Batista V, Chaudhri N, Richter D, Herfarth K, Jäkel O. Internal target volume margins for liver tumours treated with gated scanned carbon-ion radiotherapy. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Li Y, Hsi WC. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams. Phys Med Biol 2017; 62:2675-2693. [PMID: 28155843 DOI: 10.1088/1361-6560/aa5dff] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.
Collapse
Affiliation(s)
- Yongqiang Li
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai 201321, People's Republic of China
| | | |
Collapse
|
17
|
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096702. [PMID: 27540827 DOI: 10.1088/0034-4885/79/9/096702] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy. Department of Physics, University Federico II, Naples, Italy
| | | |
Collapse
|
18
|
Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel) 2015; 7:631-47. [PMID: 25867000 PMCID: PMC4491675 DOI: 10.3390/cancers7020631] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023] Open
Abstract
An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.
Collapse
|
19
|
Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, Jäkel O, Mayer R, Orecchia R, Pötter R, Vatnitsky S, Chu WT. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol 2015; 16:e93-e100. [PMID: 25638685 DOI: 10.1016/s1470-2045(14)70412-7] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Charged particle therapy is generally regarded as cutting-edge technology in oncology. Many proton therapy centres are active in the USA, Europe, and Asia, but only a few centres use heavy ions, even though these ions are much more effective than x-rays owing to the special radiobiological properties of densely ionising radiation. The National Institute of Radiological Sciences (NIRS) Chiba, Japan, has been treating cancer with high-energy carbon ions since 1994. So far, more than 8000 patients have had this treatment at NIRS, and the centre thus has by far the greatest experience in carbon ion treatment worldwide. A panel of radiation oncologists, radiobiologists, and medical physicists from the USA and Europe recently completed peer review of the carbon ion therapy at NIRS. The review panel had access to the latest developments in treatment planning and beam delivery and to all updated clinical data produced at NIRS. A detailed comparison with the most advanced results obtained with x-rays or protons in Europe and the USA was then possible. In addition to those tumours for which carbon ions are known to produce excellent results, such as bone and soft-tissue sarcoma of the skull base, head and neck, and pelvis, promising data were obtained for other tumours, such as locally recurrent rectal cancer and pancreatic cancer. The most serious impediment to the worldwide spread of heavy ion therapy centres is the high initial capital cost. The 20 years of clinical experience at NIRS can help guide strategic decisions on the design and construction of new heavy ion therapy centres.
Collapse
Affiliation(s)
- Tadashi Kamada
- National Institute of Radiological Sciences, Chiba, Japan
| | | | | | - Jürgen Debus
- University of Heidelberg and Heidelberg Ion Therapy Centre, Heidelberg, Germany
| | | | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research and Darmstadt University of Technology, Darmstadt, Germany.
| | - Oliver Jäkel
- University of Heidelberg and Heidelberg Ion Therapy Centre, Heidelberg, Germany
| | | | - Roberto Orecchia
- CNAO Foundation, Pavia, and European Institute of Oncology, Milan, Italy
| | | | | | - William T Chu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
20
|
Giordanengo S, Garella MA, Marchetto F, Bourhaleb F, Ciocca M, Mirandola A, Monaco V, Hosseini MA, Peroni C, Sacchi R, Cirio R, Donetti M. The CNAO dose delivery system for modulated scanning ion beam radiotherapy. Med Phys 2014; 42:263-75. [DOI: 10.1118/1.4903276] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Inaniwa T, Kanematsu N, Hara Y, Furukawa T, Fukahori M, Nakao M, Shirai T. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy. Phys Med Biol 2014; 59:5361-86. [DOI: 10.1088/0031-9155/59/18/5361] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|