1
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
2
|
Lai Y, Wang Q, Zhou S, Xie Z, Qi J, Cherry SR, Jin M, Chi Y, Du J. H 2RSPET: a 0.5 mm resolution high-sensitivity small-animal PET scanner, a simulation study. Phys Med Biol 2021; 66:065016. [PMID: 33571980 PMCID: PMC8353984 DOI: 10.1088/1361-6560/abe558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the goal of developing a total-body small-animal PET system with a high spatial resolution of ∼0.5 mm and a high sensitivity >10% for mouse/rat studies, we simulated four scanners using the graphical processing unit-based Monte Carlo simulation package (gPET) and compared their performance in terms of spatial resolution and sensitivity. We also investigated the effect of depth-of-interaction (DOI) resolution on the spatial resolution. All the scanners are built upon 128 DOI encoding dual-ended readout detectors with lutetium yttrium oxyorthosilicate (LYSO) arrays arranged in 8 detector rings. The solid angle coverages of the four scanners are all ∼0.85 steradians. Each LYSO element has a cross-section of 0.44 × 0.44 mm2 and the pitch size of the LYSO arrays are all 0.5 mm. The four scanners can be divided into two groups: (1) H2RS110-C10 and H2RS110-C20 with 40 × 40 LYSO arrays, a ring diameter of 110 mm and axial length of 167 mm, and (2) H2RS160-C10 and H2RS160-C20 with 60 × 60 LYSO arrays, a diameter of 160 mm and axial length of 254 mm. C10 and C20 denote the crystal thickness of 10 and 20 mm, respectively. The simulation results show that all scanners have a spatial resolution better than 0.5 mm at the center of the field-of-view (FOV). The radial resolution strongly depends on the DOI resolution and radial offset, but not the axial resolution and tangential resolution. Comparing the C10 and C20 designs, the former provides better resolution, especially at positions away from the center of the FOV, whereas the latter has 2× higher sensitivity (∼10% versus ∼20%). This simulation study provides evidence that the 110 mm systems are a good choice for total-body mouse studies at a lower cost, whereas the 160 mm systems are suited for both total-body mouse and rat studies.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Qian Wang
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Shiwei Zhou
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Zhaoheng Xie
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| |
Collapse
|
3
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
4
|
Kuang Z, Wang X, Ren N, Wu S, Gao J, Zeng T, Gao D, Zhang C, Sang Z, Hu Z, Du J, Liang D, Liu X, Zheng H, Yang Y. Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors. Phys Med Biol 2020; 65:235013. [PMID: 32992302 DOI: 10.1088/1361-6560/abbc83] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work, a small animal PET scanner named SIAT aPET was developed using dual-ended readout depth encoding detectors to simultaneously achieve high spatial resolution and high sensitivity. The scanner consists of four detector rings with 12 detector modules per ring; the ring diameter is 111 mm and the axial field of view (FOV) is 105.6 mm. The images are reconstructed using an ordered subset expectation maximization (OSEM) algorithm. The spatial resolution of the scanner was measured by using a 22Na point source at the center axial FOV with different radial offsets. The sensitivity of the scanner was measured at center axis of the scanner with different axial positions. The count rate performance of the system was evaluated by scanning mouse-sized and rat-sized phantoms. An ultra-micro hot-rods phantom and two mice injected with 18F-NaF and 18F-FDG were scanned on the scanner. An average depth of interaction (DOI) resolution of 1.96 mm, energy resolution of 19.1% and timing resolution of 1.20 ns were obtained for the detector. Average spatial resolutions of 0.82 mm and 1.16 mm were obtained up to a distance of 30 mm radially from the center of the FOV when reconstructing a point source in 1% and 10% warm backgrounds, respectively, using OSEM reconstruction with 16 subsets and 10 iterations. Sensitivities of 16.0% and 11.9% were achieved at center of the scanner for energy windows of 250-750 keV and 350-750 keV respectively. Peak noise equivalent count rates (NECRs) of 324 kcps and 144 kcps were obtained at an activity of 26.4 MBq for the mouse-sized and rat-sized phantoms. Rods of 1.0 mm diameter can be visually resolved from the image of the ultra-micro hot-rods phantom. The capability of the scanner was demonstrated by high quality in-vivo mouse images.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. Authors have contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li M, Wang Y, Abbaszadeh S. Development and initial characterization of a high-resolution PET detector module with DOI. Biomed Phys Eng Express 2020; 6:065020. [PMID: 34234961 PMCID: PMC8260077 DOI: 10.1088/2057-1976/abbd4f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Organ-dedicated PET scanners are becoming more prevalent because of their advantages in higher sensitivity, improved image quality, and lower cost. Detectors utilized in these scanners have finer pixel size with depth of interaction (DOI) capability. This work presents a LYSO(Ce) detector module with DOI capability which has the potential to be scaled up to a high-resolution small animal or organ-dedicated PET system. For DOI capability, a submodule with one LYSO block detector utilizing PETsys TOFPET2 application-specific integrated circuit (ASIC) was previously developed in our lab. We scaled up the submodule and optimized the configuration to allow for a compact housing of the dual-readout boards in one side of the blocks by designing a high-speed dual-readout cable to maintain the original pin-to-pin relationship between the Samtec connectors. The module size is 53.8 × 57.8 mm2. Each module has 2 × 2 LYSO blocks, each LYSO block consists of 4 × 4 LYSO units, and each LYSO unit contains a 6 × 6 array of 1 × 1 × 20 mm3 LYSO crystals. The four lateral surfaces of LYSO crystal were mechanically ground to W14, and the two end surfaces were polished. Two ends of the LYSO crystal are optically connected to SiPM for DOI measurement. Eight LYSO blocks performance including energy, timing, and DOI resolution is characterized with a single LYSO slab. The in-panel and orthogonal-panel spatial resolution of the two modules with 107.4 mm distance between each other are measured at 9 positions within the field of view (FOV) with a 22Na source. Results show that the average energy, timing, and DOI resolution of all LYSO blocks are 16.13% ± 1.01% at 511 keV, 658.03 ± 15.18 ps, and 2.62 ± 0.06 mm, respectively. The energy and timing resolution of two modules are 16.35% and 0.86 ns, respectively. The in-panel and orthogonal-panel spatial resolution of the two modules at the FOV center are 1.9 and 4.4 mm respectively.
Collapse
Affiliation(s)
- Mohan Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Yuli Wang
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| | - Shiva Abbaszadeh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| |
Collapse
|
6
|
Selfridge A, Cherry S, Badawi R. Characterization of four readout circuits for an MR compatible, preclinical PET detector. Phys Med Biol 2020; 65:125008. [PMID: 32340015 PMCID: PMC10473842 DOI: 10.1088/1361-6560/ab8d76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We are building a high sensitivity preclinical PET/MRI insert using a highly multiplexed light sharing PET module. Each module incorporates four 19 × 19 arrays of 1 × 1 × 20 mm3 LYSO crystals with dual-ended DOI encoding readout, requiring 32 readout channels for positioning and eight channels for timing. These constraints necessitate compact, robust electronics for digitization. We have characterized four linearized time-over-threshold circuits based on these detector requirements. The four circuits allow for high channel density and can digitize signals from highly multiplexed light sharing detectors. Each circuit digitizes one channel of a multiplexed SiPM array, yielding a binary output that interfaces directly with an FPGA. Using the optimal circuit, we have characterized the performance of a pair of PET modules. The four circuits were characterized based on linearity of the 22Na photopeak positions and energy resolution at 511 keV, as well as separation of elements in a 10 × 10 array of 1.2 mm LYSO crystals coupled with a specular reflector. Practical measures of performance were comparable to those obtained with a DRS evaluation board, which served as a reference acquisition system. The ratio of the 22Na photopeak positions was 2.0 for each circuit and the reference system, implying 20% saturation due to the SiPM. PET energy resolution of the optimal circuit was 11.8% FWHM for a single crystal versus 12.6% for the reference system, and crystals were equally well separated in all cases. PCBs implementing the optimal readout circuit were fabricated and used to construct two complete detector modules. Crystals in each of the four blocks in the module were well resolved, with a mean energy resolution of 24.4 ± 4.7%. Two modules operating in coincidence showed a single detector timing resolution of 3.0 ns, which is appropriate for preclinical applications.
Collapse
Affiliation(s)
- Aaron Selfridge
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Ramsey Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| |
Collapse
|
7
|
Yang Q, Kuang Z, Sang Z, Yang Y, Du J. Performance comparison of two signal multiplexing readouts for SiPM-based pet detector. Phys Med Biol 2019; 64:23NT02. [PMID: 31722318 DOI: 10.1088/1361-6560/ab5738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PET scanners using SiPMs as photodetectors could have tens of thousands of SiPMs. To simplify the readout electronics, analog signal multiplexing readouts are always preferred to be used as early as possible. In this paper, two simple analog signal multiplexing readouts, a capacitive charge-division readout, and a resistive charge-division readout were evaluated and compared using dual-ended readout detectors based on 10 × 10 arrays of SensL MicroFJ-30035 SiPMs coupled to both ends of a 20 × 20 LYSO array with a pitch size of 1.5 mm and a length of 20 mm. The performance of the detectors were evaluated at different bias voltages (from 27.0 V to 30.5 V with an interval of 0.5 V) and a temperature of 22.8 °C. The flood histograms show that all the crystals in the LYSO array were clearly identified, whilst better flood histogram was obtained using the resistive charge-division readout. At a bias voltage of 29.5V, the flood histogram quality, energy resolution, DOI resolution, and timing resolution of the detector obtained using the capacitive charge-division readout were 3.28 ± 0.85, 18.9% ± 6.2%, 1.93 ± 0.20 mm, 1.25 ± 0.11 ns respectively, and those obtained using the resistive charge-division readout were 3.57 ± 0.81, 16.9% ± 6.5%, 1.96 ± 0.23 mm and 1.23 ± 0.07 ns, respectively. Overall, the detector with the resistive charge-division readout provided better performance.
Collapse
Affiliation(s)
- Qian Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Li M, Abbaszadeh S. Depth-of-interaction study of a dual-readout detector based on TOFPET2 application-specific integrated circuit. Phys Med Biol 2019; 64:175008. [PMID: 31382253 DOI: 10.1088/1361-6560/ab3866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Depth-of-interaction (DOI) capability is important for achieving high spatial resolution and sensitivity in dedicated organ and small animal positron emission tomography (PET) scanners. The dual-ended readout is one of the common methods that can achieve good DOI resolution. The aim of this study is to evaluate a dual-ended readout detector based on silicon photomultiplier (SiPM) and TOFPET2 application-specific integrated circuit (ASIC). The detector is based on 4 [Formula: see text] 4 lutetium-yttrium oxyorthosilicate (LYSO) units, each unit contained 6 [Formula: see text] 6 LYSO crystals, and the crystal size was 1 [Formula: see text] 1 [Formula: see text] 20 mm3. The four lateral surfaces of LYSO crystals were mechanically ground to W14 (surface roughness 10-14 [Formula: see text]m), and the two ended surfaces were polished (surface roughness <0.5 [Formula: see text]m). The reflector was Toray Lumirror E60, and the packing fraction of the LYSO block was 86.5%. Each LYSO unit was read out from both ends with two Hamamatsu S13361-3050AE-08 SiPM arrays. The analog output signals of SiPM were digitized by PETsys TOFPET2 ASIC and acquired by PETsys SiPM Readout System. The ASIC and SiPM were cooled by a fan and a Peltier element. To investigate the crystal resolvability, different light guide thicknesses including 0.8, 1, 1.2 and 2 mm were tested. The light guide was made of optical glass (H-K9L-Foctek Photoincs), and the size and refractive index were 6.45 [Formula: see text] 6.45 mm2 and 1.53 (at 420 nm), respectively. To characterize the detector performance at different depths, another 1 [Formula: see text] 25.8 [Formula: see text] 20 mm3 single LYSO slab was used. Data were acquired at 10 depths (1, 3, …, 19 mm), and each depth had a 10 min acquisition time and about 40 thousand coincidence events. During the experiment, the SiPM temperature was controlled as 27.6 [Formula: see text] 0.4 °C. The results showed that the 1.2 mm light guide offered the best crystal resolvability. The energy, coincidence time, and DOI resolution full-width at half-maximum of the detector were characterized as 15.66% [Formula: see text] 0.66%, 602.98 [Formula: see text] 10.58 ps, and 2.33 [Formula: see text] 0.07 mm, respectively. The good DOI resolution indicates the potential of utilizing the detector for high-resolution PET applications.
Collapse
Affiliation(s)
- Mohan Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | | |
Collapse
|
9
|
Pizzichemi M, Polesel A, Stringhini G, Gundacker S, Lecoq P, Tavernier S, Paganoni M, Auffray E. On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution. ACTA ACUST UNITED AC 2019; 64:155008. [DOI: 10.1088/1361-6560/ab2cb0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Parl C, Kolb A, Stricker-Shaver D, Pichler BJ. Dual layer doI detector modules for a dedicated mouse brain PET/MRI. Phys Med Biol 2019; 64:055004. [PMID: 30654339 DOI: 10.1088/1361-6560/aaff73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The outcome of preclinical imaging studies are enhanced by simultaneous, high-resolution anatomical and molecular data, which advanced PET/MRI systems provide. Nevertheless, mapping of neuroreceptors and accurate quantification of PET tracer distribution in mouse brains is not trivial. The restricted spatial resolution and sensitivity in commercial animal PET systems limits the image quality and the quantification accuracy. We are currently developing a PET/MRI system dedicated for mouse brain studies. The PET system will offer system dimensions of approx. 30 mm in diameter and an axial length of more than 38 mm. This work discusses two system geometries including their associated block detectors. Both configurations were based on a dual layer offset structure with small crystals sizes, in the order of 1 × 1 × 4/6 mm3, to provide discrete depth of interaction information. The detector for configuration 'A' was based on a 4 × 4 silicon photomultiplier (SiPM) array attached to an optical diffusor, and a 12 × 12 as well as a 9 × 11 LSO crystal array, to achieve optimal system sensitivity. This configuration was evaluated by a double layer of 12 × 12 crystals. Configuration 'B' was composed of three 2 × 2 SiPM arrays equipped with a 1 mm diffusor to read out an LSO stack of 20 × 6 and 19 × 5 individual crystals. The average peak-to-valley ratio of the inner/outer layer was 3.5/3.6 for detector 'A', and 3.4/2.8 for detector 'B'. The average full width at half maximum (FWHM) energy resolution of the block detectors were 22.24% ± 3.36% for 'A' and 30.67% ± 5.37% for 'B'. The FWHM of the full block timing resolution of the inner/outer layer was 1.4 ns/1.2 ns for detector 'A' and 1.8 ns/1.4 ns for 'B'. The performance of the crystal position profile, the energy, and timing resolution indicate that configuration 'A' is more appropriate for a mouse brain PET/MRI system.
Collapse
Affiliation(s)
- C Parl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
11
|
Du J, Bai X, Cherry SR. A depth-of-interaction encoding PET detector module with dual-ended readout using large-area silicon photomultiplier arrays. Phys Med Biol 2018; 63:245019. [PMID: 30523925 DOI: 10.1088/1361-6560/aaee32] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The performance of a depth-of-interaction (DOI) encoding PET detector module with dual-ended readout of LYSO scintillator arrays using large-area SiPM arrays was evaluated. Each SiPM array, with a surface area of 50.2 × 50.2 mm2, consists of 12 × 12 C-series SiPMs from SensL (SensL, Inc). The LYSO array, with a total size of 46 × 46 mm2 and a pitch size of 1.0 mm, consists of a 46 × 46 array of 0.945 × 0.945 × 20 mm3 polished LYSO crystals, separated by Toray reflector. Custom front-end electronics were designed to reduce the 288 SiPM signals of one detector module to nine signals, eight for position information and 1 for timing information. Schottky diodes were used to block noise from SiPMs that did not detect a significant number of scintillation photons following a gamma interaction. Measurements of noise, signal, signal-to-noise ratio, energy resolution and flood histogram quality were obtained at different bias voltages (26.0 to 31.0 V in 0.5 V intervals) and at two temperatures (5 °C and 20 °C). Clear acrylic plates, 2.0 mm thick, were used as light guides to spread the scintillation photons. Timing resolution, depth of interaction resolution, and the effect of event rate on detector performance were measured at the bias voltage determined to be optimal for the flood histograms. Performance obtained with and without the noise-blocking Shottky diodes was also compared. The results showed that all crystals in the LYSO array can be clearly resolved, and performance improved when using diodes to block noise, and at the lower temperature. The average energy resolution, flood histogram quality, timing resolution and DOI resolution were 23.8% ± 2.0%, 1.54 ± 0.17, 1.78 ± 0.09 ns and 2.81 ± 0.13 mm respectively, obtained at a bias voltage of 30.0 V and a temperature of 5 °C using the diode readout method. The event rate experiments showed that the flood histogram and energy resolution of the detector were not significantly degraded for an event rate of up to 150 000 counts s-1.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | | | | |
Collapse
|
12
|
Schmidt FP, Kolb A, Pichler BJ. Optimization, evaluation and calibration of a cross-strip DOI detector. Phys Med Biol 2018; 63:045022. [PMID: 29384502 DOI: 10.1088/1361-6560/aaac0b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study depicts the evaluation of a SiPM detector with depth of interaction (DOI) capability via a dual-sided readout that is suitable for high-resolution positron emission tomography and magnetic resonance (PET/MR) imaging. Two different 12 × 12 pixelated LSO scintillator arrays with a crystal pitch of 1.60 mm are examined. One array is 20 mm-long with a crystal separation by the specular reflector Vikuiti enhanced specular reflector (ESR), and the other one is 18 mm-long and separated by the diffuse reflector Lumirror E60 (E60). An improvement in energy resolution from 22.6% to 15.5% for the scintillator array with the E60 reflector is achieved by taking a nonlinear light collection correction into account. The results are FWHM energy resolutions of 14.0% and 15.5%, average FWHM DOI resolutions of 2.96 mm and 1.83 mm, and FWHM coincidence resolving times of 1.09 ns and 1.48 ns for the scintillator array with the ESR and that with the E60 reflector, respectively. The measured DOI signal ratios need to be assigned to an interaction depth inside the scintillator crystal. A linear and a nonlinear method, using the intrinsic scintillator radiation from lutetium, are implemented for an easy to apply calibration and are compared to the conventional method, which exploits a setup with an externally collimated radiation beam. The deviation between the DOI functions of the linear or nonlinear method and the conventional method is determined. The resulting average of differences in DOI positions is 0.67 mm and 0.45 mm for the nonlinear calibration method for the scintillator array with the ESR and with the E60 reflector, respectively; Whereas the linear calibration method results in 0.51 mm and 0.32 mm for the scintillator array with the ESR and the E60 reflector, respectively; and is, due to its simplicity, also applicable in assembled detector systems.
Collapse
Affiliation(s)
- F P Schmidt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
13
|
Mohammadi A, Yoshida E, Nishikido F, Nitta M, Shimizu K, Sakai T, Yamaya T. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique. Phys Med Biol 2018; 63:025019. [PMID: 29176052 DOI: 10.1088/1361-6560/aa9d03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X'tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X'tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3 × 3 × 20 mm3 and 1.5 × 1.5 × 20 mm3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4 × 4 crystal array of 3 × 3 × 20 mm3 with 7 DOI segments and an 8 × 8 crystal array of 1.5 × 1.5 × 20 mm3 with 13 DOI segments. Each readout included a 4 × 4 channel of the 3 × 3 mm2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4 × 4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8 × 8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8 × 8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4 × 4 array with air between the crystal bars and for the 8 × 8 array with partial reflectors between the crystal bars were 10.1% ± 0.3% and 10.8% ± 0.8%, respectively. Timing resolutions of 783 ± 36 ps and 1.14 ± 0.22 ns were obtained for the detectors composed of the 4 × 4 array and the 8 × 8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X'tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.
Collapse
Affiliation(s)
- Akram Mohammadi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Kuang Z, Sang Z, Wang X, Fu X, Ren N, Zhang X, Zheng Y, Yang Q, Hu Z, Du J, Liang D, Liu X, Zheng H, Yang Y. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs. Med Phys 2017; 45:613-621. [PMID: 29222959 DOI: 10.1002/mp.12722] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. METHODS Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm3 outside dimension were made using ESR, Toray and BaSO4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. RESULTS All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO4 arrays as compared to both the ESR and Toray arrays. The BaSO4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. CONCLUSIONS Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Fu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xianming Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yunfei Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qian Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongfeng Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
15
|
Pizzichemi M, Stringhini G, Niknejad T, Liu Z, Lecoq P, Tavernier S, Varela J, Paganoni M, Auffray E. A new method for depth of interaction determination in PET detectors. Phys Med Biol 2016; 61:4679-98. [PMID: 27245174 DOI: 10.1088/0031-9155/61/12/4679] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new method for obtaining depth of interaction (DOI) information in PET detectors is presented in this study, based on sharing and redirection of scintillation light among multiple detectors, together with attenuation of light over the length of the crystals. The aim is to obtain continuous DOI encoding with single side readout, and at the same time without the need for one-to-one coupling between scintillators and detectors, allowing the development of a PET scanner with good spatial, energy and timing resolutions while keeping the complexity of the system low. A prototype module has been produced and characterized to test the proposed method, coupling a LYSO scintillator matrix to a commercial SiPMs array. Excellent crystal separation is obtained for all the scintillators in the array, light loss due to depolishing is found to be negligible, energy resolution is shown to be on average 12.7% FWHM. The mean DOI resolution achieved is 4.1 mm FWHM on a 15 mm long crystal and preliminary coincidence time resolution was estimated in 353 ps FWHM.
Collapse
|
16
|
Du J, Schmall JP, Yang Y, Di K, Roncali E, Mitchell GS, Buckley S, Jackson C, Cherry SR. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET. Med Phys 2015; 42:585. [PMID: 25652479 DOI: 10.1118/1.4905088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL's front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm(2) and the total size of the detector head is 47.8 × 46.3 mm(2). Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). METHODS Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0-32.5 V in 0.5 V intervals) and at different temperatures (5 °C-25 °C in 5 °C degree steps) to find the optimal operating conditions. RESULTS The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. CONCLUSIONS In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Jeffrey P Schmall
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Yongfeng Yang
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Kun Di
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Gregory S Mitchell
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Steve Buckley
- SensL Technologies Ltd., 6800 Airport Business Park, Cork, Ireland
| | - Carl Jackson
- SensL Technologies Ltd., 6800 Airport Business Park, Cork, Ireland
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California, 95616
| |
Collapse
|