1
|
Broder BA, Aulwes EF, Espy M, Merrill FE, Sidebottom RB, Tupa D, Freeman MS. A TOPAS model for lens-based proton radiography. Biomed Phys Eng Express 2023; 9:065026. [PMID: 37812911 DOI: 10.1088/2057-1976/ad015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Objective.Proton Radiography can be used in conjunction with proton therapy for patient positioning, real-time estimates of stopping power, and adaptive therapy in regions with motion. The modeling capability shown here can be used to evaluate lens-based radiography as an instantaneous proton-based radiographic technique. The utilization of user-friendly Monte Carlo program TOPAS enables collaborators and other users to easily conduct medical- and therapy- based simulations of the Los Alamos Neutron Science Center (LANSCE). The resulting transport model is an open-source Monte Carlo package for simulations of proton and heavy ion therapy treatments and concurrent particle imaging.Approach.The four-quadrupole, magnetic lens system of the 800-MeV proton beamline at LANSCE is modeled in TOPAS. Several imaging and contrast objects were modelled to assess transmission at energies from 230-930 MeV and different levels of particle collimation. At different proton energies, the strength of the magnetic field was scaled according toβγ,the inverse product of particle relativistic velocity and particle momentum.Main results.Materials with high atomic number, Z, (gold, gallium, bone-equivalent) generated more contrast than materials with low-Z (water, lung-equivalent, adipose-equivalent). A 5-mrad collimator was beneficial for tissue-to-contrast agent contrast, while a 10-mrad collimator was best to distinguish between different high-Z materials. Assessment with a step-wedge phantom showed water-equivalent path length did not scale directly according to predicted values but could be mapped more accurately with calibration. Poor image quality was observed at low energies (230 MeV), but improved as proton energy increased, with sub-mm resolution at 630 MeV.Significance.Proton radiography becomes viable for shallow bone structures at 330 MeV, and for deeper structures at 630 MeV. Visibility improves with use of high-Z contrast agents. This modality may be particularly viable at carbon therapy centers with accelerators capable of delivering high energy protons and could be performed with carbon therapy.
Collapse
Affiliation(s)
- Brittany A Broder
- The University of Chicago, 5841 South Ellis Avenue, Chicago, IL 60637, United States of America
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Rachel B Sidebottom
- The University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| |
Collapse
|
2
|
Ramar N, Meher SR. An uncertainty-incorporated method for fast beam angle selection in intensity-modulated proton therapy. J Cancer Res Ther 2023; 19:688-696. [PMID: 37470595 DOI: 10.4103/jcrt.jcrt_530_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aim We propose a novel metric called ψ - score to rank the Intensity Modulated Proton Therapy (IMPT) beams in the order of their optimality and robustness. The beams ranked based on this metric were accordingly chosen for IMPT optimization. The objective of this work is to study the effectiveness of the proposed method in various clinical cases. Methods and Materials We have used Pinnacle TPS (Philips Medical System V 16.2) for performing the optimization. To validate our approach, we have applied it in four clinical cases: Lung, Pancreas, Prostate+Node and Prostate. Basically, for all clinical cases, four set of plans were created using Multi field optimization (MFO) and Robust Optimization (RO) with same clinical objectives, namely (1) Conventional angle plan without Robust Optimization (CA Plan), (2) Suitable angle Plan without Robust Optimization (SA Plan), (3) Conventional angle plan with Robust Optimization (CA-RO Plan), (4) Suitable angle Plan with Robust Optimization (SA-RO Plan). Initial plan was generated with 20 equiangular beams starting from the gantry angle of 0°. In the corresponding SA Plan and SA-RO Plan, the beam angles were obtained using the guidance provided by ψ - score. Results All CA plans were compared against the SA plans in terms of Dose distribution, Dose volume histogram (DVH) and percentage of dose difference. The results obtained from the clinical cases indicate that the plan quality is considerably improved without significantly compromising the robustness when the beam angles are optimized using the proposed method. It takes approximately 10-15 min to find the suitable beam angles without Robust Optimization (RO), while it takes approximately 20-30 min to find the suitable beam angles with RO. However, the inclusion of RO in BAO did not result in a change in the final beam angles for anatomies other than lung. Conclusion The results obtained in different anatomic sites demonstrate the usefulness of our approach in improving the plan quality by determining optimal beam angles in IMPT.
Collapse
Affiliation(s)
- Natarajan Ramar
- Philips Health Systems, Philips India Limited, Bengaluru, Karnataka; Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Samir Ranjan Meher
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Bobić M, Lalonde A, Nesteruk KP, Lee H, Nenoff L, Gorissen BL, Bertolet A, Busse PM, Chan AW, Winey BA, Sharp GC, Verburg JM, Lomax AJ, Paganetti H. Large anatomical changes in head-and-neck cancers – a dosimetric comparison of online and offline adaptive proton therapy. Clin Transl Radiat Oncol 2023; 40:100625. [PMID: 37090849 PMCID: PMC10120292 DOI: 10.1016/j.ctro.2023.100625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes. Methods IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT. Results Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D98 degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands. Conclusion Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.
Collapse
|
4
|
Koh WYC, Tan HQ, Ng YY, Lin YH, Ang KW, Lew WS, Lee JCL, Park SY. Quantifying Systematic RBE-Weighted Dose Uncertainty Arising from Multiple Variable RBE Models in Organ at Risk. Adv Radiat Oncol 2022; 7:100844. [PMID: 35036633 PMCID: PMC8749202 DOI: 10.1016/j.adro.2021.100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) uncertainties have been a concern for treatment planning in proton therapy, particularly for treatment sites that are near organs at risk (OARs). In such a clinical situation, the utilization of variable RBE models is preferred over constant RBE model of 1.1. The problem, however, lies in the exact choice of RBE model, especially when current RBE models are plagued with a host of uncertainties. This paper aims to determine the influence of RBE models on treatment planning, specifically to improve the understanding of the influence of the RBE models with regard to the passing and failing of treatment plans. This can be achieved by studying the RBE-weighted dose uncertainties across RBE models for OARs in cases where the target volume overlaps the OARs. Multi-field optimization (MFO) and single-field optimization (SFO) plans were compared in order to recommend which technique was more effective in eliminating the variations between RBE models. METHODS Fifteen brain tumor patients were selected based on their profile where their target volume overlaps with both the brain stem and the optic chiasm. In this study, 6 RBE models were analyzed to determine the RBE-weighted dose uncertainties. Both MFO and SFO planning techniques were adopted for the treatment planning of each patient. RBE-weighted dose uncertainties in the OARs are calculated assuming( α β ) x of 3 Gy and 8 Gy. Statistical analysis was used to ascertain the differences in RBE-weighted dose uncertainties between MFO and SFO planning. Additionally, further investigation of the linear energy transfer (LET) distribution was conducted to determine the relationship between LET distribution and RBE-weighted dose uncertainties. RESULTS The results showed no strong indication on which planning technique would be the best for achieving treatment planning constraints. MFO and SFO showed significant differences (P <.05) in the RBE-weighted dose uncertainties in the OAR. In both clinical target volume (CTV)-brain stem and CTV-chiasm overlap region, 10 of 15 patients showed a lower median RBE-weighted dose uncertainty in MFO planning compared with SFO planning. In the LET analysis, 8 patients (optic chiasm) and 13 patients (brain stem) showed a lower mean LET in MFO planning compared with SFO planning. It was also observed that lesser RBE-weighted dose uncertainties were present with MFO planning compared with SFO planning technique. CONCLUSIONS Calculations of the RBE-weighted dose uncertainties based on 6 RBE models and 2 different( α β ) x revealed that MFO planning is a better option as opposed to SFO planning for cases of overlapping brain tumor with OARs in eliminating RBE-weighted dose uncertainties. Incorporation of RBE models failed to dictate the passing or failing of a treatment plan. To eliminate RBE-weighted dose uncertainties in OARs, the MFO planning technique is recommended for brain tumor when CTV and OARs overlap.
Collapse
Affiliation(s)
- Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yan Yee Ng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yen Hwa Lin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
5
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Sidebottom RB, Allison JC, Aulwes EF, Broder BA, Freeman MS, Magnelind PE, Mariam FG, Merrill FE, Neukirch LP, Schurman T, Sinnis J, Tang Z, Tupa D, Tybo JL, Wilde CH, Espy M. Contrast-enhanced proton radiographic sensitivity limits for tumor detection. J Med Imaging (Bellingham) 2021; 8:053501. [PMID: 34708145 DOI: 10.1117/1.jmi.8.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- Z nanoparticles that specifically target a tumor could be injected into a patient before imaging. We conducted this study to understand the ability of gold, as a high- Z , biologically compatible tracer, to differentiate tumors from surrounding tissue. Approach: Acrylic and gold phantoms simulate a tumor tagged with gold nanoparticles (AuNPs). Calculations correlate a given thickness of gold to levels of tumor AuNP uptake reported in the literature. An identity, × 3 , and × 7 proton magnifying lens acquired lens-refocused proton radiographs at the 800-MeV LANSCE proton beam. The effects of gold in the phantoms, in terms of percent density change, were observed as changes in measured transmission. Variable areal densities of acrylic modeled the thickness of the human body. Results: A 1 - μ m -thick gold strip was discernible within 1 cm of acrylic, an areal density change of 0.2%. Behind 20 cm of acrylic, a 40 - μ m gold strip was visible. A 1-cm-diameter tumor tagged with 1 × 10 5 50-nm AuNPs per cell has an amount of contrast agent embedded within it that is equivalent to a 65 - μ m thickness of gold, an areal density change of 0.63% in a tissue thickness of 20 cm, which is expected to be visible in a typical proton radiograph. Conclusions: We indicate that AuNP-enhanced proton radiography might be a feasible technology to provide image-guidance to proton therapy, potentially reducing off-target effects and sparing nearby tissue. These data can be used to develop treatment plans and clinical applications can be derived from the simulations.
Collapse
Affiliation(s)
| | - Jason C Allison
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Brittany A Broder
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Per E Magnelind
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Fesseha G Mariam
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Levi P Neukirch
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Tamsen Schurman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - James Sinnis
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Zhaowen Tang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Joshua L Tybo
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Carl H Wilde
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
7
|
Lalonde A, Bobić M, Winey B, Verburg J, Sharp GC, Paganetti H. Anatomic changes in head and neck intensity-modulated proton therapy: Comparison between robust optimization and online adaptation. Radiother Oncol 2021; 159:39-47. [PMID: 33741469 PMCID: PMC8205952 DOI: 10.1016/j.radonc.2021.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE Setup variations and anatomical changes can severely affect the quality of head and neck intensity-modulated proton therapy (IMPT) treatments. The impact of these changes can be alleviated by increasing the plan's robustness a priori, or by adapting the plan online. This work compares these approaches in the context of head and neck IMPT. MATERIALS/METHODS A representative cohort of 10 head and neck squamous cell carcinoma (HNSCC) patients with daily cone-beam computed tomography (CBCT) was evaluated. For each patient, three IMPT plans were created: 1- a classical robust optimization (cRO) plan optimized on the planning CT, 2- an anatomical robust optimization (aRO) plan additionally including the two first daily CBCTs and 3- a plan optimized without robustness constraints, but online-adapted (OA) daily, using a constrained spot intensity re-optimization technique only. RESULTS The cumulative dose following OA fulfilled the clinical objective of both the high-risk and low-risk clinical target volumes (CTV) coverage in all 10 patients, compared to 8 for aRO and 4 for cRO. aRO did not significantly increase the dose to most organs at risk compared to cRO, although the integral dose was higher. OA significantly reduced the integral dose to healthy tissues compared to both robust methods, while providing equivalent or superior target coverage. CONCLUSION Using a simple spot intensity re-optimization, daily OA can achieve superior target coverage and lower dose to organs at risk than robust optimization methods.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA.
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA; ETH Zürich, Zürich, Switzerland
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Joost Verburg
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel W. Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers (Basel) 2021; 13:cancers13081859. [PMID: 33924627 PMCID: PMC8070061 DOI: 10.3390/cancers13081859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Standard intensity-modulated proton therapy (IMPT) places the Bragg-peak in the target. However, it is also possible to use high energy proton transmission beams (TBs), where the Bragg-peak is placed outside the patient, irradiating with the beam section proximal to the Bragg-peak. TBs use only one energy, increase robustness, are insensitive to density changes and have sharper penumbras. TBs can also be delivered at ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is one of the requirements for the FLASH-effect. The aim of this work was twofold: (1) comparison of TB-plan quality to IMPT and photon volumetric-modulated arc therapy (VMAT) for conventionally fractionated head-and-neck cancer; (2) analysis of TB-plan UHDR-metrics. We showed that TB-plan quality was comparable to IMPT for contoured organs at risk and better than VMAT. Any potential FLASH-effect would only further improve plan quality. TB plans can also be delivered quickly, which might facilitate higher patient through-put and enhance patient comfort. Abstract Transmission beam (TB) proton therapy (PT) uses single, high energy beams with Bragg-peak behind the target, sharp penumbras and simplified planning/delivery. TB facilitates ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is a requirement for the FLASH-effect. We investigated (1) plan quality for conventionally-fractionated head-and-neck cancer treatment using spot-scanning proton TBs, intensity-modulated PT (IMPT) and photon volumetric-modulated arc therapy (VMAT); (2) UHDR-metrics. VMAT, 3-field IMPT and 10-field TB-plans, delivering 70/54.25 Gy in 35 fractions to boost/elective volumes, were compared (n = 10 patients). To increase spot peak dose-rates (SPDRs), TB-plans were split into three subplans, with varying spot monitor units and different gantry currents. Average TB-plan organs-at-risk (OAR) sparing was comparable to IMPT: mean oral cavity/body dose were 4.1/2.5 Gy higher (9.3/2.0 Gy lower than VMAT); most other OAR mean doses differed by <2 Gy. Average percentage of dose delivered at UHDRs was 46%/12% for split/non-split TB-plans and mean dose-averaged dose-rate 46/21 Gy/s. Average total beam-on irradiation time was 1.9/3.8 s for split/non-split plans and overall time including scanning 8.9/7.6 s. Conventionally-fractionated proton TB-plans achieved comparable OAR-sparing to IMPT and better than VMAT, with total beam-on irradiation times <10s. If a FLASH-effect can be demonstrated at conventional dose/fraction, this would further improve plan quality and TB-protons would be a suitable delivery system.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
- Correspondence:
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Michael Folkerts
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Eric Abel
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Wilko Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| |
Collapse
|
9
|
Corradini S, Niyazi M, Verellen D, Valentini V, Walsh S, Grosu AL, Lauber K, Giaccia A, Unger K, Debus J, Pieters BR, Guckenberger M, Senan S, Budach W, Rad R, Mayerle J, Belka C. X-change symposium: status and future of modern radiation oncology-from technology to biology. Radiat Oncol 2021; 16:27. [PMID: 33541387 PMCID: PMC7863262 DOI: 10.1186/s13014-021-01758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Future radiation oncology encompasses a broad spectrum of topics ranging from modern clinical trial design to treatment and imaging technology and biology. In more detail, the application of hybrid MRI devices in modern image-guided radiotherapy; the emerging field of radiomics; the role of molecular imaging using positron emission tomography and its integration into clinical routine; radiation biology with its future perspectives, the role of molecular signatures in prognostic modelling; as well as special treatment modalities such as brachytherapy or proton beam therapy are areas of rapid development. More clinically, radiation oncology will certainly find an important role in the management of oligometastasis. The treatment spectrum will also be widened by the rational integration of modern systemic targeted or immune therapies into multimodal treatment strategies. All these developments will require a concise rethinking of clinical trial design. This article reviews the current status and the potential developments in the field of radiation oncology as discussed by a panel of European and international experts sharing their vision during the "X-Change" symposium, held in July 2019 in Munich (Germany).
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dirk Verellen
- Department of Radiotherapy, Iridium Network, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincenzo Valentini
- Department of Radiation Oncology and Hematology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | | | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Amato Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Kristian Unger
- Integrative Biology Group, Helmholtz Zentrum Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bradley R Pieters
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wilfried Budach
- Department of Radiation Oncology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), TU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, University Hospital, LMU, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
10
|
Bobić M, Lalonde A, Sharp GC, Grassberger C, Verburg JM, Winey BA, Lomax AJ, Paganetti H. Comparison of weekly and daily online adaptation for head and neck intensity-modulated proton therapy. Phys Med Biol 2021; 66. [PMID: 33503592 DOI: 10.1088/1361-6560/abe050] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
The high conformality of intensity-modulated proton therapy (IMPT) dose distributions causes treatment plans to be sensitive to geometrical changes during the course of a fractionated treatment. This can be addressed using adaptive proton therapy (APT). One important question in APT is the frequency of adaptations performed during a fractionated treatment, which is related to the question whether plan adaptation has to be done online or offline. The purpose of this work is to investigate the impact of weekly and daily online IMPT plan adaptation on the treatment quality for head and neck patients. A cohort of ten head and neck patients with daily acquired cone-beam CT (CBCT) images was evaluated retrospectively. Dose tracking of the IMPT treatment was performed for three scenarios: base plan with no adaptation (BP), weekly online adaptation (OAW), and daily online adaptation (OAD). Both adaptation schemes used an in-house developed online APT workflow, performing Monte Carlo (MC) dose calculations on scatter-corrected CBCTs. IMPT plan adaptation was achieved by only tuning the weights of a subset of beamlets, based on deformable image registration from the planning CT to each CBCT. Although OADmitigated random delivery errors more effectively than OAWon a fraction per fraction basis, both OAWand OADachieved the clinical goals for all ten patients, while BP failed for six cases. In the high-risk CTV, accumulated values of D98%ranged between 97.15% and 99.73% of the prescription dose for OAD, with a median of 98.07%. For OAW, values between 95.02% and 99.26% were obtained, with a median of 97.61% of the prescription dose. Otherwise, the dose to most organs at risk was similar for all three scenarios. Globally, our results suggest that OAWcould be used as an alternative approach to OADfor most patients in order to reduce the clinical workload.
Collapse
Affiliation(s)
- Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, UNITED STATES
| | - Arthur Lalonde
- Radiation-Oncology, Massachusetts General Hospital, Boston, Massachusetts, 02114-2696, UNITED STATES
| | - Gregory C Sharp
- Dept of Radiation Oncology, Massachusetts General Hospital, 100 Blossom Street, Cox Building, 302, Boston, MA 02114, USA, Boston, UNITED STATES
| | | | - Joost M Verburg
- Department of Radiation Oncology, Harvard Medical School, Massachussets General Hospital, Francis H Burr Proton Therapy Center, 30 Fruit Street, Boston, 02114, UNITED STATES
| | - Brian A Winey
- Department of Radiation Oncology, Harvard Medical School, FH Burr Proton Therapy Center, 55 Fruit St, Boston, Massachusetts, 02114, UNITED STATES
| | - Antony John Lomax
- Department of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen PSI, Villigen, SWITZERLAND
| | - Harald Paganetti
- Northeast Proton Therapy Centre, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114, USA, Boston, Massachusetts, 02114, UNITED STATES
| |
Collapse
|
11
|
Lalonde A, Winey B, Verburg J, Paganetti H, Sharp GC. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy. Phys Med Biol 2020; 65. [DOI: 10.1088/1361-6560/ab9fcb] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
|
12
|
Abstract
Background: Dose-painting has recently been investigated in early-phase trials in head-and-neck cancer (HNC) with the aim of improving local tumor control. At the same time proton therapy has been reported as potentially capable of decreasing toxicity. Here, we investigate whether protons could be applied in a dose-painting setting by comparing proton dose distributions with delivered photon plans from a phase-I trial of FDG-PET based dose-painting at our institution.Material and methods: Eleven oropharynx (5), hypopharynx (2) and larynx cancer (4) patients from the recently conducted phase I trial were used for comparison of proton and photon dose-painting techniques. Robust optimization (3.5%/3 mm) was used for proton plans. Plan robustness and difference in dose metrics to targets and organs at risk were evaluated.Results: The proton plans met target dose constraints, while having lower non-target dose than photon plans (body-minus-CTV, mean dose 3.9 Gy vs 7.2 Gy, p = .004). Despite the use of robust proton planning for plan max dose, photon plan max doses were more robust (p = .006). Max dose to medulla, brainstem and mandible were lower in the proton plans, while there was no significant difference in mean dose to submandibular- and parotid glands.Conclusion: Proton dose-painting for HNC seems feasible and can reduce the non-target dose overall, however not significantly to certain organs close to the target, such as the salivary glands. Max dose in proton plans had a lower robustness compared to photons, requiring caution to avoid unintended hot spots in consideration of the risk of mucosal toxicity.
Collapse
|
13
|
Tommasino F, Widesott L, Fracchiolla F, Lorentini S, Righetto R, Algranati C, Scifoni E, Dionisi F, Scartoni D, Amelio D, Cianchetti M, Schwarz M, Amichetti M, Farace P. Clinical implementation in proton therapy of multi-field optimization by a hybrid method combining conventional PTV with robust optimization. Phys Med Biol 2020; 65:045002. [PMID: 31851957 DOI: 10.1088/1361-6560/ab63b9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To implement a robust multi-field optimization (MFO) technique compatible with the application of a Monte Carlo (MC) algorithm and to evaluate its robustness. Nine patients (three brain, five head-and-neck, one spine) underwent proton treatment generated by a novel robust MFO technique. A hybrid (hMFO) approach was implemented, planning dose coverage on isotropic PTV compensating for setup errors, whereas range calibration uncertainties are incorporated into PTV robust optimization process. hMFO was compared with single-field optimization (SFO) and full robust multi-field optimization (fMFO), both on the nominal plan and the worst-case scenarios assessed by robustness analysis. The SFO and the fMFO plans were normalized to hMFO on CTV to obtain iso-D95 coverage, and then the organs at risk (OARs) doses were compared. On the same OARs, in the normalized nominal plans the potential impact of variable relative biological effectiveness (RBE) was investigated. hMFO reduces the number of scenarios computed for robust optimization (from twenty-one in fMFO to three), making it practicable with the application of a MC algorithm. After normalizing on D95 CTV coverage, nominal hMFO plans were superior compared to SFO in terms of OARs sparing (p < 0.01), without significant differences compared to fMFO. The improvement in OAR sparing with hMFO with respect to SFO was preserved in worst-case scenarios (p < 0.01), confirming that hMFO is as robust as SFO to physical uncertainties, with no significant differences when compared to the worst case scenarios obtained by fMFO. The dose increase on OARs due to variable RBE was comparable to the increase due to physical uncertainties (i.e. 4-5 Gy(RBE)), but without significant differences between these techniques. hMFO allows improving plan quality with respect to SFO, with no significant differences with fMFO and without affecting robustness to setup, range and RBE uncertainties, making clinically feasible the application of MC-based robust optimization.
Collapse
Affiliation(s)
- Francesco Tommasino
- Department of Physics, University of Trento, Via Sommarive, 14-38123 Povo (TN), Italy. Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), Povo, Italy. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Iwata H, Toshito T, Hayashi K, Yamada M, Omachi C, Nakajima K, Hattori Y, Hashimoto S, Kuroda Y, Okumura Y, Mizoe JE, Ogino H, Shibamoto Y. Proton therapy for non-squamous cell carcinoma of the head and neck: planning comparison and toxicity. JOURNAL OF RADIATION RESEARCH 2019; 60:612-621. [PMID: 31147697 PMCID: PMC6805978 DOI: 10.1093/jrr/rrz036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Indexed: 05/20/2023]
Abstract
To investigate optimal treatment planning using proton beams for non-squamous cell carcinoma of the head and neck (NSCHN), the dose distributions of plans involving pencil beam scanning (PBS) with or without a patient-specific aperture system (PSAS), passive-scattering proton therapy (PSPT) and X-ray intensity-modulated radiotherapy (IMRT) were compared. As clinical results, toxicities of PBS with PSAS, including changes in quality of life, were reported. Between April 2014 and August 2016, a total of 30 patients were treated using PBS with PSAS. In 20 patients selected at random, the dose distributions of PBS with or without the PSAS, PSPT and IMRT plans were compared. Neutron exposure by proton therapy was calculated using a Monte Carlo simulation. Toxicities were scored according to CTCAE ver. 4.0. Patients completed EORTC quality of life survey forms (QLQ-C30 and QLQ-HN35) before and 0-12 months after proton therapy. The 95% conformity number of PBS with the PSAS plan was the best, and significant differences were detected among the four plans (P < 0.05, Bonferroni tests). Neutron generation by PSAS was ~1.1-fold higher, but was within an acceptable level. No grade 3 or higher acute dermatitis was observed. Pain, appetite loss and increased weight loss were more likely at the end of treatment, but recovered by the 3 month follow-up and returned to the pretreatment level at the 12 month follow-up. PBS with PSAS reduced the penumbra and improved dose conformity in the planning target volume. PBS with PSAS was tolerated well for NSCHN.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
- Corresponding author: Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508 Japan. Tel: +81 52-991-8577; Fax: +81 52-991-8599; E-mail:
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Maho Yamada
- Department of Radiation Therapy, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Yo Kuroda
- Department of Otorhinolaryngology, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Yoshihide Okumura
- Department of Oral and Maxillofacial Surgery, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
| | - Jun-etsu Mizoe
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, chuo-ku, Osaka, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
15
|
Vyfhuis MAL, Zhu M, Agyepong B, Nichols EM. Techniques for Treating Bilateral Breast Cancer Patients Using Pencil Beam Scanning Technology. Int J Part Ther 2019; 6:1-11. [PMID: 31998816 DOI: 10.14338/ijpt-18-00047.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Patients with bilateral breast cancer (BBC), who require postmastectomy radiation therapy or radiation as part of breast conservation treatment, present a unique technical challenge. Even with modern techniques, such as intensity modulated radiation therapy or volumetric modulated arc therapy (VMAT), adequate target coverage is rarely achieved without the expense of increased integral dose to important organs at risk (OARs), such as the heart and lungs. Therefore, we present several BBC techniques and a treatment algorithm using intensity-modulated proton therapy (IMPT) for patients treated at our center. Materials and Methods We describe 3 different BBC treatment techniques using IMPT on patients treated at our center, with comparison VMAT plans to demonstrate the dosimetric benefit of proton therapy in these patients. Following RADCOMP (Radiation Therapy Oncology Group, Philadelphia, Pennsylvania) guidelines, a single physician approved all target volumes and OARs. Plans were designed so that ≥ 95% of the prescribed dose covered ≥ 95% of all targets. Parameters for dosimetric volume histograms for the clinical targets and OARs are reported for the 2 radiation methods. Results All methods demonstrated acceptable target coverage with 95% of the prescription planning target volume reaching a mean (± SD) of 98.0% (± 0.87%) and 97.5% (± 2.39%), for VMAT and IMPT plans, respectively. Conformity and homogeneity were also similar between the 2 techniques. Proton therapy provided observed improvements in mean heart dose (average heart mean [SD], 9.98 Gy [± 0.87 Gy] versus 2.12 Gy [± 0.96 Gy]) and total lung 5% prescription dose (V5; mean [SD] total lung V5, 97.9% [± 2.84%]), compared with 39.8% [± 9.39%]). All IMPT methods spared critical OARs; however, the single, 0° anterior-posterior plan allowed for the shortest treatment time. Conclusion Both VMAT and all 3 IMPT techniques provided excellent target coverage in patients with BBC; however, proton therapy was superior in decreasing the dose to OARs. A single-field optimization approach should be the IMPT method of choice when feasible.
Collapse
Affiliation(s)
- Melissa A L Vyfhuis
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA.,University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mingyao Zhu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Benjamin Agyepong
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Elizabeth M Nichols
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA.,University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Delaney AR, Dong L, Mascia A, Zou W, Zhang Y, Yin L, Rosas S, Hrbacek J, Lomax AJ, Slotman BJ, Dahele M, Verbakel WFAR. Automated Knowledge-Based Intensity-Modulated Proton Planning: An International Multicenter Benchmarking Study. Cancers (Basel) 2018; 10:E420. [PMID: 30400263 PMCID: PMC6266684 DOI: 10.3390/cancers10110420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Radiotherapy treatment planning is increasingly automated and knowledge-based planning has been shown to match and sometimes improve upon manual clinical plans, with increased consistency and efficiency. In this study, we benchmarked a novel prototype knowledge-based intensity-modulated proton therapy (IMPT) planning solution, against three international proton centers. Methods: A model library was constructed, comprising 50 head and neck cancer (HNC) manual IMPT plans from a single center. Three external-centers each provided seven manual benchmark IMPT plans. A knowledge-based plan (KBP) using a standard beam arrangement for each patient was compared with the benchmark plan on the basis of planning target volume (PTV) coverage and homogeneity and mean organ-at-risk (OAR) dose. Results: PTV coverage and homogeneity of KBPs and benchmark plans were comparable. KBP mean OAR dose was lower in 32/54, 45/48 and 38/53 OARs from center-A, -B and -C, with 23/32, 38/45 and 23/38 being >2 Gy improvements, respectively. In isolated cases the standard beam arrangement or an OAR not being included in the model or being contoured differently, led to higher individual KBP OAR doses. Generating a KBP typically required <10 min. Conclusions: A knowledge-based IMPT planning solution using a single-center model could efficiently generate plans of comparable quality to manual HNC IMPT plans from centers with differing planning aims. Occasional higher KBP OAR doses highlight the need for beam angle optimization and manual review of KBPs. The solution furthermore demonstrated the potential for robust optimization.
Collapse
Affiliation(s)
- Alexander R Delaney
- Cancer Center Amsterdam, Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH 45219, USA.
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yongbin Zhang
- Department of Radiation Oncology, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH 45219, USA.
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Rosas
- Paul Scherrer Institute, Center for Proton Radiotherapy, 5232 Villigen, Switzerland.
| | - Jan Hrbacek
- Paul Scherrer Institute, Center for Proton Radiotherapy, 5232 Villigen, Switzerland.
| | - Antony J Lomax
- Paul Scherrer Institute, Center for Proton Radiotherapy, 5232 Villigen, Switzerland.
| | - Ben J Slotman
- Cancer Center Amsterdam, Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Max Dahele
- Cancer Center Amsterdam, Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Wilko F A R Verbakel
- Cancer Center Amsterdam, Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Michiels S, Barragán AM, Souris K, Poels K, Crijns W, Lee JA, Sterpin E, Nuyts S, Haustermans K, Depuydt T. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother Oncol 2018; 128:161-166. [DOI: 10.1016/j.radonc.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 09/09/2017] [Indexed: 12/25/2022]
|
18
|
Langner UW, Mundis M, Strauss D, Zhu M, Mossahebi S. A comparison of two pencil beam scanning treatment planning systems for proton therapy. J Appl Clin Med Phys 2017; 19:156-163. [PMID: 29205763 PMCID: PMC5768005 DOI: 10.1002/acm2.12235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Analytical dose calculation algorithms for Eclipse and Raystation treatment planning systems (TPS), as well as a Raystation Monte Carlo model are compared to corresponding measured point doses. Method The TPS were modeled with the same beam data acquired during commissioning. Thirty‐five typical plans were made with each planning system, 31 without range shifter and four with a 5 cm range shifter. Point doses in these planes were compared to measured doses. Results The mean percentage difference for all plans between Raystation and Eclipse were 1.51 ± 1.99%. The mean percentage difference for all plans between TPS models and measured values are −2.06 ± 1.48% for Raystation pencil beam (PB), −0.59 ± 1.71% for Eclipse and −1.69 ± 1.11% for Raystation monte carlo (MC). The distribution for the patient plans were similar for Eclipse and Raystation MC with a P‐value of 0.59 for a two tailed unpaired t‐test and significantly different from the Raystation PB model with P = 0.0013 between Raystation MC and PB. All three models faired markedly better if plans with a 5 cm range shifter were ignored. Plan comparisons with a 5 cm range shifter give differences between Raystation and Eclipse of 3.77 ± 1.82%. The mean percentage difference for 5 cm range shifter plans between TPS models and measured values are −3.89 ± 2.79% for Raystation PB, −0.25 ± 3.85% for Eclipse and 1.55 ± 1.95% for Raystation MC. Conclusion Both Eclipse and Raystation PB TPS are not always accurate within ±3% for a 5 cm range shifters or for small targets. This was improved with the Raystation MC model. The point dose calculations of Eclipse, Raystation PB, and Raystation MC compare within ±3% to measured doses for the other scenarios tested.
Collapse
Affiliation(s)
- Ulrich W Langner
- Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Michelle Mundis
- Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Dan Strauss
- Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Mingyao Zhu
- Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Sina Mossahebi
- Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
19
|
Cubillos-Mesías M, Baumann M, Troost EGC, Lohaus F, Löck S, Richter C, Stützer K. Impact of robust treatment planning on single- and multi-field optimized plans for proton beam therapy of unilateral head and neck target volumes. Radiat Oncol 2017; 12:190. [PMID: 29183377 PMCID: PMC5706329 DOI: 10.1186/s13014-017-0931-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proton beam therapy is promising for the treatment of head and neck cancer (HNC), but it is sensitive to uncertainties in patient positioning and particle range. Studies have shown that the planning target volume (PTV) concept may not be sufficient to ensure robustness of the target coverage. A few planning studies have considered irradiation of unilateral HNC targets with protons, but they have only taken into account the dose on the nominal plan, without considering anatomy changes occurring during the treatment course. METHODS Four pencil beam scanning (PBS) proton therapy plans were calculated for 8 HNC patients with unilateral target volumes: single-field (SFO) and multi-field optimized (MFO) plans, either using the PTV concept or clinical target volume (CTV)-based robust optimization. The dose was recalculated on computed tomography (CT) scans acquired during the treatment course. Doses to target volumes and organs at risk (OARs) were compared for the nominal plans, cumulative doses considering anatomical changes, and additional setup and range errors in each fraction. If required, the treatment plan was adapted, and the dose was compared with the non-adapted plan. RESULTS All nominal plans fulfilled the clinical specifications for target coverage, but significantly higher doses on the ipsilateral parotid gland were found for both SFO approaches. MFO PTV-based plans had the lowest robustness against range and setup errors. During the treatment course, the influence of the anatomical variation on the dose has shown to be patient specific, mostly independent of the chosen planning approach. Nine plans in four patients required adaptation, which led to a significant improvement of the target coverage and a slight reduction in the OAR dose in comparison to the cumulative dose without adaptation. CONCLUSIONS The use of robust MFO optimization is recommended for ensuring plan robustness and reduced doses in the ipsilateral parotid gland. Anatomical changes occurring during the treatment course might degrade the target coverage and increase the dose in the OARs, independent of the chosen planning approach. For some patients, a plan adaptation may be required.
Collapse
Affiliation(s)
- Macarena Cubillos-Mesías
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Fabian Lohaus
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| |
Collapse
|
20
|
Stützer K, Lin A, Kirk M, Lin L. Superiority in Robustness of Multifield Optimization Over Single-Field Optimization for Pencil-Beam Proton Therapy for Oropharynx Carcinoma: An Enhanced Robustness Analysis. Int J Radiat Oncol Biol Phys 2017; 99:738-749. [PMID: 29280468 DOI: 10.1016/j.ijrobp.2017.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To compare the difference in robustness of single-field optimized (SFO) and robust multifield optimized (rMFO) proton plans for oropharynx carcinoma patients by an improved robustness analysis. METHODS AND MATERIALS We generated rMFO proton plans for 11 patients with oropharynx carcinoma treated with SFO intensity modulated proton therapy with simultaneous integrated boost prescription. Doses from both planning approaches were compared for the initial plans and the worst cases from 20 optimization scenarios of setup errors and range uncertainties. Expected average dose distributions per range uncertainty were obtained by weighting the contributions from the respective scenarios with their expected setup error probability, and the spread of dose parameters for different range uncertainties were quantified. Using boundary dose distributions created from 56 combined setup error and range uncertainty scenarios and considering the vanishing influence of setup errors after 30 fractions, we approximated realistic worst-case values for the total treatment course. Error bar metrics derived from these boundary doses are reported for the clinical target volumes (CTVs) and organs at risk (OARs). RESULTS The rMFO plans showed improved CTV coverage and homogeneity while simultaneously reducing the average mean dose to the constrictor muscles, larynx, and ipsilateral middle ear by 5.6 Gy, 2.0 Gy, and 3.9 Gy, respectively. We observed slightly larger differences during robustness evaluation, as well as a significantly higher average brainstem maximum and ipsilateral parotid mean dose for SFO plans. For rMFO plans, the range uncertainty-related spread in OAR dose parameters and many error bar metrics were found to be superior. The SFO plans showed a lower global maximum dose for single-scenario worst cases and a slightly lower mean oral cavity dose throughout. CONCLUSIONS An enhanced robustness analysis has been proposed and implemented into clinical systems. The benefit of better CTV coverage and OAR dose sparing in oropharynx carcinoma patients by rMFO compared with SFO proton plans is preserved in a robustness analysis with consideration of setup error and range uncertainty.
Collapse
Affiliation(s)
- Kristin Stützer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maura Kirk
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Delaney AR, Dahele M, Tol JP, Kuijper IT, Slotman BJ, Verbakel WFAR. Using a knowledge-based planning solution to select patients for proton therapy. Radiother Oncol 2017; 124:263-270. [PMID: 28411963 DOI: 10.1016/j.radonc.2017.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Patient selection for proton therapy by comparing proton/photon treatment plans is time-consuming and prone to bias. RapidPlan™, a knowledge-based-planning solution, uses plan-libraries to model and predict organ-at-risk (OAR) dose-volume-histograms (DVHs). We investigated whether RapidPlan, utilizing an algorithm based only on photon beam characteristics, could generate proton DVH-predictions and whether these could correctly identify patients for proton therapy. MATERIAL AND METHODS ModelPROT and ModelPHOT comprised 30 head-and-neck cancer proton and photon plans, respectively. Proton and photon knowledge-based-plans (KBPs) were made for ten evaluation-patients. DVH-prediction accuracy was analyzed by comparing predicted-vs-achieved mean OAR doses. KBPs and manual plans were compared using salivary gland and swallowing muscle mean doses. For illustration, patients were selected for protons if predicted ModelPHOT mean dose minus predicted ModelPROT mean dose (ΔPrediction) for combined OARs was ≥6Gy, and benchmarked using achieved KBP doses. RESULTS Achieved and predicted ModelPROT/ModelPHOT mean dose R2 was 0.95/0.98. Generally, achieved mean dose for ModelPHOT/ModelPROT KBPs was respectively lower/higher than predicted. Comparing ModelPROT/ModelPHOT KBPs with manual plans, salivary and swallowing mean doses increased/decreased by <2Gy, on average. ΔPrediction≥6Gy correctly selected 4 of 5 patients for protons. CONCLUSIONS Knowledge-based DVH-predictions can provide efficient, patient-specific selection for protons. A proton-specific RapidPlan-solution could improve results.
Collapse
Affiliation(s)
- Alexander R Delaney
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Max Dahele
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jim P Tol
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingrid T Kuijper
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, Bel A, van der Horst A. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol 2017; 62:3051-3064. [PMID: 28252445 DOI: 10.1088/1361-6560/aa6419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ([Formula: see text]) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.
Collapse
Affiliation(s)
- Antonetta C Houweling
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Michiels S, D'Hollander A, Lammens N, Kersemans M, Zhang G, Denis JM, Poels K, Sterpin E, Nuyts S, Haustermans K, Depuydt T. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization. Med Phys 2016; 43:5392. [PMID: 27782703 DOI: 10.1118/1.4962033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. METHODS Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominal dimension of 20 × 20 × 80 mm3 were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young's modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρe, the effective atomic number Zeff, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. RESULTS The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young's moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Zeff ranging from 5.91 to 10.43. The SPR and ρe both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρe. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Zeff. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. CONCLUSIONS In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.
Collapse
Affiliation(s)
- Steven Michiels
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Antoine D'Hollander
- Department of Medical Engineering, Materialise NV, Technologielaan 15, Haasrode 3001, Belgium
| | - Nicolas Lammens
- Department of Materials Science and Engineering, Ghent University, Technologiepark 903, Zwijnaarde 9052, Belgium
| | - Mathias Kersemans
- Department of Materials Science and Engineering, Ghent University, Technologiepark 903, Zwijnaarde 9052, Belgium
| | - Guozhi Zhang
- Department of Radiology, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jean-Marc Denis
- Department of Radiotherapy and Oncology, Saint Luc University Clinics, Avenue Hippocrate 10, Woluwe-Saint-Lambert 1200, Belgium
| | - Kenneth Poels
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Edmond Sterpin
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium and Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Avenue Hippocrate 54, Woluwe-Saint-Lambert 1200, Belgium
| | - Sandra Nuyts
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium and Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Karin Haustermans
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium and Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Tom Depuydt
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven - University of Leuven, Herestraat 49, Leuven 3000, Belgium and Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
24
|
Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans? Radiat Oncol 2015; 10:234. [PMID: 26584574 PMCID: PMC4653923 DOI: 10.1186/s13014-015-0542-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Background Treatment plan quality assurance (QA) is important for clinical studies and for institutions aiming to generate near-optimal individualized treatment plans. However, determining how good a given plan is for that particular patient (individualized patient/plan QA, in contrast to running through a checklist of generic QA parameters applied to all patients) is difficult, time consuming and operator-dependent. We therefore evaluated the potential of RapidPlan, a commercial knowledge-based planning solution, to automate this process, by predicting achievable OAR doses for individual patients based on a model library consisting of historical plans with a range of organ-at-risk (OAR) to planning target volume (PTV) geometries and dosimetries. Methods A 90-plan RapidPlan model, generated using previously created automatic interactively optimized (AIO) plans, was used to predict achievable OAR dose-volume histograms (DVHs) for the parotid glands, submandibular glands, individual swallowing muscles and oral cavities of 20 head and neck cancer (HNC) patients using a volumetric modulated (RapidArc) simultaneous integrated boost technique. Predicted mean OAR doses were compared with mean doses achieved when RapidPlan was used to make a new plan. Differences between the achieved and predicted DVH-lines were analyzed. Finally, RapidPlan predictions were used to evaluate achieved OAR sparing of AIO and manual interactively optimized plans. Results For all OARs, strong linear correlations (R2 = 0.94–0.99) were found between predicted and achieved mean doses. RapidPlan generally overestimated the amount of achievable sparing for OARs with a large degree of OAR-PTV overlap. RapidPlan QA using predicted doses alone identified that for 50 % (10/20) of the manually optimized plans, sparing of the composite salivary glands, oral cavity or composite swallowing muscles could be improved by at least 3 Gy, 5 Gy or 7 Gy, respectively, while this was the case for 20 % (4/20) AIO plans. These predicted gains were validated by replanning the identified patients using RapidPlan. Conclusions Strong correlations between predicted and achieved mean doses indicate that RapidPlan could accurately predict achievable mean doses. This shows the feasibility of using RapidPlan DVH prediction alone for automated individualized head and neck plan QA. This has applications in individual centers and clinical trials.
Collapse
|