1
|
Demirel OB, Yaman B, Shenoy C, Moeller S, Weingärtner S, Akçakaya M. Signal intensity informed multi-coil encoding operator for physics-guided deep learning reconstruction of highly accelerated myocardial perfusion CMR. Magn Reson Med 2023; 89:308-321. [PMID: 36128896 PMCID: PMC9617789 DOI: 10.1002/mrm.29453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop a physics-guided deep learning (PG-DL) reconstruction strategy based on a signal intensity informed multi-coil (SIIM) encoding operator for highly-accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). METHODS First-pass perfusion CMR acquires highly-accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium-based contrast agent. Thus, using PG-DL reconstruction with a conventional multi-coil encoding operator leads to analogous signal intensity variations across different time-frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time-frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG-DL network, facilitating generalizability across time-frames. PG-DL reconstruction with the proposed SIIM encoding operator is compared to PG-DL with conventional encoding operator, split slice-GRAPPA, locally low-rank (LLR) regularized reconstruction, low-rank plus sparse (L + S) reconstruction, and regularized ROCK-SPIRiT. RESULTS Results on highly accelerated free-breathing first pass myocardial perfusion CMR at three-fold SMS and four-fold in-plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice-GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG-DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods. CONCLUSION PG-DL reconstruction with the proposed SIIM encoding operator improves generalization across different time-frames /SNRs in highly accelerated perfusion CMR.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Burhaneddin Yaman
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Chetan Shenoy
- Department of Medicine (Cardiology)University of MinnesotaMinneapolisMinnesotaUSA
| | - Steen Moeller
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Kamesh Iyer S, Moon BF, Josselyn N, Kurtz RM, Song JW, Ware JB, Nabavizadeh SA, Witschey WR. Quantitative susceptibility mapping using plug-and-play alternating direction method of multipliers. Sci Rep 2022; 12:21679. [PMID: 36522372 PMCID: PMC9755132 DOI: 10.1038/s41598-022-22778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative susceptibility mapping employs regularization to reduce artifacts, yet many recent denoisers are unavailable for reconstruction. We developed a plug-and-play approach to QSM reconstruction (PnP QSM) and show its flexibility using several patch-based denoisers. We developed PnP QSM using alternating direction method of multiplier framework and applied collaborative filtering denoisers. We apply the technique to the 2016 QSM Challenge and in 10 glioblastoma multiforme datasets. We compared its performance with four published QSM techniques and a multi-orientation QSM method. We analyzed magnetic susceptibility accuracy using brain region-of-interest measurements, and image quality using global error metrics. Reconstructions on glioblastoma data were analyzed using ranked and semiquantitative image grading by three neuroradiologist observers to assess image quality (IQ) and sharpness (IS). PnP-BM4D QSM showed good correlation (β = 0.84, R2 = 0.98, p < 0.05) with COSMOS and no significant bias (bias = 0.007 ± 0.012). PnP-BM4D QSM achieved excellent quality when assessed using structural similarity index metric (SSIM = 0.860), high frequency error norm (HFEN = 58.5), cross correlation (CC = 0.804), and mutual information (MI = 0.475) and also maintained good conspicuity of fine features. In glioblastoma datasets, PnP-BM4D QSM showed higher performance (IQGrade = 2.4 ± 0.4, ISGrade = 2.7 ± 0.3, IQRank = 3.7 ± 0.3, ISRank = 3.9 ± 0.3) compared to MEDI (IQGrade = 2.1 ± 0.5, ISGrade = 2.1 ± 0.6, IQRank = 2.4 ± 0.6, ISRank = 2.9 ± 0.2) and FANSI-TGV (IQGrade = 2.2 ± 0.6, ISGrade = 2.1 ± 0.6, IQRank = 2.7 ± 0.3, ISRank = 2.2 ± 0.2). We illustrated the modularity of PnP QSM by interchanging two additional patch-based denoisers. PnP QSM reconstruction was feasible, and its flexibility was shown using several patch-based denoisers. This technique may allow rapid prototyping and validation of new denoisers for QSM reconstruction for an array of useful clinical applications.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman Center for Advanced Medicine, South Pavilion, Rm 11-155, Philadelphia, PA, USA.
| | - Brianna F Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Josselyn
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert M Kurtz
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae W Song
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B Ware
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Contijoch F, Han Y, Kamesh Iyer S, Kellman P, Gualtieri G, Elliott MA, Berisha S, Gorman JH, Gorman RC, Pilla JJ, Witschey WRT. Closed-loop control of k-space sampling via physiologic feedback for cine MRI. PLoS One 2020; 15:e0244286. [PMID: 33373391 PMCID: PMC7771662 DOI: 10.1371/journal.pone.0244286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Segmented cine cardiac MRI combines data from multiple heartbeats to achieve high spatiotemporal resolution cardiac images, yet predefined k-space segmentation trajectories can lead to suboptimal k-space sampling. In this work, we developed and evaluated an autonomous and closed-loop control system for radial k-space sampling (ARKS) to increase sampling uniformity. METHODS The closed-loop system autonomously selects radial k-space sampling trajectory during live segmented cine MRI and attempts to optimize angular sampling uniformity by selecting views in regions of k-space that were not previously well-sampled. Sampling uniformity and the ability to detect cardiac phase in vivo was assessed using ECG data acquired from 10 normal subjects in an MRI scanner. The approach was then implemented with a fast gradient echo sequence on a whole-body clinical MRI scanner and imaging was performed in 4 healthy volunteers. The closed-loop k-space trajectory was compared to random, uniformly distributed and golden angle view trajectories via measurement of k-space uniformity and the point spread function. Lastly, an arrhythmic dataset was used to evaluate a potential application of the approach. RESULTS The autonomous trajectory increased k-space sampling uniformity by 15±7%, main lobe point spread function (PSF) signal intensity by 6±4%, and reduced ringing relative to golden angle sampling. When implemented, the autonomous pulse sequence prescribed radial view angles faster than the scan TR (0.98 ± 0.01 ms, maximum = 1.38 ms) and increased k-space sampling mean uniformity by 10±11%, decreased uniformity variability by 44±12%, and increased PSF signal ratio by 6±6% relative to golden angle sampling. CONCLUSION The closed-loop approach enables near-uniform radial sampling in a segmented acquisition approach which was higher than predetermined golden-angle radial sampling. This can be utilized to increase the sampling or decrease the temporal footprint of an acquisition and the closed-loop framework has the potential to be applied to patients with complex heart rhythms.
Collapse
Affiliation(s)
- Francisco Contijoch
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, United States of America
- Department of Radiology, School of Medicine, University of California, San Diego, CA, United States of America
| | - Yuchi Han
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Peter Kellman
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Mark A. Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sebastian Berisha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joseph H. Gorman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert C. Gorman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James J. Pilla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Walter R. T. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Mendes JK, Adluru G, Likhite D, Fair MJ, Gatehouse PD, Tian Y, Pedgaonkar A, Wilson B, DiBella EVR. Quantitative 3D myocardial perfusion with an efficient arterial input function. Magn Reson Med 2020; 83:1949-1963. [PMID: 31670858 PMCID: PMC7047561 DOI: 10.1002/mrm.28050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The purpose of this study was to further develop and combine several innovative sequence designs to achieve quantitative 3D myocardial perfusion. These developments include an optimized 3D stack-of-stars readout (150 ms per beat), efficient acquisition of a 2D arterial input function, tailored saturation pulse design, and potential whole heart coverage during quantitative stress perfusion. THEORY AND METHODS All studies were performed free-breathing on a Prisma 3T MRI scanner. Phantom validation was used to verify sequence accuracy. A total of 21 subjects (3 patients with known disease) were scanned, 12 with a rest only protocol and 9 with both stress (regadenoson) and rest protocols. First pass quantitative perfusion was performed with gadoteridol (0.075 mmol/kg). RESULTS Implementation and quantitative perfusion results are shown for healthy subjects and subjects with known coronary disease. Average rest perfusion for the 15 included healthy subjects was 0.79 ± 0.19 mL/g/min, the average stress perfusion for 6 healthy subject studies was 2.44 ± 0.61 mL/g/min, and the average global myocardial perfusion reserve ratio for 6 healthy subjects was 3.10 ± 0.24. Perfusion deficits for 3 patients with ischemia are shown. Average resting heart rate was 59 ± 7 bpm and the average stress heart rate was 81 ± 10 bpm. CONCLUSION This work demonstrates that a quantitative 3D myocardial perfusion sequence with the acquisition of a 2D arterial input function is feasible at high stress heart rates such as during stress. T1 values and gadolinium concentrations of the sequence match the reference standard well in a phantom, and myocardial rest and stress perfusion and myocardial perfusion reserve values are consistent with those published in literature.
Collapse
Affiliation(s)
- Jason Kraig Mendes
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Ganesh Adluru
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Devavrat Likhite
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Merlin J Fair
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Peter D Gatehouse
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ye Tian
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Apoorva Pedgaonkar
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Brent Wilson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| | - Edward VR DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City UT, USA
| |
Collapse
|
5
|
Kamesh Iyer S, Moon BF, Josselyn N, Ruparel K, Roalf D, Song JW, Guiry S, Ware JB, Kurtz RM, Chawla S, Nabavizadeh SA, Witschey WR. Data-Driven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI). J Magn Reson Imaging 2020; 52:823-835. [PMID: 32128914 DOI: 10.1002/jmri.27103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) uses prior information to reconstruct maps, but prior information may not show pathology and introduce inconsistencies with susceptibility maps, degrade image quality and inadvertently smoothing image features. PURPOSE To develop a local field data-driven QSM reconstruction that does not depend on spatial edge prior information. STUDY TYPE Retrospective. SUBJECTS, ANIMAL MODELS A dataset from 2016 ISMRM QSM Challenge, 11 patients with glioblastoma, a patient with microbleeds and porcine heart. SEQUENCE/FIELD STRENGTH 3D gradient echo sequence on 3T and 7T scanners. ASSESSMENT Accuracy was compared to Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS), and several published techniques using region of interest (ROI) measurements, root-mean-squared error (RMSE), structural similarity index metric (SSIM), and high-frequency error norm (HFEN). Numerical ranking and semiquantitative image grading was performed by three expert observers to assess overall image quality (IQ) and image sharpness (IS). STATISTICAL TESTS Bland-Altman, Friedman test, and Conover multiple comparisons. RESULTS Loss adaptive dipole inversion (LADI) (β = 0.82, R2 = 0.96), morphology-enabled dipole inversion (MEDI) (β = 0.91, R2 = 0.97), and fast nonlinear susceptibility inversion (FANSI) (β = 0.81, R2 = 0.98) had excellent correlation with COSMOS and no bias was detected (bias = 0.006 ± 0.014, P < 0.05). In glioblastoma patients, LADI showed consistently better performance (IQGrade = 2.6 ± 0.4, ISGrade = 2.6 ± 0.3, IQRank = 3.5 ± 0.4, ISRank = 3.9 ± 0.2) compared with MEDI (IQGrade = 2.1 ± 0.3, ISGrade = 2 ± 0.5, IQRank = 2.4 ± 0.5, ISRank = 2.8 ± 0.2) and FANSI (IQGrade = 2.2 ± 0.5, ISGrade = 2 ± 0.4, IQRank = 2.8 ± 0.3, ISRank = 2.1 ± 0.2). Dark artifact visible near the infarcted region in MEDI (InfMEDI = -0.27 ± 0.06 ppm) was better mitigated by FANSI (InfFANSI-TGV = -0.17 ± 0.05 ppm) and LADI (InfLADI = -0.18 ± 0.05 ppm). CONCLUSION For neuroimaging applications, LADI preserved image sharpness and fine features in glioblastoma and microbleed patients. LADI performed better at mitigating artifacts in cardiac QSM. EVIDENCE LEVEL 4 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:823-835.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianna F Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jae W Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samantha Guiry
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M Kurtz
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Ali Nabavizadeh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Lin CY, Fessler JA. Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2019; 5:17-26. [PMID: 31750391 PMCID: PMC6867710 DOI: 10.1109/tci.2018.2882089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The low-rank plus sparse (L+S) decomposition model enables the reconstruction of under-sampled dynamic parallel magnetic resonance imaging (MRI) data. Solving for the low-rank and the sparse components involves non-smooth composite convex optimization, and algorithms for this problem can be categorized into proximal gradient methods and variable splitting methods. This paper investigates new efficient algorithms for both schemes. While current proximal gradient techniques for the L+S model involve the classical iterative soft thresholding algorithm (ISTA), this paper considers two accelerated alternatives, one based on the fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent proximal optimized gradient method (POGM). In the augmented Lagrangian (AL) framework, we propose an efficient variable splitting scheme based on the form of the data acquisition operator, leading to simpler computation than the conjugate gradient (CG) approach required by existing AL methods. Numerical results suggest faster convergence of the efficient implementations for both frameworks, with POGM providing the fastest convergence overall and the practical benefit of being free of algorithm tuning parameters.
Collapse
Affiliation(s)
- Claire Yilin Lin
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109 USA
| | - Jeffrey A Fessler
- J. A. Fessler is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Kamesh Iyer S, Moon B, Hwuang E, Han Y, Solomon M, Litt H, Witschey WR. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing. J Cardiovasc Magn Reson 2019; 21:5. [PMID: 30626437 PMCID: PMC6327532 DOI: 10.1186/s12968-018-0507-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endogenous contrast T1ρ cardiovascular magnetic resonance (CMR) can detect scar or infiltrative fibrosis in patients with ischemic or non-ischemic cardiomyopathy. Existing 2D T1ρ techniques have limited spatial coverage or require multiple breath-holds. The purpose of this project was to develop an accelerated, free-breathing 3D T1ρ mapping sequence with whole left ventricle coverage using a multicoil, compressed sensing (CS) reconstruction technique for rapid reconstruction of undersampled k-space data. METHODS We developed a cardiac- and respiratory-gated, free-breathing 3D T1ρ sequence and acquired data using a variable-density k-space sampling pattern (A = 3). The effect of the transient magnetization trajectory, incomplete recovery of magnetization between T1ρ-preparations (heart rate dependence), and k-space sampling pattern on T1ρ relaxation time error and edge blurring was analyzed using Bloch simulations for normal and chronically infarcted myocardium. Sequence accuracy and repeatability was evaluated using MnCl2 phantoms with different T1ρ relaxation times and compared to 2D measurements. We further assessed accuracy and repeatability in healthy subjects and compared these results to 2D breath-held measurements. RESULTS The error in T1ρ due to incomplete recovery of magnetization between T1ρ-preparations was T1ρhealthy = 6.1% and T1ρinfarct = 10.8% at 60 bpm and T1ρhealthy = 13.2% and T1ρinfarct = 19.6% at 90 bpm. At a heart rate of 60 bpm, error from the combined effects of readout-dependent magnetization transients, k-space undersampling and reordering was T1ρhealthy = 12.6% and T1ρinfarct = 5.8%. CS reconstructions had improved edge sharpness (blur metric = 0.15) compared to inverse Fourier transform reconstructions (blur metric = 0.48). There was strong agreement between the mean T1ρ estimated from the 2D and accelerated 3D data (R2 = 0.99; P < 0.05) acquired on the MnCl2 phantoms. The mean R1ρ estimated from the accelerated 3D sequence was highly correlated with MnCl2 concentration (R2 = 0.99; P < 0.05). 3D T1ρ acquisitions were successful in all human subjects. There was no significant bias between undersampled 3D T1ρ and breath-held 2D T1ρ (mean bias = 0.87) and the measurements had good repeatability (COV2D = 6.4% and COV3D = 7.1%). CONCLUSIONS This is the first report of an accelerated, free-breathing 3D T1ρ mapping of the left ventricle. This technique may improve non-contrast myocardial tissue characterization in patients with heart disease in a scan time appropriate for patients.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brianna Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Eileen Hwuang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Contijoch F, Iyer SK, Pilla JJ, Yushkevich P, Gorman JH, Gorman RC, Litt H, Han Y, Witschey WRT. Self-gated MRI of multiple beat morphologies in the presence of arrhythmias. Magn Reson Med 2016; 78:678-688. [PMID: 27579717 DOI: 10.1002/mrm.26381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias. METHODS Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies. Image sharpness, contrast, and volume variation were quantified and compared with self-gated MRI. Images were scored for image quality and artifacts. Hemodynamic parameters were computed for each distinct beat morphology in bigeminy and trigeminy subjects and for sinus beats in patients with infrequent premature ventricular contractions. RESULTS Images of distinct beat types were reconstructed except for two patients with infrequent premature ventricular contractions. Image contrast and sharpness were similar to sinus self-gated images (contrast = 0.45 ± 0.13 and 0.43 ± 0.15; sharpness = 0.21 ± 0.11 and 0.20 ± 0.05). Visual scoring was highest in self-gated images (4.1 ± 0.3) compared with real-time (3.9 ± 0.4) and ECG-gated cine (3.4 ± 1.5). ECG-gated cine had less artifacts than self-gating (2.3 ± 0.7 and 2.1 ± 0.2), but was affected by misgating in two subjects. Among arrhythmia subjects, post-extrasystole/sinus (58.1 ± 8.6 mL) and interrupted sinus (61.4 ± 5.9 mL) stroke volume was higher than extrasystole (32.0 ± 16.5 mL; P < 0.02). CONCLUSION Self-gated imaging can reconstruct images during ectopy and allowed for quantification of hemodynamic function of different beat morphologies. Magn Reson Med 78:678-688, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Francisco Contijoch
- School of Medicine, University of California - San Diego, San Diego, California, USA
| | - Srikant Kamesh Iyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James J Pilla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph H Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold Litt
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter R T Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|