1
|
Salahuddin S, Buzdar SA, Iqbal K, Azam MA, Aslam M, Altaf S, Ikhlaq A, Mustafa MU, Strigari L. Quality assurance for cancer patient safety: Clinical assessment for precise angles in linac during radiation therapy. TUMORI JOURNAL 2024; 110:366-374. [PMID: 39096026 DOI: 10.1177/03008916241261450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PURPOSE Quality assurance for stereotactic body radiation treatment requires that isocentric verification be ensured during gantry rotation at various angles. This study examined statistical parameters on Winston-Lutz tests to distinguish the deviation of angles from isocenter during gantry rotation using machine learning. METHOD The Varian TrueBeam linac was aligned with the marked lines on the Ruby phantom. Eight images were captured while the gantry was rotating at a 45° shift. The statistical features were derived from IsoCheck EPID software. The decision tree model was applied to these Winston-Lutz tests to cluster data into two groups: precise and error angles. RESULTS At 90° and 270° angles, the gantry exhibits isocentric stability compared to other angles. In these angles, the most statistical features were inside the range. Most variations were observed at 0° and 180° angles. In most tests, the angles 45°, 135°, 225°, and 315° showed reasonable performance and with less variation. CONCLUSION The comprehensive statistical analyses for gantry rotation of angles assists expert radiotherapists in determining the contribution of each feature that highly affects gantry movement at specific angles. Misalignment between radiation isocenter and imaging isocenter, tuning of the beam at each angle, or a slight change in the position of the Ruby phantom can further improve the inaccuracy that causes the most variations. Better precision can effectively increase patient safety and quality during cancer treatment.
Collapse
Affiliation(s)
- Sana Salahuddin
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | | | - Khalid Iqbal
- Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Muhammad Adeel Azam
- Department of Advanced Robotics, Italian Institute of Technology (IIT), Genova, Italy
| | - Mamona Aslam
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | - Saima Altaf
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | - Ayesha Ikhlaq
- Institute of Physics, The Islamia University of Bahawalpur, Pakistan
| | | | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| |
Collapse
|
2
|
Sharma DS, Shaju P, Sawant MB, Kaushik S. Benchmarking a New Circular Cone-based Radiosurgery System against Clinically Tested Radiosurgery System on the same Novel Digital Linear Accelerator Platform. J Med Phys 2023; 48:111-119. [PMID: 37576095 PMCID: PMC10419751 DOI: 10.4103/jmp.jmp_93_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To examine the dosimetric characteristics of circular cones, the accuracy of dose modeling and overall treatment delivery of two radiosurgery systems integrated on a linear accelerator (Linac). Materials and Methods The dosimetric characteristics of circular cones (4-17.5 mm) from Varian (VC) and BrainLAB (BLC) were measured for 6 MV flattening filter free beam from Edge linac using stereotactic field diode and 0.65 cc ionization chamber following established protocols. The Eclipse and iPlan modeled dose distribution for VCs and BLCs were validated with EBT3-film measurement. End-to-end tests were performed using stereotactic phantom having PTW 60008 diode connected to a Dose-1 electrometer. Results The depth at dose maximum, TRP2010 and dose at 10cm depth of the same size VC and BLC agree within ± 0.7 mm, ± 0.71% and ± 0.81% respectively. Full width at half maximum (FWHM) of any cone beyond 15 mm depth increases at 1% of nominal cone size per 10 mm depth. The penumbra of 4mm and 17.5mm VC at 15 mm depth was 1.1 mm and 1.50 mm. At 300 mm depth, penumbra increased by around 0.4 mm for 4 mm cone and up to 1 mm for cone size ≥12.5 mm. The VCs penumbra values were within ±1mm of the corresponding BLCs. Scatter factors for VCs varies from 0.609 to 0.841 and were within ± 1.0% of corresponding values of BLCs. Agreement between the Eclipse and iPlan computed dose fluence and the EBT3-film measured dose fluence was >98% (γ: 1%@1 mm), and the absolute dose difference was ≤ 2.2%, except for the 4 mm cone in which it was >96% and ≤4.83%. Target localization using cone-beam computed tomography was accurate within ± 0.8 mm and ± 0.3° in translation and rotation. The end-to-end dose delivery accuracy for both radiosurgery systems was within ± 3.62%. Conclusion The dosimetric characteristics of Varian and BLC cones of same diameter was comparable. Both Eclipse and iPlan cone planning system modeled dose fluences agree well with the EBT3 film measurement. The end-to-end tests revealed an excellent target localization accuracy of Edge linac with satisfactory and comparable absolute dose agreement between Varian and BLC radiosurgery systems and hence these can be interchanged on edge linac.
Collapse
Affiliation(s)
| | - P Shaju
- Department of Radiation Oncology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India
| | - Mayur B Sawant
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Suryakant Kaushik
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Bismack B, Dolan J, Laugeman E, Gopal A, Wen N, Chetty I. Model refinement increases confidence levels and clinical agreement when commissioning a three-dimensional secondary dose calculation system. J Appl Clin Med Phys 2022; 23:e13590. [PMID: 35389554 PMCID: PMC9194992 DOI: 10.1002/acm2.13590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Evaluate custom beam models for a second check dose calculation system using statistically verifiable passing criteria for film analysis, DVH, and 3D gamma metrics. Methods Custom beam models for nine linear accelerators for the Sun Nuclear Dose Calculator algorithm (SDC, Sun Nuclear) were evaluated using the AAPM‐TG119 test suite (5 Intensity Modulated Radiation Therapy (IMRT) and 5 Volumetric Modulated Arc Therapy (VMAT) plans) and a set of clinical plans. Where deemed necessary, adjustments to Multileaf Collimator (MLC) parameters were made to improve results. Comparisons to the Analytic Anisotropic Algorithm (AAA), and gafchromic film measurements were performed. Confidence intervals were set to 95% per TG‐119. Film gamma criteria were 3%/3 mm (conventional beams) or 3%/1 mm (Stereotactic Radiosurgery [SRS] beams). Dose distributions in solid water phantom were evaluated based on DVH metrics (e.g., D95, V20) and 3D gamma criteria (3%/3 mm or 3%/1 mm). Film passing rates, 3D gamma passing rates, and DVH metrics were reported for HD MLC machines and Millennium MLC Machines. Results For HD MLC machines, SDC gamma film agreement was 98.76% ± 2.30% (5.74% CL) for 6FFF/6srs (3%/1 mm), and 99.80% ± 0.32% (0.83% CL) for 6x (3%/3 mm). For Millennium MLC machines, film passing rates were 98.20% ± 3.14% (7.96% CL), 99.52% ± 1.14% (2.71% CL), and 99.69% ± 0.82% (1.91% CL) for 6FFF, 6x, and 10x, respectively. For SDC to AAA comparisons: HD MLC Linear Accelerators (LINACs); DVH point agreement was 0.97% ± 1.64% (4.18% CL) and 1.05% ± 2.12% (5.20% CL); 3D gamma agreement was 99.97% ± 0.14% (0.30% CL) and 100.00% ± 0.02% (0.05% CL), for 6FFF/6srs and 6x, respectively; Millennium MLC LINACs: DVH point agreement was 0.77% ± 2.40% (5.47% CL), 0.80% ± 3.40% (7.47% CL), and 0.07% ± 2.15% (4.30% CL); 3D gamma agreement was 99.97% ± 0.13% (0.29% CL), 99.97% ± 0.17% (0.36% CL), and 99.99% ± 0.06% (0.12% CL) for 6FFF, 6x, and 10x, respectively. Conclusion SDC shows agreement well within TG119 CLs for film and redundant dose calculation comparisons with AAA. In some models (SRS), this was achieved using stricter criteria. TG119 plans can be used to help guide model adjustments and to establish clinical baselines for DVH and 3D gamma criteria.
Collapse
Affiliation(s)
| | | | | | - Anant Gopal
- Henry Ford Health System, Detroit, Michigan, USA
| | - Ning Wen
- Henry Ford Health System, Detroit, Michigan, USA
| | | |
Collapse
|
4
|
Brown TAD, Fagerstrom JM, Beck C, Holloway C, Burton K, Kaurin DGL, Mahendra S, Luckstead M, Kielar K, Kerns J. Determination of commissioning criteria for multileaf-collimator, stereotactic radiosurgery treatments on Varian TrueBeam and Edge machines using a novel anthropomorphic phantom. J Appl Clin Med Phys 2022; 23:e13581. [PMID: 35290710 PMCID: PMC9195028 DOI: 10.1002/acm2.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
An anthropomorphic phantom has been developed by Varian Medical Systems for commissioning multileaf‐collimator (MLC), stereotactic radiosurgery (SRS) treatments on Varian TrueBeam and Edge linear accelerators. Northwest Medical Physics Center (NMPC) has collected end‐to‐end data on these machines, at six independent clinical sites, to establish baseline dosimetric and geometric commissioning criteria for SRS measurements with this phantom. The Varian phantom is designed to accommodate four interchangeable target cassettes, each designed for a specific quality assurance function. End‐to‐end measurements utilized the phantom to verify the coincidence of treatment isocenter with a hidden target in a Winston‐Lutz cassette after localization using cone‐beam computed tomography (CBCT). Dose delivery to single target (2 cm) and single‐isocenter, multitarget (2 and 1 cm) geometries was verified using ionization chamber and EBT3 film cassettes. A nominal dose of 16 Gy was prescribed for each plan using a site's standard beam geometry for SRS cases. Measurements were performed with three Millennium and three high‐definition MLC machines at beam energies of 6‐MV and 10‐MV flattening‐filter‐free energies. Each clinical site followed a standardized procedure for phantom simulation, treatment planning, quality assurance, and treatment delivery. All treatment planning and delivery was performed using ARIA oncology information system and Eclipse treatment planning software. The isocenter measurements and irradiated film were analyzed using DoseLab quality assurance software; gamma criteria of 3%/1 mm, 3%/0.5 mm, and 2%/1 mm were applied for film analysis. Based on the data acquired in this work, the recommended commissioning criteria for end‐to‐end SRS measurements with the Varian phantom are as follows: coincidence of treatment isocenter and CBCT‐aligned hidden target < 1 mm, agreement of measured chamber dose with calculated dose ≤ 5%, and film gamma passing > 90% for gamma criteria of 3%/1 mm after DoseLab auto‐registration shifts ≤ 1 mm in any direction.
Collapse
Affiliation(s)
| | | | - Caleb Beck
- Northwest Medical Physics Center, Lynnwood, Washington, USA
| | | | - Krista Burton
- Northwest Medical Physics Center, Lynnwood, Washington, USA
| | | | | | | | - Kayla Kielar
- Varian Medical Systems, Palo Alto, California, USA
| | - James Kerns
- Varian Medical Systems, Palo Alto, California, USA
| |
Collapse
|
5
|
Brown TAD, Ayers RG, Popple RA. Commissioning a multileaf collimator virtual cone for the stereotactic radiosurgery of trigeminal neuralgia. J Appl Clin Med Phys 2022; 23:e13562. [PMID: 35157356 PMCID: PMC9121036 DOI: 10.1002/acm2.13562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
A multileaf collimator (MLC), virtual‐cone treatment technique has been commissioned for trigeminal neuralgia (TGN) at Tri‐Cities Cancer Center (TCCC). This novel technique was initially developed at the University of Alabama in Birmingham (UAB); it is designed to produce a spherical dose profile similar to a fixed, 5‐mm conical collimator distribution. Treatment is delivered with a 10‐MV flattening‐filter‐free (FFF) beam using a high‐definition MLC on a Varian Edge linear accelerator. Absolute dose output and profile measurements were performed in a 20 × 20 × 14 cm3 solid‐water phantom using an Exradin W2 scintillation detector and Gafchromic EBT3 film. Dose output constancy for the virtual cone was evaluated over 6 months using an Exradin A11 parallel plate chamber. The photo‐neutron dose generated by these treatments was assessed at distances of 50 and 100 cm from isocenter using a Ludlum Model 30–7 Series Neutron Meter. TGN treatments at TCCC have been previously delivered at 6‐MV FFF using a 5‐mm stereotactic cone. To assess the dosimetric impact of using a virtual cone, eight patients previously treated for TGN with a 5‐mm cone were re‐planned using a virtual cone. Seven patients have now been treated for TGN using a virtual cone at TCCC. Patient‐specific quality assurance was performed for each patient using Gafchromic EBT‐XD film inside a Standard Imaging Stereotactic Dose Verification Phantom. The commissioning results demonstrate that the virtual‐cone dosimetry, first described at UAB, is reproducible on a second Edge linear accelerator at an independent clinical site. The virtual cone is a credible alternative to a physical, stereotactic cone for the treatment of TGN at TCCC.
Collapse
Affiliation(s)
| | - Rex G Ayers
- Northwest Medical Physics Center, Lynnwood, Washington, USA
| | - Richard A Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Practical Considerations for Single Isocenter LINAC Radiosurgery of Multiple Brain Metastases. Pract Radiat Oncol 2021; 12:195-199. [PMID: 34619373 DOI: 10.1016/j.prro.2021.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to summarize treatment guidelines for the performance of single isocenter LINAC radiosurgery of multiple brain metastases developed and used by 3 experienced centers. This article is not meant to provide consensus guidelines. Rather, this is a practical, "how we do it" reference without substantial discussion. To serve as a treatment reference, the great majority of the information is presented in topic-specific tables.
Collapse
|
7
|
Calmels L, Blak Nyrup Biancardo S, Sibolt P, Nørring Bekke S, Bjelkengren U, Wilken E, Geertsen P, Sjöström D, Behrens CF. Single-isocenter stereotactic non-coplanar arc treatment of 200 patients with brain metastases: multileaf collimator size and setup uncertainties. Strahlenther Onkol 2021; 198:436-447. [PMID: 34528112 PMCID: PMC9038816 DOI: 10.1007/s00066-021-01846-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Purpose The purpose of this study was to evaluate our 2 years’ experience with single-isocenter, non-coplanar, volumetric modulated arc therapy (VMAT) for brain metastasis (BM) stereotactic radiosurgery (SRS). Methods A total of 202 patients treated with the VMAT SRS solution were analyzed retrospectively. Plan quality was assessed for 5 mm (120) and 2.5 mm (high-definition, HD) central leaf width multileaf collimators (MLCs). For BMs at varying distances from the plan isocenter, the geometric offset from the ideal position for two image-guided radiotherapy workflows was calculated. In the workflow with ExacTrac (BrainLAB, München, Germany; W‑ET), patient positioning errors were corrected at each couch rotation. In the workflow without ExacTrac (W-noET), only the initial patient setup correction was considered. The dose variation due to rotational errors was simulated for multiple-BM plans with the HD-MLC. Results Plan conformity and quality assurance were equivalent for plans delivered with the two MLCs while the HD-MLC plans provided better healthy brain tissue (BmP) sparing. 95% of the BMs had residual intrafractional setup errors ≤ 2 mm for W‑ET and 68% for W‑noET. For small BM (≤1 cc) situated >3 cm from the plan isocenter, the dose received by 95% of the BM decreased in median (interquartile range) by 6.3% (2.8–8.8%) for a 1-degree rotational error. Conclusion This study indicates that the HD-MLC is advantageous compared to the 120-MLC for sparing healthy brain tissue. When a 2-mm margin is applied, W‑noET is sufficient to ensure coverage of BM situated ≤ 3 cm of the plan isocenter, while for BM further away, W‑ET is recommended.
Collapse
Affiliation(s)
- Lucie Calmels
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark.
| | - Susan Blak Nyrup Biancardo
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Patrik Sibolt
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Susanne Nørring Bekke
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Ulf Bjelkengren
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Eva Wilken
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - David Sjöström
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| | - Claus F Behrens
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev & Gentofte Hospital, University of Copenhagen, Borgmester Ib Juuls vej 7, 2730, Herlev, Denmark
| |
Collapse
|
8
|
Culcasi R, Baran G, Dominello M, Burmeister J. Stereotactic radiosurgery commissioning and QA test cases-A TG-119 approach for Stereotactic radiosurgery. Med Phys 2021; 48:7568-7579. [PMID: 34258770 DOI: 10.1002/mp.15087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To develop a standardized set of representative clinical treatment cases that pose a range of optimization problems for evaluating the plan quality and dosimetric accuracy within the commissioning process for linac-based stereotactic radiosurgery (SRS). METHODS Five test cases with increasing complexity were created to validate delivery accuracy in SRS commissioning similar to the approach used by AAPM TG-119 in developing a test suite for IMRT commissioning. Standardized structure sets, planning goals, and delivery requirements were specified for each case including a small sphere target, irregular target, irregular target placed off-axis, multi-target, and abutting organs-at-risk (OARs). Various VMAT field arrangements including a single arc, two coplanar arcs, full arc and vertex half arc, and four noncoplanar arcs were tested to generate clinically appropriate treatment plans. RESULTS The small spherical target was 1.0 cm in diameter. The irregular target was a clinical cavity (2.3 × 2.2 × 1.4 cm³) and was shifted 4.5 cm for the irregular target off-axis case. The multi-target case used the irregular target and four spherical targets representing metastases ranging 0.9 to 1.6 cm in diameter, placed up to 7.5 cm off-axis. The abutting OARs case included an acoustic neuroma and target placed near the optic nerve. All spherical targets received 24 Gy and the cavity received 18 Gy. The abutting OAR cases included a 3.74 cc lesion adjacent to the brainstem receiving 13 Gy and a 1.11 cc lesion adjacent to the optic nerve receiving 12 Gy. All plans used a single-isocenter placed at the target center or geometric center of multiple targets. Planning goals for all cases included constraints for the target and brain minus PTV, along with brainstem and optic nerve where applicable. Deliverability was assessed through ion chamber measurements, in addition to composite and per-field planar measurements on Gafchromic film and small-field diode array. A mean and SD for measured versus planned doses of 101.0% ± 2.9% was observed over the 14 ion chamber measurements. Mean and SD for gamma pass rates were 98.5% ± 2.2% and 97.1% ± 4.9% for film and diode array, respectively, for gamma criteria of 2% and 1 mm. CONCLUSION These cases could provide the preliminary groundwork for a novel benchmark for institutions to evaluate linac-based SRS commissioning and delivery accuracy prior to clinical implementation. The rapid widespread implementation of linac-based SRS, the complexity associated with dosimetry and delivery, and high-profile treatment deviations that have already resulted from its use, highlight the importance of such a benchmark test suite. Comprehensive dosimetric measurements from this standardized set of SRS optimization problems were used to fine-tune and understand the limitations of our SRS planning and delivery system and establish a set of baseline data for comparison with other delivery platforms.
Collapse
Affiliation(s)
| | | | - Michael Dominello
- Karmanos Cancer Institute, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Burmeister
- Karmanos Cancer Institute, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Yu L, Zhao J, Zhang Z, Wang J, Hu W. Commissioning of and preliminary experience with a new fully integrated computed tomography linac. J Appl Clin Med Phys 2021; 22:208-223. [PMID: 34151504 PMCID: PMC8292712 DOI: 10.1002/acm2.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose A new medical linear accelerator (linac) platform integrated with helical computed tomography (CT), the uRT‐linac 506c, was introduced into clinical application in 2019 by United Imaging Healthcare (UIH) Co., Ltd. (Shanghai, China). It combines a Carm linac with a diagnostic‐quality 16‐slice CT imager, providing seamless workflow from simulation to treatment. The aim of this report is to assess the technical characteristics, commissioning results and preliminary experiences stemming from clinical usage. Methods The mechanical and imaging test procedures, commissioning data collection and TPS validation were summarized. CTIGRT accuracy was investigated with different loads and couch extensions. A series of end‐to‐end cases for different treatment sites and delivery techniques were tested preclinically to estimate the overall accuracy for the entire treatment scheme. The results of patient‐specific QA and machine stability during a one‐year operation are also reported. Results Gantry/couch/collimator isocentricity was measured as 0.63 mm in radius. The TPS models were in agreement with the beam commissioning data within a deviation of 2%. An overall submillimeter accuracy was demonstrated for the CT‐IGRT process under all conditions. The absolute point dose difference for all the preclinical end‐to‐end tests was within 3%, and the gamma passing rate of the 2D dose distribution measured by EBT3 film was better than 90% (3% DD, 3 mm DTA and 10% threshold). Pretreatment QA of clinical cases resulted with better than 3% point dose difference and more than 99% gamma passing rate (3% DD/2 mm DTA/10% threshold) tested with Delta4. The output of the linac was mostly within 1% of variation in a one‐year operation. Conclusion The commissioning results and clinical QA results show that the uRT‐linac 506c platform exhibits good and stable performance in mechanical and dosimetric accuracy. The integrated CT system provides an efficient workflow for image guidance with submillimeter localization precision, and will be a good starting point to proceed advanced adaptive radiotherapy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhang L, Vijayan S, Huang S, Song Y, Li T, Li X, Hipp E, Chan MF, Kuo HC, Tang X, Tang G, Lim SB, Lovelock DM, Ballangrud A, Li G. Commissioning of optical surface imaging systems for cranial frameless stereotactic radiosurgery. J Appl Clin Med Phys 2021; 22:182-190. [PMID: 33779052 PMCID: PMC8130243 DOI: 10.1002/acm2.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aimed to evaluate and compare different system calibration methods from a large cohort of systems to establish a commissioning procedure for surface‐guided frameless cranial stereotactic radiosurgery (SRS) with intrafractional motion monitoring and gating. Using optical surface imaging (OSI) to guide non‐coplanar SRS treatments, the determination of OSI couch‐angle dependency, baseline drift, and gated‐delivered‐dose equivalency are essential. Methods Eleven trained physicists evaluated 17 OSI systems at nine clinical centers within our institution. Three calibration methods were examined, including 1‐level (2D), 2‐level plate (3D) calibration for both surface image reconstruction and isocenter determination, and cube phantom calibration to assess OSI‐megavoltage (MV) isocenter concordance. After each calibration, a couch‐angle dependency error was measured as the maximum registration error within the couch rotation range. A head phantom was immobilized on the treatment couch and the isocenter was set in the middle of the brain, marked with the room lasers. An on‐site reference image was acquired at couch zero, the facial region of interest (ROI) was defined, and static verification images were captured every 10° for 0°–90° and 360°–270°. The baseline drift was assessed with real‐time monitoring of the motionless phantom over 20 min. The gated‐delivered‐dose equivalency was assessed using the electron portal imaging device and gamma test (1%/1mm) in reference to non‐gated delivery. Results The maximum couch‐angle dependency error occurs in longitudinal and lateral directions and is reduced significantly (P < 0.05) from 1‐level (1.3 ± 0.4 mm) to 2‐level (0.8 ± 0.3 mm) calibration. The MV cube calibration does not further reduce the couch‐angle dependency error (0.8 ± 0.2 mm) on average. The baseline drift error plateaus at 0.3 ± 0.1 mm after 10 min. The gated‐delivered‐dose equivalency has a >98% gamma‐test passing rate. Conclusion A commissioning method is recommended using the 3D plate calibration, which is verified by radiation isocenter and validated with couch‐angle dependency, baseline drift, and gated‐delivered‐dose equivalency tests. This method characterizes OSI uncertainties, ensuring motion‐monitoring accuracy for SRS treatments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarath Vijayan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheng Huang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yulin Song
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Bergen, NJ, USA
| | - Tianfang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Commack, NY, USA
| | - Xiang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Nassau, NY, USA
| | - Elizabeth Hipp
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Monmouth, NJ, USA
| | - Maria F Chan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Baskin Ridge, NJ, USA
| | - Hsiang-Chi Kuo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Norwalk, CT, USA
| | - Xiaoli Tang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Westchester, NY, USA
| | - Grace Tang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ase Ballangrud
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Dosimetric and radiobiological comparison of treatment plan between CyberKnife and EDGE in stereotactic body radiotherapy for pancreatic cancer. Sci Rep 2021; 11:4065. [PMID: 33603030 PMCID: PMC7893157 DOI: 10.1038/s41598-021-83648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
To perform a comparison of the different stereotactic body radiotherapy (SBRT) plans between the Varian EDGE and CyberKnife (CK) systems for locally advanced unresectable pancreatic cancer. Fifteen patients with pancreatic cancer were selected in this study. The median planning target volume (PTV) was 28.688 cm3 (5.736–49.246 cm3). The SBRT plans for the EDGE and CK were generated in the Eclipse and Multiplan systems respectively with the same contouring and dose constrains for PTV and organs at risk (OARs). Dose distributions in PTV were evaluated in terms of coverage, conformity index (CI), new conformity index (nCI), homogeneity index (HI), and gradient index (GI). OARs, including spinal cord, bowel, stomach, duodenum and kidneys were statistically evaluated by different dose-volume metrics and equivalent uniform dose (EUD). The volume covered by the different isodose lines (ISDL) ranging from 10 to 100% for normal tissue were also analyzed. All SBRT plans for EDGE and CK met the dose constraints for PTV and OARs. For the PTV, the dosimetric metrics in EDGE plans were lower than that in CK, except that D99 and GI were slightly higher. The EDGE plans with lower CI, nCI and HI were superior to generate more conformal and homogeneous dose distribution for PTV. For the normal tissue, the CK plans were better at OARs sparing. The radiobiological indices EUD of spinal cord, duodenum, stomach, and kidneys were lower for CK plans, except that liver were higher. The volumes of normal tissue covered by medium ISDLs (with range of 20–70%) were lower for CK plans while that covered by high and low ISDLs were lower for EDGE plans. This study indicated that both EDGE and CK generated equivalent plan quality, and both systems can be considered as beneficial techniques for SBRT of pancreatic cancer. EDGE plans offered more conformal and homogeneous dose distribution for PTV, while the CK plans could minimize the exposure of OARs.
Collapse
|
12
|
Bagdare P, Dubey S, Ghosh S. Dosimetric evaluation of analytic anisotropic algorithm and Acuros XB algorithm using in-house developed heterogeneous thorax phantom and homogeneous slab phantom for stereotactic body radiation therapy technique. RADIATION PROTECTION AND ENVIRONMENT 2021. [DOI: 10.4103/rpe.rpe_52_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C. Technological quality requirements for stereotactic radiotherapy : Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 2020; 196:421-443. [PMID: 32211939 PMCID: PMC7182540 DOI: 10.1007/s00066-020-01583-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Collapse
Affiliation(s)
- Daniela Schmitt
- Klinik für Radioonkologie und Strahlentherapie, National Center for Radiation Research in Oncology (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Tobias Gauer
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K Fix
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Thomas B Brunner
- Universitätsklinik für Strahlentherapie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Britta Loutfi-Krauss
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Peter Manser
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Rene Werner
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Lisa Wilhelm
- Klinik für Strahlentherapie, Universitätsmedizin Rostock, Rostock, Germany
| | - Wolfgang W Baus
- Klinik für Radioonkologie, CyberKnife- und Strahlentherapie, Universitätsklinikum Köln, Cologne, Germany
| | - Christos Moustakis
- Klinik für Strahlentherapie-Radioonkologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
14
|
Ehsani O, Pouladian M, Toosizadeh S, Aledavood A. Registration and fusion of 3D surface data from CT and ToF camera for position verification in radiotherapy. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1350-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Covington EL, Fiveash JB, Wu X, Brezovich I, Willey CD, Riley K, Popple RA. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. J Appl Clin Med Phys 2019; 20:91-98. [PMID: 31095866 PMCID: PMC6560239 DOI: 10.1002/acm2.12611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate the accuracy of monitoring intrafraction motion during stereotactic radiotherapy with the optical surface monitoring system. Prior studies showing a false increase in the magnitude of translational offsets at non-coplanar couch positions prompted the vendor to implement software changes. This study evaluated two software improvements intended to address false offsets. METHODS The vendor implemented two software improvements: a volumetric (ACO) rather than planar calibration and, approximately 6 months later, an improved calibration workflow (CIB) designed to better compensate for thermal drift. Offsets relative to the reference position, obtained at table angle 0 following image-guided setup, were recorded before beam-on at each table position and at the end of treatment the table returned to 0° for patients receiving SRT. RESULTS Prior to ACO, between ACO and CIB, and after CIB, 223, 155, and 436 fractions were observed respectively. The median magnitude of translational offsets at the end of treatment was similar for all three intervals: 0.29, 0.33, and 0.27 mm. Prior to ACO, the offset magnitude for non-zero table positions had a median of 0.79 mm and was found to increase with increasing distance from isocenter to the anterior patient surface. After ACO, the median magnitude was 0.74 mm, but the dependence on surface-to-isocenter distance was eliminated. After CIB, the median magnitude for non-zero table positions was reduced to 0.57 mm. CONCLUSION Ongoing improvements in software and calibration procedures have decreased reporting of false offsets at non-zero table angles. However, the median magnitude for non-zero table angles is larger than that observed at the end of treatment, indicating that accuracy remains better when the table is not rotated.
Collapse
Affiliation(s)
- Elizabeth L Covington
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Xingen Wu
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Ivan Brezovich
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Kristen Riley
- Department of Neurosurgery, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Kim J, Chu A, Xu Z. Dose uncertainty from calculation grid resolution and its alignment with MLC. Med Dosim 2019; 44:e1-e7. [DOI: 10.1016/j.meddos.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/15/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
17
|
Wen N, Kim J, Doemer A, Glide-Hurst C, Chetty IJ, Liu C, Laugeman E, Xhaferllari I, Kumarasiri A, Victoria J, Bellon M, Kalkanis S, Siddiqui MS, Movsas B. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol 2018; 127:460-466. [PMID: 29807837 DOI: 10.1016/j.radonc.2018.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The purpose of this study was to investigate the systematic localization accuracy, treatment planning capability, and delivery accuracy of an integrated magnetic resonance imaging guided Linear Accelerator (MR-Linac) platform for stereotactic radiosurgery. MATERIALS AND METHODS The phantom for the end-to-end test comprises three different compartments: a rectangular MR/CT target phantom, a Winston-Lutz cube, and a rectangular MR/CT isocenter phantom. Hidden target tests were performed at gantry angles of 0, 90, 180, and 270 degrees to quantify the systematic accuracy. Five patient plans with a total of eleven lesions were used to evaluate the dosimetric accuracy. Single-isocenter IMRT treatment plans using 10-15 coplanar beams were generated to treat the multiple metastases. RESULTS The end-to-end localization accuracy of the system was 1.0 ± 0.1 mm. The conformity index, homogeneity index and gradient index of the plans were 1.26 ± 0.22, 1.22 ± 0.10, and 5.38 ± 1.44, respectively. The average absolute point dose difference between measured and calculated dose was 1.64 ± 1.90%, and the mean percentage of points passing the 3%/1 mm gamma criteria was 96.87%. CONCLUSIONS Our experience demonstrates that excellent plan quality and delivery accuracy was achievable on the MR-Linac for treating multiple brain metastases with a single isocenter.
Collapse
Affiliation(s)
- Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA.
| | - Joshua Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Carri Glide-Hurst
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Chang Liu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Ilma Xhaferllari
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Akila Kumarasiri
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | | | | | - Steve Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, USA
| | - M Salim Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health System, Detroit, USA
| |
Collapse
|
18
|
Popple RA, Wu X, Brezovich IA, Markert JM, Guthrie BL, Thomas EM, Bredel M, Fiveash JB. The virtual cone: A novel technique to generate spherical dose distributions using a multileaf collimator and standardized control-point sequence for small target radiation surgery. Adv Radiat Oncol 2018; 3:421-430. [PMID: 30197943 PMCID: PMC6127970 DOI: 10.1016/j.adro.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 02/05/2023] Open
Abstract
Purpose The study aimed to develop and demonstrate a standardized linear accelerator multileaf collimator-based method of delivering small, spherical dose distributions suitable for radiosurgical treatment of small targets such as the trigeminal nerve. Methods and materials The virtual cone is composed of a multileaf collimator–defined field with the central 2 leaves set to a small gap. For 5 table positions, clockwise and counter-clockwise arcs were used with collimator angles of 45 and 135 degrees, respectively. The dose per degree was proportional to the sine of the gantry angle. The dose distribution was calculated by the treatment planning system and measured using radiochromic film in a skull phantom for leaf gaps of 1.6, 2.1, and 2.6 mm. Cones with a diameter of 4 mm and 5 mm were measured for comparison. Output factor constancy was investigated using a parallel-plate chamber. Results The mean ratio of the measured-to-calculated dose was 0.99, 1.03, and 1.05 for 1.6, 2.1, and 2.6 mm leaf gaps, respectively. The diameter of the measured (calculated) 50% isodose line was 4.9 (4.6) mm, 5.2 (5.1) mm, and 5.5 (5.5) mm for the 1.6, 2.1, and 2.6 mm leaf gap, respectively. The measured diameter of the 50% isodose line was 4.5 and 5.7 mm for the 4 mm and 5 mm cones, respectively. The standard deviation of the parallel-plate chamber signal relative to a 10 cm × 10 cm field was less than 0.4%. The relative signal changed 32% per millimeter change in leaf gap, indicating that the parallel-plate chamber is sensitive to changes in gap width. Conclusions The virtual cone is an efficient technique for treatment of small spherical targets. Patient-specific quality assurance measurements will not be necessary in routine clinical use. Integration directly into the treatment planning system will make planning using this technique extremely efficient.
Collapse
Affiliation(s)
- Richard A Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Xingen Wu
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ivan A Brezovich
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Barton L Guthrie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Evan M Thomas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Markus Bredel
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - John B Fiveash
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Kim J, Han JS, Hsia AT, Li S, Xu Z, Ryu S. Relationship between dosimetric leaf gap and dose calculation errors for high definition multi-leaf collimators in radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 5:31-36. [PMID: 33458366 PMCID: PMC7807868 DOI: 10.1016/j.phro.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Background and purpose Dosimetric leaf gap (DLG) is a parameter to model the round-leaf-end effect of multi-leaf collimators (MLC) that is important for treatment planning dose calculations in radiotherapy. In this study we investigated on the relationship between the DLG values and the dose calculation errors for a high-definition MLC. Materials and methods Three sets of experiments were conducted: (1) physical DLG measurements using sweeping-gap technique, (2) DLG adjustment based on spine radiosurgery plan measurements, and (3) DLG verification using films and ion-chambers (IC). All experiments were conducted on a Varian Edge machine equipped with HD120 MLC for 6X, 6XFFF, and 10XFFF (FFF: flattening filter free). The Analytical Anisotropic Algorithm was used for all dose calculations. Results The measured physical DLGs were 0.39 mm, 0.27 mm, and 0.42 mm for 6X, 6XFFF, and 10XFFF respectively. The calculated doses were lower by 4.2% (6X), 3.7% (6XFFF), and 6.8% (10XFFF) than the measured, while the adjusted DLG values with minimum errors were 1.1 mm, 0.9 mm, and 1.5 mm. The IC measurement errors were < 1%, and the film gamma pass rates (3%/3 mm) were greater than 97% for the spine plans. Conclusions The calculated doses were systematically lower than measured doses with the physical DLG values. It was necessary to increase the DLG values to minimize the dose calculation uncertainty. The optimal DLG values may be specific to individual MLCs and beams and, thus, careful evaluation and verification are warranted.
Collapse
Affiliation(s)
- Jinkoo Kim
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, United States
- Corresponding author at: Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY 11794, United States.
| | - James S. Han
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, United States
| | - An Ting Hsia
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, United States
| | - Shidong Li
- Department of Radiation Oncology, FoxChase Cancer Center at Temple Hospital, Philadelphia, PA, United States
| | - Zhigang Xu
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, United States
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, United States
| |
Collapse
|
20
|
Zhou S, Wu Q, Li X, Ma R, Zheng D, Wang S, Zhang M, Li S, Lei Y, Fan Q, Hyun M, Diener T, Enke C. Using weighted power mean for equivalent square estimation. J Appl Clin Med Phys 2017; 18:194-199. [PMID: 29087037 PMCID: PMC5689911 DOI: 10.1002/acm2.12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/20/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Equivalent Square (ES) enables the calculation of many radiation quantities for rectangular treatment fields, based only on measurements from square fields. While it is widely applied in radiotherapy, its accuracy, especially for extremely elongated fields, still leaves room for improvement. In this study, we introduce a novel explicit ES formula based on Weighted Power Mean (WPM) function and compare its performance with the Sterling formula and Vadash/Bjärngard's formula. METHODS The proposed WPM formula is ESWPMa,b=waα+1-wbα1/α for a rectangular photon field with sides a and b. The formula performance was evaluated by three methods: standard deviation of model fitting residual error, maximum relative model prediction error, and model's Akaike Information Criterion (AIC). Testing datasets included the ES table from British Journal of Radiology (BJR), photon output factors (Scp ) from the Varian TrueBeam Representative Beam Data (Med Phys. 2012;39:6981-7018), and published Scp data for Varian TrueBeam Edge (J Appl Clin Med Phys. 2015;16:125-148). RESULTS For the BJR dataset, the best-fit parameter value α = -1.25 achieved a 20% reduction in standard deviation in ES estimation residual error compared with the two established formulae. For the two Varian datasets, employing WPM reduced the maximum relative error from 3.5% (Sterling) or 2% (Vadash/Bjärngard) to 0.7% for open field sizes ranging from 3 cm to 40 cm, and the reduction was even more prominent for 1 cm field sizes on Edge (J Appl Clin Med Phys. 2015;16:125-148). The AIC value of the WPM formula was consistently lower than its counterparts from the traditional formulae on photon output factors, most prominent on very elongated small fields. CONCLUSION The WPM formula outperformed the traditional formulae on three testing datasets. With increasing utilization of very elongated, small rectangular fields in modern radiotherapy, improved photon output factor estimation is expected by adopting the WPM formula in treatment planning and secondary MU check.
Collapse
Affiliation(s)
- Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Health System, Durham, NC, USA
| | - Xiaobo Li
- Department of Radiation Oncology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Rongtao Ma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mutian Zhang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sicong Li
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiyong Fan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Megan Hyun
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tyler Diener
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Charles Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Gardner SJ, Lu S, Liu C, Wen N, Chetty IJ. Tuning of AcurosXB source size setting for small intracranial targets. J Appl Clin Med Phys 2017; 18:170-181. [PMID: 28470819 PMCID: PMC5689841 DOI: 10.1002/acm2.12091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
This study details a method to evaluate the source size selection for small field intracranial stereotactic radiosurgery (SRS) deliveries in Eclipse treatment planning system (TPS) for AcurosXB dose calculation algorithm. Our method uses end‐to‐end dosimetric data to evaluate a total of five source size selections (0.50 mm, 0.75 mm, 1.00 mm, 1.25 mm, and 1.50 mm). The dosimetric leaf gap (DLG) was varied in this analysis (three DLG values were tested for each scenario). We also tested two MLC leaf designs (standard and high‐definition MLC) and two delivery types for intracranial SRS (volumetric modulated arc therapy [VMAT] and dynamic conformal arc [DCA]). Thus, a total of 10 VMAT plans and 10 DCA plans were tested for each machine type (TrueBeam [standard MLC] and Edge [high‐definition MLC]). Each plan was mapped to a solid water phantom and dose was calculated with each iteration of source size and DLG value (15 total dose calculations for each plan). To measure the dose, Gafchromic film was placed in the coronal plane of the solid water phantom at isocenter. The phantom was localized via on‐board CBCT and the plans were delivered at planned gantry, collimator, and couch angles. The planned and measured film dose was compared using Gamma (3.0%, 0.3 mm) criteria. The vendor‐recommended 1.00 mm source size was suitable for TrueBeam planning (both VMAT and DCA planning) and Edge DCA planning. However, for Edge VMAT planning, the 0.50 mm source size yielded the highest passing rates. The difference in dose calculation among the source size variations manifested primarily in two regions of the dose calculation: (1) the shoulder of the high‐dose region, and (2) for small targets (volume ≤ 0.30 cc), in the central portion of the high‐dose region. Selection of a larger than optimal source size can result in increased blurring of the shoulder for all target volume sizes tested, and can result in central axis dose discrepancies in excess of 10% for target volumes sizes ≤ 0.30 cc. Our results indicate a need for evaluation of the source size when AcurosXB is used to model intracranial SRS delivery, and our methods represent a feasible process for many clinics to perform tuning of the AcurosXB source size parameter.
Collapse
Affiliation(s)
- Stephen J Gardner
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Siming Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Commack, NY, USA
| | - Chang Liu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
22
|
Oliver JA, Zeidan OA, Meeks SL, Shah AP, Pukala J, Kelly P, Ramakrishna NR, Willoughby TR. The Mobius AIRO mobile CT for image-guided proton therapy: Characterization & commissioning. J Appl Clin Med Phys 2017; 18:130-136. [PMID: 28436155 PMCID: PMC5689854 DOI: 10.1002/acm2.12084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize the Mobius AIRO Mobile CT System for localization and image-guided proton therapy. This is the first known application of the AIRO for proton therapy. METHODS Five CT images of a Catphan® 504 phantom were acquired on the AIRO Mobile CT System, Varian EDGE radiosurgery system cone beam CT (CBCT), Philips Brilliance Big Bore 16 slice CT simulator, and Siemens SOMATOM Definition AS 20 slice CT simulator. DoseLAB software v.6.6 was utilized for image quality analysis. Modulation transfer function, scaling discrepancy, geometric distortion, spatial resolution, overall uniformity, minimum uniformity, contrast, high CNR, and maximum HU deviation were acquired. Low CNR was acquired manually using the CTP515 module. Localization accuracy and CT Dose Index were measured and compared to reported values on each imaging device. For treatment delivery systems (Edge and Mevion), the localization accuracy of the 3D imaging systems were compared to 2D imaging systems on each system. RESULTS The AIRO spatial resolution was 0.21 lp mm-1 compared with 0.40 lp mm-1 for the Philips CT Simulator, 0.37 lp mm-1 for the Edge CBCT, and 0.35 lp mm-1 for the Siemens CT Simulator. AIRO/Siemens and AIRO/Philips differences exceeded 100% for scaling discrepancy (191.2% and 145.8%). The AIRO exhibited higher dose (>27 mGy) than the Philips CT Simulator. Localization accuracy (based on the MIMI phantom) was 0.6° and 0.5 mm. Localization accuracy (based on Stereophan) demonstrated maximum AIRO-kV/kV shift differences of 0.1 mm in the x-direction, 0.1 mm in the y-direction, and 0.2 mm in the z-direction. CONCLUSIONS The localization accuracy of AIRO was determined to be within 0.6° and 0.5 mm despite its slightly lower image quality overall compared to other CT imaging systems at our institution. Based on our study, the Mobile AIRO CT system can be utilized accurately and reliably for image-guided proton therapy.
Collapse
Affiliation(s)
- Jasmine A. Oliver
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Omar A. Zeidan
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Sanford L. Meeks
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Amish P. Shah
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Jason Pukala
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Patrick Kelly
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Naren R. Ramakrishna
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| | - Twyla R. Willoughby
- Department of Radiation OncologyUF Health Cancer Center – Orlando HealthOrlandoFLUSA
| |
Collapse
|
23
|
Oliver JA, Kelly P, Meeks SL, Willoughby TR, Shah AP. Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system. Adv Radiat Oncol 2017; 2:494-502. [PMID: 29114618 PMCID: PMC5605313 DOI: 10.1016/j.adro.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/02/2022] Open
Abstract
Purpose To characterize the accuracy of noncoplanar image guided radiation therapy with the Varian Edge radiosurgery system for intracranial stereotactic radiosurgery (SRS) treatments by assessing the accuracy of kV/kV orthogonal pair registration with Optical Surface Monitoring System (OSMS) monitoring relative to cone beam computed tomography (CT). Methods and materials A Computerized Imaging Reference System head phantom and Encompass SRS Immobilization System were used to determine collision-free space for orthogonal image pairs (kV/kV) for couch rotations (CRs) of 45°, 30°, 15°, 345°, 330°, and 315°. Couch-induced shifts were measured using kV/kV orthogonal image pairs, OSMS, and cone beam CT. The kV/kV image pairs and OSMS localization accuracy was also assessed with respect to cone beam CT. Results Mean orthogonal image pair differences for 315°, 330°, 345°, 15°, 30°, and 45° CRs were ≤±0.60 mm and ±0.37°. OSMS localization accuracy was ≤±0.25 mm and ±0.20°. Correspondingly, kV/kV localization accuracy was ≤±0.30 mm and ±0.5°. Shift differences for various image pairs at all CRs were ≤±1.10 mm and ±0.7°. Cone beam CT deviation was 0.10 mm and 0.00° without patient motion or CR. Conclusion Based on our study, CR-induced shifts with the Varian Edge radiosurgery system will not produce noticeable dosimetric effects for SRS treatments. Thus, replacing cone beam CT with orthogonal kV/kV pairs coupled with OSMS at the treatment couch angle could reduce the number of cone beam CT scans that are acquired during a standard SRS treatment while providing an accurate and safe treatment with negligible dosimetric effects on the treatment plan.
Collapse
Affiliation(s)
| | | | | | | | - Amish P. Shah
- Corresponding author. Department of Radiation Oncology, UF Health Cancer Center – Orlando Health, 1400 S. Orange Avenue, Orlando, FL 32806.Department of Radiation OncologyUF Health Cancer Center – Orlando Health1400 S. Orange AvenueOrlandoFL32806
| |
Collapse
|
24
|
Wen N, Snyder KC, Scheib SG, Schmelzer P, Qin Y, Li H, Siddiqui MS, Chetty IJ. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2017; 43:2527. [PMID: 27147363 DOI: 10.1118/1.4947199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. METHODS The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, "snap-shot" planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. RESULTS End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. CONCLUSIONS The authors' experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.
Collapse
Affiliation(s)
- N Wen
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| | - K C Snyder
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| | - S G Scheib
- Varian Medical System, Täfernstrasse 7, Dättwil AG 5405, Switzerland
| | - P Schmelzer
- Varian Medical System, Täfernstrasse 7, Dättwil AG 5405, Switzerland
| | - Y Qin
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| | - H Li
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| | - M S Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| | - I J Chetty
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202
| |
Collapse
|
25
|
Edmunds DM, Bashforth SE, Tahavori F, Wells K, Donovan EM. The feasibility of using Microsoft Kinect v2 sensors during radiotherapy delivery. J Appl Clin Med Phys 2016; 17:446-453. [PMID: 27929516 PMCID: PMC5690521 DOI: 10.1120/jacmp.v17i6.6377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/02/2016] [Accepted: 08/30/2016] [Indexed: 11/23/2022] Open
Abstract
Consumer‐grade distance sensors, such as the Microsoft Kinect devices (v1 and v2), have been investigated for use as marker‐free motion monitoring systems for radiotherapy. The radiotherapy delivery environment is challenging for such sensors because of the proximity to electromagnetic interference (EMI) from the pulse forming network which fires the magnetron and electron gun of a linear accelerator (linac) during radiation delivery, as well as the requirement to operate them from the control area. This work investigated whether using Kinect v2 sensors as motion monitors was feasible during radiation delivery. Three sensors were used each with a 12 m USB 3.0 active cable which replaced the supplied 3 m USB 3.0 cable. Distance output data from the Kinect v2 sensors was recorded under four conditions of linac operation: (i) powered up only, (ii) pulse forming network operating with no radiation, (iii) pulse repetition frequency varied between 6 Hz and 400 Hz, (iv) dose rate varied between 50 and 1450 monitor units (MU) per minute. A solid water block was used as an object and imaged when static, moved in a set of steps from 0.6 m to 2.0 m from the sensor and moving dynamically in two sinusoidal‐like trajectories. Few additional image artifacts were observed and there was no impact on the tracking of the motion patterns (root mean squared accuracy of 1.4 and 1.1 mm, respectively). The sensors’ distance accuracy varied by 2.0 to 3.8 mm (1.2 to 1.4 mm post distance calibration) across the range measured; the precision was 1 mm. There was minimal effect from the EMI on the distance calibration data: 0 mm or 1 mm reported distance change (2 mm maximum change at one position). Kinect v2 sensors operated with 12 m USB 3.0 active cables appear robust to the radiotherapy treatment environment. PACS number(s): 87.53 JW, 87.55 N‐, 87.63 L‐
Collapse
|
26
|
Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, Paynter D, Thomas R. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol 2016; 61:8360-8394. [DOI: 10.1088/0031-9155/61/23/8360] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Xu H, Brown S, Chetty IJ, Wen N. A Systematic Analysis of Errors in Target Localization and Treatment Delivery for Stereotactic Radiosurgery Using 2D/3D Image Registration. Technol Cancer Res Treat 2016; 16:321-331. [PMID: 27582369 DOI: 10.1177/1533034616664425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To determine the localization uncertainties associated with 2-dimensional/3-dimensional image registration in comparison to 3-dimensional/3-dimensional image registration in 6 dimensions on a Varian Edge Linac under various imaging conditions. METHODS The systematic errors in 6 dimensions were assessed by comparing automatic 2-dimensional/3-dimensional (kV/MV vs computed tomography) with 3-dimensional/3-dimensional (cone beam computed tomography vs computed tomography) image registrations under various conditions encountered in clinical applications. The 2-dimensional/3-dimensional image registration uncertainties for 88 patients with different treatment sites including intracranial and extracranial were evaluated by statistically analyzing 2-dimensional/3-dimensional pretreatment verification shifts of 192 fractions in stereotactic radiosurgery and stereotactic body radiotherapy. RESULTS The systematic errors of 2-dimensional/3-dimensional image registration using kV-kV, MV-kV, and MV-MV image pairs were within 0.3 mm and 0.3° for the translational and rotational directions within a 95% confidence interval. No significant difference ( P > .05) in target localization was observed with various computed tomography slice thicknesses (0.8, 1, 2, and 3 mm). Two-dimensional/3-dimensional registration had the best accuracy when pattern intensity and content filter were used. For intracranial sites, means ± standard deviations of translational errors were -0.20 ± 0.70 mm, 0.04 ± 0.50 mm, and 0.10 ± 0.40 mm for the longitudinal, lateral, and vertical directions, respectively. For extracranial sites, means ± standard deviations of translational errors were -0.04 ± 1.00 mm, 0.2 ± 1.0 mm, and 0.1 ± 1.0 mm for the longitudinal, lateral, and vertical directions, respectively. Two-dimensional/3-dimensional image registration for intracranial and extracranial sites had comparable systematic errors that were approximately 0.2 mm in the translational direction and 0.08° in the rotational direction. CONCLUSION The standard 2-dimensional/3-dimensional image registration tool available on the Varian Edge radiosurgery device, a state-of-the-art system, is helpful for robust and accurate target positioning for image-guided stereotactic radiosurgery.
Collapse
Affiliation(s)
- Hao Xu
- 1 Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Stephen Brown
- 2 Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - Indrin J Chetty
- 2 Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - Ning Wen
- 2 Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
28
|
Wissel T, Stüber P, Wagner B, Bruder R, Erdmann C, Deutz CS, Sack B, Manit J, Schweikard A, Ernst F. Enhanced Optical Head Tracking for Cranial Radiation Therapy: Supporting Surface Registration by Cutaneous Structures. Int J Radiat Oncol Biol Phys 2016; 95:810-7. [PMID: 27020107 DOI: 10.1016/j.ijrobp.2016.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To support surface registration in cranial radiation therapy by structural information. The risk for spatial ambiguities is minimized by using tissue thickness variations predicted from backscattered near-infrared (NIR) light from the forehead. METHODS AND MATERIALS In a pilot study we recorded NIR surface scans by laser triangulation from 30 volunteers of different skin type. A ground truth for the soft-tissue thickness was segmented from MR scans. After initially matching the NIR scans to the MR reference, Gaussian processes were trained to predict tissue thicknesses from NIR backscatter. Moreover, motion starting from this initial registration was simulated by 5000 random transformations of the NIR scan away from the MR reference. Re-registration to the MR scan was compared with and without tissue thickness support. RESULTS By adding prior knowledge to the backscatter features, such as incident angle and neighborhood information in the scanning grid, we showed that tissue thickness can be predicted with mean errors of <0.2 mm, irrespective of the skin type. With this additional information, the average registration error improved from 3.4 mm to 0.48 mm by a factor of 7. Misalignments of more than 1 mm were almost thoroughly (98.9%) pushed below 1 mm. CONCLUSIONS For almost all cases tissue-enhanced matching achieved better results than purely spatial registration. Ambiguities can be minimized if the cutaneous structures do not agree. This valuable support for surface registration increases tracking robustness and avoids misalignment of tumor targets far from the registration site.
Collapse
Affiliation(s)
- Tobias Wissel
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany.
| | - Patrick Stüber
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
| | - Benjamin Wagner
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
| | - Ralf Bruder
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Christian Erdmann
- Institute for Neuroradiology, Universitätsklinikum Schleswig-Hostein, Campus Lübeck, Lübeck, Germany
| | - Christin-Sophie Deutz
- Clinic for Oral and Maxillo-Facial Surgery, Universitätsklinikum Schleswig-Hostein, Campus Lübeck, Lübeck, Germany
| | - Benjamin Sack
- Department of Neurology, Universitätsklinikum Schleswig-Hostein, Campus Lübeck, Lübeck, Germany
| | - Jirapong Manit
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Snyder M, Halford R, Knill C, Adams JN, Bossenberger T, Nalichowski A, Hammoud A, Burmeister J. Modeling the Agility MLC in the Monaco treatment planning system. J Appl Clin Med Phys 2016; 17:190-202. [PMID: 27167277 PMCID: PMC5690908 DOI: 10.1120/jacmp.v17i3.6044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/13/2016] [Accepted: 01/11/2016] [Indexed: 11/23/2022] Open
Abstract
We investigate the relationship between the various parameters in the Monaco MLC model and dose calculation accuracy for an Elekta Agility MLC. The vendor-provided MLC modeling procedure - completed first with external vendor participation and then exclusively in-house - was used in combination with our own procedures to investigate several sets of MLC modeling parameters to determine their effect on dose distributions and point-dose measurements. Simple plans provided in the vendor procedure were used to elucidate specific mechanical characteristics of the MLC, while ten complex treatment plans - five IMRT and five VMAT - created using TG-119-based structure sets were used to test clinical dosimetric effects of particular parameter choices. EDR2 film was used for the vendor fields to give high spatial resolution, while a combination of MapCHECK and ion chambers were used for the in-house TG-119-based proced-ures. The vendor-determined parameter set provided a reasonable starting point for the MLC model and largely delivered acceptable gamma pass rates for clinical plans - including a passing external evaluation using the IROC H&N phantom. However, the vendor model did not provide point-dose accuracy consistent with that seen in other treatment systems at our center. Through further internal testing it was found that there existed many sets of MLC parameters, often at opposite ends of their allowable ranges, that provided similar dosimetric characteristics and good agreement with planar and point-dose measurements. In particular, the leaf offset and tip leakage parameters compensated for one another if adjusted in opposite directions, which provided a level curve of acceptable parameter sets across all plans. Interestingly, gamma pass rates of the plans were less dependent upon parameter choices than point-dose measurements, suggesting that MLC modeling using only gamma evaluation may be generally an insufficient approach. It was also found that exploring all parameters of the very robust MLC model to find the best match to the vendor-provided QA fields can reduce the pass rates of the TG-119-based clinical distributions as compared to simpler models. A wide variety of parameter sets produced MLC models capable of meeting RPC passing criteria for their H&N IMRT phantom. The most accurate models were achievable using a combination of vendor-provided and in-house procedures. The potential existed for an over-modeling of the Agility MLC in an effort to obtain the fine structure of certain quality assurance fields, which led to a reduction in agreement between calculation and measurement of more typical clinical dose distributions.
Collapse
Affiliation(s)
- Michael Snyder
- Wayne State University School of Medicine; Karmanos Cancer Institute.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Alcedo-Guardia R, Labat E, Blas-Boria D, Vivas-Mejia PE. Diagnosis and New Treatment Modalities for Glioblastoma: Do They Improve Patient Survival? Curr Mol Med 2016:IDDT-EPUB-72004. [PMID: 26585986 PMCID: PMC10041888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/25/2016] [Accepted: 04/26/2016] [Indexed: 03/29/2023]
Abstract
Central nervous system (CNS) malignances include tumors of the brain and spinal cord. Taking into account the cell type where they originate from, there are almost 120 different types of CNS tumors. Benign tumors are not aggressive and normally do not invade other organs; however, they require surgical removal before they alter the surrounding brain functions. Primary malignant brain tumors commonly include astrocytomas, oligodendrogliomas, and ependimomas, where astrocytomas represent around 76%. The World Health Organization (WHO) has defined four histological grades of astrocytomas that range from the less aggressive tumors (grade I) to highly malignant tumors (grade IV). These grade IV tumors, also called glioblastoma (GBM), are the most aggressive of the primary malignant brain tumors. Patients with GBM have a median survival of 12 to 15 months. Current treatment for GBM includes surgery, radiotherapy and chemotherapy. Although there have been some advances in diagnosis and treatment, there is still no optimal treatment available for GBMs. In this review, we will discuss the approaches for GBM diagnosis and treatment, with a special emphasis to post-treatment imaging, and whether novel targeted therapies have impacted the survival of GBM patients. In addition, we will discuss clinical trials and the future of GBM diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - P E Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936.
| |
Collapse
|
31
|
Wong K, Opimo AB, Olch AJ, All S, Waxer JF, Clark D, Cheng J, Chlebik A, Erdreich-Epstein A, Krieger MD, Tamrazi B, Dhall G, Finlay JL, Chang EL. Re-irradiation of Recurrent Pineal Germ Cell Tumors with Radiosurgery: Report of Two Cases and Review of Literature. Cureus 2016; 8:e585. [PMID: 27239400 PMCID: PMC4882159 DOI: 10.7759/cureus.585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary intracranial germ cell tumors are rare, representing less than 5% of all central nervous system tumors. Overall, the majority of germ cell tumors are germinomas and approximately one-third are non-germinomatous germ cell tumors (NGGCT), which include teratoma, embryonal carcinoma, yolk sac tumor (endodermal sinus tumor), choriocarcinoma, or mixed malignant germ cell tumor. Germ cell tumors may secrete detectable levels of proteins into the blood and/or cerebrospinal fluid, and these proteins can be used for diagnostic purposes or to monitor tumor recurrence. Germinomas have long been known to be highly curable with radiation therapy alone. However, many late effects of whole brain or craniospinal irradiation have been well documented. Strategies have been developed to reduce the dose and volume of radiation therapy, often in combination with chemotherapy. In contrast, patients with NGGCT have a poorer prognosis, with about 60% cured with multimodality chemoradiation. There are no standard approaches for relapsed germ cell tumors. Options may be limited by prior treatment. Radiation therapy has been utilized alone or in combination with chemotherapy or high-dose chemotherapy and transplant. We discuss two cases and review options for frameless radiosurgery or fractionated radiotherapy.
Collapse
Affiliation(s)
- Kenneth Wong
- Department of Radiation Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | - Arthur J Olch
- Department of Radiation Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Sean All
- College of Medicine, University of Central Florida College of Medicine, Orlando, FL
| | - Jonathan F Waxer
- School of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Desirae Clark
- Radiation Oncology Program, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA
| | - Justine Cheng
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA
| | - Alisha Chlebik
- Radiation Oncology Program, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA
| | - Anat Erdreich-Epstein
- Neuro-Oncology Program, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA ; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Mark D Krieger
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Benita Tamrazi
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Girish Dhall
- Pediatric Neuro-Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jonathan L Finlay
- Pediatric Neuro-Oncology, The Ohio State University, Nationwide Children's Hospital
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|