1
|
Glavin CC, Dhar S. The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review. J Assoc Res Otolaryngol 2024:10.1007/s10162-024-00969-8. [PMID: 39592507 DOI: 10.1007/s10162-024-00969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.
Collapse
Affiliation(s)
- Courtney Coburn Glavin
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA.
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA
- Knowles Hearing Center, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Shera CA. Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli. J Assoc Res Otolaryngol 2024; 25:91-102. [PMID: 38409555 PMCID: PMC11018600 DOI: 10.1007/s10162-024-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
At the 2004 Midwinter Meeting of the Association for Research in Otolaryngology, Glenis Long and her colleagues introduced a method for measuring distortion-product otoacoustic emissions (DPOAEs) using primary-tone stimuli whose instantaneous frequencies vary continuously with time. In contrast to standard OAE measurement methods, in which emissions are measured in the sinusoidal steady state using discrete tones of well-defined frequency, the swept-tone method sweeps across frequency, often at rates exceeding 1 oct/s. The resulting response waveforms are then analyzed using an appropriate filter (e.g., by least-squares fitting). Although introduced as a convenient way of studying DPOAE fine structure by separating the total OAE into distortion and reflection components, the swept-tone method has since been extended to stimulus-frequency emissions and has proved an efficient and valuable tool for probing cochlear mechanics. One day-a long time coming-swept tones may even find their way into the audiology clinic.
Collapse
Affiliation(s)
- Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Naghibolhosseini M. The Effect of Stimuli Level on Distortion Product Otoacoustic Emission in Normal Hearing Adults. ACOUSTICS (BASEL, SWITZERLAND) 2023; 5:72-86. [PMID: 36815944 PMCID: PMC9930411 DOI: 10.3390/acoustics5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The goal of this study is to compare three of the most commonly used primary-level relation paradigms (i.e., Scissors, Boys Town 'Optimal', and Equal-Level) in generation of distortion product otoacoustic emissions (DPOAEs) in normal hearing adults. The generator and reflection components were extracted from DPOAEs in each paradigm. The generator and reflection component levels and input/output (I/O) functions were compared across paradigms and primary-tone levels. The results showed a different I/O function growth behavior across frequency and levels among paradigms. The Optimal paradigm showed a systematic change in the generator and reflection component levels and I/O slopes across primary levels among subjects. Moreover, the levels and slopes in the Optimal paradigm were more distinct across levels with less variations across frequency leading to a systematic change in the DPOAE fine structure across levels. The I/O functions were found to be more sensitive to the selected paradigm; especially the I/O function for the reflection component. The I/O functions of the reflection components showed large variability across frequencies due to different frequency shifts in their microstructure depending on the paradigm. The findings of this study suggested the Optimal paradigm as the proper primary-level relation to study cochlear amplification/compression. The findings of this study shows that care needs to be taken in comparing the findings of different studies that generated DPOAEs with a different level-relation paradigm.
Collapse
Affiliation(s)
- Maryam Naghibolhosseini
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
4
|
Abdala C, Luo P, Shera CA. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. J Assoc Res Otolaryngol 2022; 23:647-664. [PMID: 35804277 PMCID: PMC9613820 DOI: 10.1007/s10162-022-00857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Otoacoustic emissions (OAEs) arise from one (or a combination) of two basic generation mechanisms in the cochlea: nonlinear distortion and linear reflection. As a result of having distinct generation processes, these two classes of emissions may provide non-redundant information about hair-cell integrity and show distinct sensitivities to cochlear pathology. Here, we characterize the relationship between reflection and distortion emissions in normal hearers across a broad frequency and stimulus-level space using novel analysis techniques. Furthermore, we illustrate the promise of this approach in a small group of individuals with mild-moderate hearing loss. A "joint-OAE profile" was created by measuring interleaved swept-tone stimulus-frequency OAEs (SFOAEs) and 2f1-f2 distortion-product OAEs (DPOAEs) in the same ears using well-considered parameters. OAE spectra and input/output functions were calculated across five octaves. Using our specific recording protocol and analysis scheme, SFOAEs in normal hearers had higher levels than did DPOAEs, with the most pronounced differences occurring at the highest stimulus levels. Also, SFOAE compression occurred at higher stimulus levels (than did DPOAE compression) and its growth in the compressed region was steeper. The diagnostic implications of these findings and the influence of the measurement protocol on both OAEs (and on their relationship) are discussed.
Collapse
Affiliation(s)
- Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Luo
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
5
|
Bader K, Dierkes L, Braun LH, Gummer AW, Dalhoff E, Zelle D. Test-retest reliability of distortion-product thresholds compared to behavioral auditory thresholds. Hear Res 2021; 406:108232. [PMID: 33984603 DOI: 10.1016/j.heares.2021.108232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
When referred to baseline measures, serial monitoring of pure-tone behavioral thresholds and distortion-product otoacoustic emissions (DPOAEs) can be used to detect the progression of cochlear damage. Semi-logarithmic DPOAE input-output (I/O) functions enable the computation of estimated distortion-product thresholds (EDPTs) by means of linear regression, a metric that provides a quantitative estimate of hearing loss due to cochlear-amplifier degradation. DPOAE wave interference and a suboptimal choice of stimulus levels limit the accuracy of EDPTs. This work identifies the test-retest reliability of EDPTs derived from short-pulse DPOAE level maps (EDPTLM), a method that circumvents limitations associated with both wave interference and suboptimal choice of stimulus levels. The test-retest reliability was compared to that of EDPTs derived from semi-logarithmic I/O functions (EDPTI/O) and that of behavioral thresholds acquired with pure-tone audiometry (PTA) and modified Békésy tracking audiometry (TA) to provide a foundation for identifying and interpreting significant threshold shifts. The DPOAE-based auditory thresholds (EDPTLM and EDPTI/O) and behavioral thresholds (PTA and TA) were recorded seven times within three months at 14 frequencies with f2 = 1-14 kHz in 20 ears from ten subjects with normal hearing (4PTA0.5-4kHz < 20 dB HL). To obtain EDPTLM, short-pulse DPOAEs were recorded using 21 L1,L2 pairs. Reconstruction of DPOAE growth behavior as a function of L1 and L2 using nonlinear curve fitting enabled the derivation of EDPTLM for each frequency. Test-retest reliability was determined using three different approaches: 1) centered thresholds, 2) average threshold differences, and 3) average absolute threshold differences, between each possible test session (N = 21). Test-retest reliability based on centered thresholds and average threshold differences showed no statistically significant difference between EDPTLM, EDPTI/O, PTA, and TA for the pooled analysis incorporating all stimulus frequencies. Average absolute threshold differences presented small but significant differences in test-retest reliability with median values of 3.00 dB for PTA, 3.20 dB for TA, 3.34 dB for EDPTLM, and 3.51 dB for EDPTI/O. A considerable frequency dependence of test-retest reliability was found; namely, the highest test-retest reliability was for EDPTLM at f2 = 11 - 14 kHz. Otherwise, at lower frequencies, the highest test-retest reliability was for TA at f2 =1 - 2 kHz. Overall, the test-retest reliability of EDPTLM was better than that of EDPTI/O and was similar to that for behavioral thresholds. Hence, deriving EDPTLM from individual level maps is a promising and sensitive method for objectively monitoring the state of the cochlea. Furthermore, the detection of an equidirectional threshold change at a single frequency in both EDPTLM and TA might allow reducing the threshold shift as indication of a follow-up examination from the clinical standard of 10 dB down to 5 dB. This stricter indicator might be beneficial when monitoring cochlear damage, for example ototoxicity, in the presence of (remnant) cochlear amplification at baseline.
Collapse
Affiliation(s)
- Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Linda Dierkes
- Department of Otolaryngology, Head and Neck Surgery, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lore Helene Braun
- Department of Radiooncology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany; Current address: Department of Radiooncology, Marienhospital Stuttgart, Böheimstraße 37, 70199 Stuttgart, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Dennis Zelle
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; Current address: Redwave Medical GmbH, Hans-Knöll-Str. 6, 07745 Jena, Germany
| |
Collapse
|
6
|
Zelle D, Bader K, Dierkes L, Gummer AW, Dalhoff E. Derivation of input-output functions from distortion-product otoacoustic emission level maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3169. [PMID: 32486784 DOI: 10.1121/10.0001142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) emerge from the cochlea when elicited with two tones of frequencies f1 and f2. DPOAEs mainly consist of two components, a nonlinear-distortion and a coherent-reflection component. Input-output (I/O) functions of DPOAE pressure at the cubic difference frequency, fDP=2f1-f2, enable the computation of estimated distortion-product thresholds (EDPTs), offering a noninvasive approach to estimate auditory thresholds. However, wave interference between the DPOAE components and suboptimal stimulus-level pairs reduces the accuracy of EDPTs. Here, the amplitude P of the nonlinear-distortion component is extracted from short-pulse DPOAE time signals. DPOAE level maps representing the growth behavior of P in L1,L2 space are recorded for 21 stimulus-level pairs and 14 frequencies with f2=1 to 14 kHz (f2/f1=1.2) from 20 ears. Reproducing DPOAE growth behavior using a least-squares fit approach enables the derivation of ridge-based I/O functions from model level maps. Objective evaluation criteria assess the fit results and provide EDPTs, which correlate significantly with auditory thresholds (p < 0.001). In conclusion, I/O functions derived from model level maps provide EDPTs with high precision but without the need of predefined optimal stimulus-level pairs.
Collapse
Affiliation(s)
- Dennis Zelle
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn- Straße 5, 72076 Tübingen, Germany
| | - Linda Dierkes
- Department of Otolaryngology, Head and Neck Surgery, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn- Straße 5, 72076 Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Kreitmayer C, Marcrum SC, Picou EM, Steffens T, Kummer P. Subclinical conductive hearing loss significantly reduces otoacoustic emission amplitude: Implications for test performance. Int J Pediatr Otorhinolaryngol 2019; 123:195-201. [PMID: 31129459 DOI: 10.1016/j.ijporl.2019.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Distortion product otoacoustic emissions (DPOAEs) are a time-efficient, non-invasive means of assessing the integrity of active inner ear mechanics. Unfortunately, the presence of even relatively minor conductive hearing loss (CHL) has been suggested to reduce the clinical utility of DPOAEs significantly. The primary aims of this study were to systematically evaluate the impact of CHL on DPOAE amplitude and to determine if ear-specific primary tone level manipulations can be used to mitigate CHL impact and recover DPOAE measurability. METHODS For 30 young adults (57 ears) with normal hearing, DPOAEs were obtained for f2 = 1-6 kHz. Observed DPOAE amplitudes were used to generate ear- and frequency-specific models with the primary tone levels, L1 and L2, as inputs and predicted DPOAE amplitude, LDP, as output. These models were then used to simulate the effect of CHL (0-15 dB), as well as L1 manipulations (0-15 dB), on DPOAE measurability. RESULTS Mean LDP for every CHL condition was significantly different from that for all other conditions (p = <.001), with a mean LDP attenuation of 8.7 dB for every 5 dB increase in CHL. Mean DPOAE measurability in response to a standard clinical stimulation paradigm of L1/L2 = 65/55 (dB SPL) was determined to be 99%, 84%, 37%, and 9% in the presence of 0, 5, 10, and 15 dB CHL, respectively. In the presence of 10 dB CHL, altering L1 resulted in an approximately 25% increase in DPOAE responses. CONCLUSION Subclinical CHL loss is sufficient to significantly impair DPOAE measurability in a meaningful proportion of otherwise healthy ears. However, through strategic alteration of primary tone levels, the clinician can mitigate CHL impact and at least partially recover DPOAE measurability.
Collapse
Affiliation(s)
- Christoph Kreitmayer
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Steven C Marcrum
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany.
| | - Erin M Picou
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Thomas Steffens
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Peter Kummer
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Filipović SA, Haggard MP, Spencer H, Trajković G. Contrasting Effects of Pressure Compensation on TEOAE and DPOAE in Children With Negative Middle Ear Pressure. Trends Hear 2019; 22:2331216518812251. [PMID: 30484386 PMCID: PMC6277756 DOI: 10.1177/2331216518812251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In children with normal cochlear acuity, middle ear fluid often abolishes otoacoustic emissions (OAEs), and negative middle ear pressure (NMEP) reduces them. No convincing evidence of beneficial pressure compensation on distortion product OAE (DPOAE) has yet been presented. Two studies aimed to document effects of NMEP on transient OAE (TEOAE) and DPOAE. In Study 1, TEOAE and DPOAE pass/fail responses were analyzed before and after pressure compensation in 50 consecutive qualifying referrals having NMEP from -100 to -299 daPa. Study 2 concentrated on DPOAE, recording both amplitude (distortion product amplitude) and signal-to-noise ratio (SNR) before and after pressure compensation. Of the 20 participants, 5 had both ears qualifying. An effect of compensation on meeting a pass criterion was present in TEOAE for both left and right ear data in Study 1 but not demonstrable in DPOAE. In Study 2, the distortion product amplitude compensation effect was marginal overall, and depended on recording frequency band. SNR values improved moderately after pressure compensation in the two (overlapping) sets of single-ear data. In the five cases with both ears qualifying, a stronger compensation effect size, over 3 dB, was seen. The absolute dependence of SNR on frequency was also strongly replicated, but in no analysis, the frequency × compensation interaction was significant. Independent of particular frequency range, the data support a limited SNR improvement in 2 to 3 dB for compensation in DPOAE, with slightly larger effects in ears giving SNRs between 0 dB and +6 dB, where pass/fail cutoffs would generally be located.
Collapse
Affiliation(s)
- Snezana A Filipović
- 1 Department of Audiology, Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, Belgrade, Serbia.,2 Department of Audiology, Mater Dei Hospital, Msida, Malta
| | | | | | - Goran Trajković
- 5 Institute of Medical Statistics and Informatics, University of Belgrade School of Medicine, Serbia
| |
Collapse
|
9
|
Lopez-Poveda EA, Johannesen PT, Pérez-González P, Blanco JL, Kalluri S, Edwards B. Predictors of Hearing-Aid Outcomes. Trends Hear 2019; 21:2331216517730526. [PMID: 28929903 PMCID: PMC5613846 DOI: 10.1177/2331216517730526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over 360 million people worldwide suffer from disabling hearing loss. Most of them can be treated with hearing aids. Unfortunately, performance with hearing aids and the benefit obtained from using them vary widely across users. Here, we investigate the reasons for such variability. Sixty-eight hearing-aid users or candidates were fitted bilaterally with nonlinear hearing aids using standard procedures. Treatment outcome was assessed by measuring aided speech intelligibility in a time-reversed two-talker background and self-reported improvement in hearing ability. Statistical predictive models of these outcomes were obtained using linear combinations of 19 predictors, including demographic and audiological data, indicators of cochlear mechanical dysfunction and auditory temporal processing skills, hearing-aid settings, working memory capacity, and pretreatment self-perceived hearing ability. Aided intelligibility tended to be better for younger hearing-aid users with good unaided intelligibility in quiet and with good temporal processing abilities. Intelligibility tended to improve by increasing amplification for low-intensity sounds and by using more linear amplification for high-intensity sounds. Self-reported improvement in hearing ability was hard to predict but tended to be smaller for users with better working memory capacity. Indicators of cochlear mechanical dysfunction, alone or in combination with hearing settings, did not affect outcome predictions. The results may be useful for improving hearing aids and setting patients’ expectations.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- 1 Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain.,2 Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Spain.,3 Departamento de Cirugía, Facultad de Medicina, University of Salamanca, Spain
| | - Peter T Johannesen
- 1 Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain.,2 Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Spain
| | - Patricia Pérez-González
- 1 Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain.,2 Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Spain
| | - José L Blanco
- 1 Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain
| | | | - Brent Edwards
- 4 Starkey Hearing Research Center, Berkeley, CA, USA
| |
Collapse
|
10
|
Marcrum SC, Steffens T, Zeman F, Kummer P. Wideband Absorbance and 226-Hz Tympanometry in the Prediction of Optimal Distortion Product Otoacoustic Emission Primary Tone Levels. Am J Audiol 2018; 27:614-622. [PMID: 30383179 DOI: 10.1044/2018_aja-18-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Distortion product otoacoustic emission (DPOAE) amplitude is sensitive to the primary tone level separation effective within the cochlea. Despite potential for middle ear sound transmission characteristics to affect this separation, no primary tone level optimization formula accounts for its influence. This study was conducted to determine if inclusion of ear- and frequency-specific immittance features improves primary tone level optimization formula performance beyond that achieved using a univariate, L2-based formula. METHOD For 30 adults with normal hearing, DPOAE, wideband absorbance, and 226-Hz tympanometry measures were completed. A mixed linear modeling technique, incorporating both primary tone and acoustic immittance features, was used to generate a multivariable formula for the middle ear-specific recommendation of primary tone level separations for f2 = 1-6 kHz. The accuracy with which L1OPT, or the L1 observed to maximize DPOAE level for each given L2, could be predicted using the multivariable formula was then compared with that of a traditional, L2-based univariate formula for each individual ear. RESULTS Use of the multivariable formula L1 = 0.47L2 + 2.40A + f2param + 38 [dB SPL] resulted in significantly more accurate L1OPT predictions than did the univariate formula L1 = 0.49L2 + 41 [dB SPL]. Although average improvement was small, meaningful improvements were identified within individual ears, especially for f2 = 1 and 6 kHz. CONCLUSION Incorporation of a wideband absorbance measure into a primary tone level optimization formula resulted in a minor average improvement in L1OPT prediction accuracy when compared with a traditional univariate optimization formula. Further research is needed to identify characteristics of ears that might disproportionately benefit from the additional measure.
Collapse
Affiliation(s)
- Steven C. Marcrum
- Department of Otolaryngology, University Hospital Regensburg, Germany
| | - Thomas Steffens
- Department of Otolaryngology, University Hospital Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, Germany
| | - Peter Kummer
- Department of Otolaryngology, University Hospital Regensburg, Germany
| |
Collapse
|
11
|
Rasetshwane DM, Raybine DA, Kopun JG, Gorga MP, Neely ST. Influence of Instantaneous Compression on Recognition of Speech in Noise with Temporal Dips. J Am Acad Audiol 2018; 30:16-30. [PMID: 30461387 DOI: 10.3766/jaaa.16165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND In listening environments with background noise that fluctuates in level, listeners with normal hearing can "glimpse" speech during dips in the noise, resulting in better speech recognition in fluctuating noise than in steady noise at the same overall level (referred to as masking release). Listeners with sensorineural hearing loss show less masking release. Amplification can improve masking release but not to the same extent that it does for listeners with normal hearing. PURPOSE The purpose of this study was to compare masking release for listeners with sensorineural hearing loss obtained with an experimental hearing-aid signal-processing algorithm with instantaneous compression (referred to as a suppression hearing aid, SHA) to masking release obtained with fast compression. The suppression hearing aid mimics effects of normal cochlear suppression, i.e., the reduction in the response to one sound by the simultaneous presentation of another sound. RESEARCH DESIGN A within-participant design with repeated measures across test conditions was used. STUDY SAMPLE Participants included 29 adults with mild-to-moderate sensorineural hearing loss and 21 adults with normal hearing. INTERVENTION Participants with sensorineural hearing loss were fitted with simulators for SHA and a generic hearing aid (GHA) with fast (but not instantaneous) compression (5 ms attack and 50 ms release times) and no suppression. Gain was prescribed using either an experimental method based on categorical loudness scaling (CLS) or the Desired Sensation Level (DSL) algorithm version 5a, resulting in a total of four processing conditions: CLS-GHA, CLS-SHA, DSL-GHA, and DSL-SHA. DATA COLLECTION All participants listened to consonant-vowel-consonant nonwords in the presence of temporally-modulated and steady noise. An adaptive-tracking procedure was used to determine the signal-to-noise ratio required to obtain 29% and 71% correct. Measurements were made with amplification for participants with sensorineural hearing loss and without amplification for participants with normal hearing. ANALYSIS Repeated-measures analysis of variance was used to determine the influence of within-participant factors of noise type and, for participants with sensorineural hearing loss, processing condition on masking release. Pearson correlational analysis was used to assess the effect of age on masking release for participants with sensorineural hearing loss. RESULTS Statistically significant masking release was observed for listeners with sensorineural hearing loss for 29% correct, but not for 71% correct. However, the amount of masking release was less than masking release for participants with normal hearing. There were no significant differences among the amplification conditions for participants with sensorineural hearing loss. CONCLUSIONS The results suggest that amplification with either instantaneous or fast compression resulted in similar masking release for listeners with sensorineural hearing loss. However, the masking release was less for participants with hearing loss than it was for those with normal hearing.
Collapse
Affiliation(s)
| | - David A Raybine
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Judy G Kopun
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Michael P Gorga
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| | - Stephen T Neely
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE
| |
Collapse
|
12
|
Rasetshwane DM, High RR, Kopun JG, Neely ST, Gorga MP, Jesteadt W. Influence of suppression on restoration of spectral loudness summation in listeners with hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2994. [PMID: 29857738 PMCID: PMC5962445 DOI: 10.1121/1.5038274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Loudness depends on both the intensity and spectrum of a sound. Listeners with normal hearing perceive a broadband sound as being louder than an equal-level narrowband sound because loudness grows nonlinearly with level and is then summed across frequency bands. This difference in loudness as a function of bandwidth is reduced in listeners with sensorineural hearing loss (SNHL). Suppression, the reduction in the cochlear response to one sound by the simultaneous presentation of another sound, is also reduced in listeners with SNHL. Hearing-aid gain that is based on loudness measurements with pure tones may fail to restore normal loudness growth for broadband sounds. This study investigated whether hearing-aid amplification that mimics suppression can improve loudness summation for listeners with SNHL. Estimates of loudness summation were obtained using measurements of categorical loudness scaling (CLS). Stimuli were bandpass-filtered noises centered at 2 kHz with bandwidths in the range of 0.1-6.4 kHz. Gain was selected to restore normal loudness based on CLS measurements with pure tones. Gain that accounts for both compression and suppression resulted in better restoration of loudness summation, compared to compression alone. However, restoration was imperfect, suggesting that additional refinements to the signal processing and gain-prescription algorithms are needed.
Collapse
Affiliation(s)
- Daniel M Rasetshwane
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Robin R High
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Judy G Kopun
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Stephen T Neely
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Michael P Gorga
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Walt Jesteadt
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
13
|
Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions. Ear Hear 2017; 38:391-398. [DOI: 10.1097/aud.0000000000000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Marcrum SC, Kummer P, Kreitmayer C, Steffens T. Average optimal DPOAE primary tone levels in normal-hearing adults. Int J Audiol 2016; 55:325-32. [DOI: 10.3109/14992027.2016.1143979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Steven C. Marcrum
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany,
- Department of Electrical Engineering and Informatics, Technical University of Munich, Munich, Germany, and
| | - Peter Kummer
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany,
| | | | - Thomas Steffens
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany,
| |
Collapse
|
15
|
Zelle D, Thiericke JP, Dalhoff E, Gummer AW. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3475-90. [PMID: 26723305 DOI: 10.1121/1.4936860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) emerge when presenting two primary tones with different frequencies f1 and f2 to the cochlea and are commonly used in diagnosis and research to evaluate the functional state of the cochlea. Optimal primary-tone stimulus levels accounting for the different level dependencies of the traveling-wave amplitudes of the two primary tones near the f2-tonotopic place on the basilar membrane are often used to maximize DPOAE amplitudes. However, parameters defining the optimal levels can be affected by wave interference between the nonlinear-distortion and coherent-reflection components of the DPOAE. Here, the components were separated in the time domain using a pulsed stimulus paradigm and optimal levels determined. Based on the amplitude dependence of the nonlinear-distortion components on primary-tone stimulus levels, level parameters yielding maximum DPOAE amplitudes were derived for six normal-hearing adults and compared to data recorded with continuous two-tone stimulation. The level parameters resulting from analysis of the nonlinear-distortion components show dependence on stimulus frequency and small standard deviations. DPOAE input/output functions derived for optimal levels exhibit larger slopes, wider dynamic range and less variability across subjects than those derived for conventional stimulus and analysis conditions, potentially increasing their reliability and sensitivity for assessing cochlea function.
Collapse
Affiliation(s)
- Dennis Zelle
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - John P Thiericke
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Christensen AT, Ordoñez R, Hammershøi D. Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:679-689. [PMID: 25698003 DOI: 10.1121/1.4906157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Active amplifiers within the cochlea generate, as a by-product of their function, distortion-product otoacoustic emissions (DPOAEs) in response to specific two-tone stimuli. Focus has been on invoking emissions in a mid-frequency range from ∼0.5 to 4 kHz. The present study investigates stimulus parameters of the DPOAE at 2f1-f2 frequencies below 0.5 kHz. Eighteen out of 21 young human adults screened had audiometrically normal hearing for inclusion in the experiment. DPOAEs were measured with pure-tone stimuli in four configurations: f2 fixed around 2.13 kHz, f2 fixed around 0.53 kHz, 2f1-f2 fixed at 1.23 kHz and 0.25 kHz. Eight stimulus ratios, f2/f1, and three stimulus sound pressure levels, L1/L2, were measured in each configuration. Trends in ratio-magnitude responses for the mid-frequency DPOAE agree with those reported in previous literature. DPOAEs are not limited to distortion frequencies >0.5 kHz, but the stimulus ratio invoking the largest DPOAE in the mid-frequency range does not do so in the low-frequency range. Guiding the ratio according to the equivalent rectangular bandwidth of auditory filters maintains the DPOAE level.
Collapse
Affiliation(s)
- Anders T Christensen
- Acoustics, Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| | - Rodrigo Ordoñez
- Acoustics, Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| | - Dorte Hammershøi
- Acoustics, Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Pérez-González P, Johannesen PT, Lopez-Poveda EA. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends Hear 2014; 19:19/0/2331216514564253. [PMID: 25534365 PMCID: PMC4299367 DOI: 10.1177/2331216514564253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The temporal masking curve (TMC) method is a behavioral technique for inferring human cochlear compression. The method relies on the assumptions that in the absence of compression, forward-masking recovery is independent of masker level and probe frequency. The present study aimed at testing the validity of these assumptions. Masking recovery was investigated for eight listeners with sensorineural hearing loss carefully selected to have absent or nearly absent distortion product otoacoustic emissions. It is assumed that for these listeners basilar membrane responses are linear, hence that masking recovery is independent of basilar membrane compression. TMCs for probe frequencies of 0.5, 1, 2, 4, and 6 kHz were available for these listeners from a previous study. The dataset included TMCs for masker frequencies equal to the probe frequencies plus reference TMCs measured using a high-frequency probe and a low, off-frequency masker. All of the TMCs were fitted using linear regression, and the resulting slope and intercept values were taken as indicative of masking recovery and masker level, respectively. Results for on-frequency TMCs suggest that forward-masking recovery is generally independent of probe frequency and of masker level and hence that it would be reasonable to use a reference TMC for a high-frequency probe to infer cochlear compression at lower frequencies. Results further show, however, that reference TMCs were sometimes shallower than corresponding on-frequency TMCs for identical probe frequencies, hence that compression could be overestimated in these cases. We discuss possible reasons for this result and the conditions when it might occur.
Collapse
Affiliation(s)
- Patricia Pérez-González
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Lisowska G, Namyslowski G, Orecka B, Misiolek M. Influence of aging on medial olivocochlear system function. Clin Interv Aging 2014; 9:901-14. [PMID: 24959071 PMCID: PMC4061140 DOI: 10.2147/cia.s61934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is still controversy regarding the influence of aging on medial olivocochlear (MOC) system function. The main objective of this study is to measure age-related changes of MOC system function in people with normal hearing thresholds. METHOD Bilateral assessment of the MOC effect for click-evoked otoacoustic emissions (CEOAEs; at 70±3 dB peak sound pressure level [pSPL], click at 50/second, 260 repeats, 2.5-20 millisecond window) and for distortion product otoacoustic emissions (DPOAEs; with [frequencies] f2/f1=1.22, [levels of primary tones] L1=65 dB SPL and L2=55 dB SPL; DP-grams for 2f1-f2 were collected for the f1 frequencies varying from 977 Hz to 5,164 kHz, with the resolution of four points per octave) was performed in a group of 146 (n=292 ears) healthy, right-handed subjects aged from 10-60 years with a bilateral hearing threshold from 0.25-4.0 kHz, not exceeding 20 dB hearing level; normal tympanograms; and a threshold of the contralateral stapedial reflex for broadband noise (BBN) of 75 dB SPL or higher. The MOC inhibition was assessed on the basis of changes in OAE level during BBN contralateral stimulation at 50 dB sensation level (mean, 65±3 dB SPL). RESULTS Comparative analysis of the MOC effect for CEOAE and DPOAE showed the weakest effect in the oldest age group (41-60 years) at almost all tested frequencies. Moreover, a weak, albeit significant, positive correlation between the level of OAE and the size of the MOC effect was documented. CONCLUSION On the basis of our study, we have found a decrease in the strength of the MOC system with increasing age in normally hearing subjects, as reflected by a decrease of the OAE suppression effects in older individuals and an increase of the number of CEOAE and DPOAE enhancements during contralateral acoustic stimulation in the elderly, especially in the high-frequency range.
Collapse
Affiliation(s)
- Grażyna Lisowska
- Department of Otolaryngology, Medical University of Silesia, Zabrze, Poland
| | | | - Boguslawa Orecka
- Department of Otolaryngology, Medical University of Silesia, Zabrze, Poland
| | - Maciej Misiolek
- Department of Otolaryngology, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
19
|
Johnson TA, Beshaler L. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1121-33. [PMID: 23927112 PMCID: PMC3745488 DOI: 10.1121/1.4812766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
The present study evaluated the influence of suppressor frequency (fs) and level (Ls) on stimulus-frequency otoacoustic emissions (SFOAEs) recorded using the amplitude-modulated (AM) suppressor technique described by Neely et al. [J. Acoust. Soc. Am. 118, 2124-2127 (2005a)]. Data were collected in normal-hearing subjects, with data collection occurring in two phases. In phase 1, SFOAEs were recorded with probe frequency (fp) = 1, 2, and 4 kHz and probe levels (Lp) ranging from 0 to 60 dB sound pressure level (SPL). At each fp, Ls ranged from Ls = Lp to Ls = Lp + 30 dB. Additionally, nine relationships between fs and fp were evaluated, ranging from fs/fp = 0.80 to fs/fp = 1.16. Results indicated that for low suppressor levels, suppressors higher in frequency than fp (fs > fp) resulted in higher AM-SFOAE levels than suppressors lower in frequency than fp (fs < fp). At higher suppressor levels, suppressors both higher and lower in frequency than fp produced similar AM-SFOAE levels, and, in many cases, low-frequency suppressors produced the largest response. Recommendations for stimulus parameters that maximize AM-SFOAE level were derived from these data. In phase 2, AM-SFOAEs were recorded using these parameters for fp = 0.7-8 kHz and Lp = 20-60 dB SPL. Robust AM-SFOAE responses were recorded in this group of subjects using the parameters developed in phase 1.
Collapse
Affiliation(s)
- Tiffany A Johnson
- University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
20
|
Rasetshwane DM, Neely ST, Kopun JG, Gorga MP. Relation of distortion-product otoacoustic emission input-output functions to loudness. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:369-83. [PMID: 23862814 PMCID: PMC3724751 DOI: 10.1121/1.4807560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 03/21/2013] [Accepted: 04/26/2013] [Indexed: 05/25/2023]
Abstract
The aim of this study is to further explore the relationship between distortion-product otoacoustic emission (DPOAE) measurements and categorical loudness scaling (CLS) measurements using multiple linear regression (MLR) analysis. Recently, Thorson et al. [J. Acoust. Soc. Am. 131, 1282-1295 (2012)] obtained predictions of CLS loudness ratings from DPOAE input/output (I/O) functions using MLR analysis. The present study extends that work by (1) considering two different (and potentially improved) MLR models, one for predicting loudness rating at specified input level and the other for predicting the input level for each loudness category and (2) validating the new models' predictions using an independent set of data. Strong correlations were obtained between predicted and measured data during the validation process with overall root-mean-square errors in the range 10.43-16.78 dB for the prediction of CLS input level, supporting the view that DPOAE I/O measurements can predict CLS loudness ratings and input levels, and thus may be useful for fitting hearing aids.
Collapse
Affiliation(s)
- Daniel M Rasetshwane
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | |
Collapse
|
21
|
Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. Ear Hear 2013; 33:e44-58. [PMID: 22885407 DOI: 10.1097/aud.0b013e31825f9d89] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. DESIGN Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. RESULTS Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. CONCLUSIONS These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values.
Collapse
|
22
|
Birkholz C, Gruhlke A, Neely ST, Kopun J, Tan H, Jesteadt W, Schmid KK, Gorga MP. Growth of suppression using distortion-product otoacoustic emission measurements in hearing-impaired humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:3305-3318. [PMID: 23145614 PMCID: PMC3505206 DOI: 10.1121/1.4754526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 05/31/2023]
Abstract
Growth of distortion-product otoacoustic emission suppression was measured in 65 subjects with mild-to-moderate sensorineural hearing loss (HI). Measurements were made at four probe frequencies (f(2)) and up to five L(2) levels. Eleven suppressor frequencies (f(3)) were used for each f(2), L(2) combination. These data were compared to data from normal-hearing (NH) subjects (Gorga et al., 2011a). In both NH and HI subjects, growth of suppression depended on the relation between f(2) and f(3), such that the slope was close to one when f(3) ≈ f(2), steeper than one when f(3) < f(2), and shallower than one when f(3) > f(2). Differences in growth of suppression between NH and HI subjects were not observed for fixed f(2), L(2) combinations, however large differences were observed in suppressor "threshold" when compared at the same probe sensation level (dB SL). Smaller group differences were observed when compared at the same probe sound-pressure level (dB SPL). Therefore, the extent of these differences depended on how probe level (L(2)) was specified. When the results from NH and HI subjects are compared with each other and with psychophysical studies of masking, differences are observed that have implications for the remediation of mild-to-moderate hearing loss.
Collapse
Affiliation(s)
- Cori Birkholz
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Thorson MJ, Kopun JG, Neely ST, Tan H, Gorga MP. Reliability of distortion-product otoacoustic emissions and their relation to loudness. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:1282-95. [PMID: 22352502 PMCID: PMC3292604 DOI: 10.1121/1.3672654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 05/25/2023]
Abstract
The reliability of distortion-product otoacoustic emission (DPOAE) measurements and their relation to loudness measurements was examined in 16 normal-hearing subjects and 58 subjects with hearing loss. The level of the distortion product (L(d)) was compared across two sessions and resulted in correlations that exceeded 0.90. The reliability of DPOAEs was less when parameters from nonlinear fits to the input/output (I/O) functions were compared across visits. Next, the relationship between DPOAE I/O parameters and the slope of the low-level portion of the categorical loudness scaling (CLS) function (soft slope) was assessed. Correlations of 0.65, 0.74, and 0.81 at 1, 2, and 4 kHz were observed between CLS soft slope and combined DPOAE parameters. Behavioral threshold had correlations of 0.82, 0.83, and 0.88 at 1, 2, and 4 kHz with CLS soft slope. Combining DPOAEs and behavioral threshold provided little additional information. Lastly, a multivariate approach utilizing the entire DPOAE I/O function was used to predict the CLS rating for each input level (dB SPL). Standard error of the estimate when using this method ranged from 2.4 to 3.0 categorical units (CU), suggesting that DPOAE I/O functions can predict CLS measures within the CU step size used in this study (5).
Collapse
Affiliation(s)
- Megan J Thorson
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVES To determine whether an "optimal" distortion product otoacoustic emission (DPOAE) protocol that (1) used optimal stimulus levels and primary-frequency ratios for each f2, (2) simultaneously measured 2f2 - f1 and 2f1 - f2 distortion products, (3) controlled source contribution, (4) implemented improved calibration techniques, (5) accounted for the influence of middle ear reflectance, and (6) applied multivariate analyses to DPOAE data results in improved accuracy in differentiating between normal-hearing and hearing-impaired ears, compared with a standard clinical protocol. DESIGN Data were collected for f2 frequencies ranging from 0.75 to 8 kHz in 28 normal-hearing and 78 hearing-impaired subjects. The protocol included a control condition incorporating standard stimulus levels and primary-frequency ratios calibrated with a standard SPL method and three experimental conditions using optimized stimuli calibrated with an alternative forward pressure level method. The experimental conditions differed with respect to the level of the reflection-source suppressor tone and included conditions referred to as the null suppressor (i.e., no suppressor tone presented), low-level suppressor (i.e., suppressor tone presented at 58 dB SPL), and high-level suppressor (i.e., suppressor tone presented at 68 dB SPL) conditions. The area under receiver operating characteristic (A(ROC)) curves and sensitivities for fixed specificities (and vice versa) were estimated to evaluate test performance in each condition. RESULTS A(ROC) analyses indicated (1) improved test performance in all conditions using multivariate analyses, (2) improved performance in the null suppressor and low suppressor experimental conditions compared with the control condition, and (3) poorer performance below 4 kHz with the high-level suppressor. As expected from A(ROC), sensitivities for fixed specificities and specificities for fixed sensitivities were highest for the null suppressor and low suppressor conditions and lowest for standard clinical procedures. The influence of 2f2 - f1 and reflectance on test performance were negligible. CONCLUSIONS Predictions of auditory status based on DPOAE measurements in clinical protocols may be improved by the inclusion of (1) optimized stimuli, (2) alternative calibration techniques, (3) low-level suppressors, and (4) multivariate analyses.
Collapse
|
25
|
Rodriguez J, Neely ST. Temporal aspects of suppression in distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3082-3089. [PMID: 21568411 PMCID: PMC3108389 DOI: 10.1121/1.3575553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
This study examined the time course of cochlear suppression using a tone-burst suppressor to measure decrement of distortion-product otoacoustic emissions (DPOAEs). Seven normal-hearing subjects with ages ranging from 19 to 28 yr participated in the study. Each subject had audiometric thresholds ≤ 15 dB HL [re ANSI (2004) Specifications for Audiometers] for standard octave and inter-octave frequencies from 0.25 to 8 kHz. DPOAEs were elicited by primary tones with f(2) = 4.0 kHz and f(1) = 3.333 kHz (f(2)/f(1) = 1.2). For the f(2), L(2) combination, suppression was measured for three suppressor frequencies: One suppressor below f(2) (3.834 kHz) and two above f(2) (4.166 and 4.282 kHz) at three levels (55, 60, and 65 dB SPL). DPOAE decrement as a function of L(3) for the tone-burst suppressor was similar to decrements obtained with longer duration suppressors. Onset- and setoff- latencies were ≤ 4 ms, in agreement with previous physiological findings in auditory-nerve fiber studies that suggest suppression results from a nearly instantaneous compression of the waveform. Persistence of suppression was absent for the below-frequency suppressor (f(3) = 3.834 kHz) and was ≤ 3 ms for the two above-frequency suppressors (f(3) = 4.166 and 4.282 kHz).
Collapse
Affiliation(s)
- Joyce Rodriguez
- Starkey Hearing Research Center, 2150 Shattuck Avenue, Suite 408, Berkeley, California 94704, USA.
| | | |
Collapse
|
26
|
Richmond SA, Kopun JG, Neely ST, Tan H, Gorga MP. Distribution of standing-wave errors in real-ear sound-level measurements. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3134-3140. [PMID: 21568416 PMCID: PMC3108394 DOI: 10.1121/1.3569726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 05/26/2023]
Abstract
Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.
Collapse
Affiliation(s)
- Susan A Richmond
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
27
|
Gorga MP, Neely ST, Kopun J, Tan H. Growth of suppression in humans based on distortion-product otoacoustic emission measurements. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:801-6. [PMID: 21361439 PMCID: PMC3070999 DOI: 10.1121/1.3523287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) were used to describe suppression growth in normal-hearing humans. Data were collected at eight f(2) frequencies ranging from 0.5 to 8 kHz for L(2) levels ranging from 10 to 60 dB sensation level. For each f(2) and L(2) combination, suppression was measured for nine or eleven suppressor frequencies (f(3)) whose levels varied from -20 to 85 dB sound pressure level (SPL). Suppression grew nearly linearly when f(3) ≈ f(2), grew more rapidly for f(3) < f(2), and grew more slowly for f(3) > f(2). These results are consistent with physiological and mechanical data from lower animals, as well as previous DPOAE data from humans, although no previous DPOAE study has described suppression growth for as wide a range of frequencies and levels. These trends were evident for all f(2) and L(2) combinations; however, some exceptions were noted. Specifically, suppression growth rate was less steep as a function of f(3) for f(2) frequencies ≤ 1 kHz. Thus, despite the qualitative similarities across frequency, there were quantitative differences related to f(2), suggesting that there may be subtle differences in suppression for frequencies above 1 kHz compared to frequencies below 1 kHz.
Collapse
Affiliation(s)
- Michael P Gorga
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | |
Collapse
|
28
|
Bian L, Chen S. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:828-839. [PMID: 21361441 DOI: 10.1121/1.3531813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) were measured using sinusoidal amplitude modulation (AM) tones. When one of the primary stimuli (f(1) or f(2), f(1) < f(2)) was amplitude modulated, a series of changes in the cubic difference tone (CDT) were observed. In the frequency domain, multiple sidebands were present around the CDT and their sizes grew with the modulation depth of the AM stimulus. In the time domain, the CDT showed different modulation patterns between two major signal conditions: the AM tone was used as the f(1) or the f(2). The CDT amplitude followed the AM tone when the f(1) was amplitude modulated. However, when the AM tone acted as the f(2), the CDT showed a more complex modulation pattern with a notch present at the AM tone peak. The relatively linear dependence of CDT on f(1) and the nonlinear relation with f(2) can be explained with a variable gain-control model representing hair cell functions at the DPOAE generation site. It is likely that processing of AM signals at a particular cochlear location depends on whether the hair cells are tuned to the frequency of the carrier. Nonlinear modulation is related to on-frequency carriers and off-frequency carriers are processed relatively linearly.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, Department of Speech and Hearing Science, Arizona State University, 3430 Coor Hall, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
29
|
Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction. Ear Hear 2010; 31:546-54. [PMID: 20458245 DOI: 10.1097/aud.0b013e3181d86b59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Distortion-product otoacoustic emission (DPOAE) stimulus calibrations are typically performed in sound pressure level (SPL) before DPOAE measurements. These calibrations may yield unpredictable DPOAE response levels, presumably because of the presence of standing waves in the ear canal. Forward pressure level (FPL) has been proposed as an alternative method for stimulus calibration because it avoids complications due to standing waves. DPOAE thresholds after four FPL calibrations and one SPL calibration were compared with behavioral thresholds to determine which calibration results in data that yield the highest correlations between the two threshold estimates. DESIGN Fifty-two subjects with normal hearing and 103 subjects with hearing loss participated in this study, with ages ranging from 11 to 75 yr. These were the same individuals whose data were used to address the influence of calibration method on test performance in an accompanying article. DPOAE input/output (I/O) functions were obtained at f2 frequencies of 2, 3, 4, 6, and 8 kHz with the primary frequency ratio fixed at f2/f1 approximately 1.22. L(1) was set according to the equation L(1) = 0.4 L(2) + 39 with L(2) levels ranging from -20 to 70 dB SPL and FPL in 5-dB steps. I/O functions were obtained at each frequency for each of the five stimulus calibrations: SPL, daily FPL at room temperature, daily FPL at body temperature, reference FPL at room temperature, and reference FPL at body temperature. DPOAE thresholds were estimated using two methods. In the first method, DPOAE threshold was taken as the lowest L(2) for which DPOAE level is 3 dB or greater than the noise floor (signal- to-noise ratio > or =3 dB). In a second method, a linear regression method first described by Boege & Janssen (2002) and later adapted by Gorga et al. (2003), all DPOAE levels in each I/O function are converted to linear pressure and extrapolated to 0 microPa, at which the L(2) is taken as threshold. Correlations of DPOAE thresholds with behavioral thresholds were obtained for each frequency, calibration method, and threshold-prediction method. RESULTS Correlations were greatest for frequencies of 3 to 6 kHz and lowest for 8 kHz, consistent with previous frequency effects. Calibration method made little difference in correlations between DPOAE and behavioral thresholds at any frequency. A small difference was noted in correlations for the two threshold prediction methods, with the linear regression method yielding slightly higher correlations at all frequencies. CONCLUSIONS Little difference in threshold correlations was observed among the five calibration methods used to calibrate the stimuli before DPOAE measurements. These results were not anticipated, given the known effects of standing waves on ear-canal estimates of SPL at the plane of the probe. In addition, there was no effect of temperature (body versus room) or timing (daily versus reference) for FPL calibrations. It may be important to note that differences between SPL and FPL calibrations should not be seen if a standing wave does not occur at the plane of the probe at or near the frequency being tested. The frequencies (2 to 8 kHz) were chosen because it was expected that effects from standing waves would occur between these frequencies because of the typical lengths of ear canals for the age group tested. Because measurements were taken at only five discrete frequencies in the interval, it is possible that standing waves were present but did not affect the specific test frequencies. In total, these results suggest that SPL calibrations may be adequate when attempting to predict pure-tone thresholds from DPOAEs, despite the fact that they are known to be susceptible to errors associated with standing waves.
Collapse
|
30
|
Olzowy B, Deppe C, Arpornchayanon W, Canis M, Strieth S, Kummer P. Quantitative estimation of minor conductive hearing loss with distortion product otoacoustic emissions in the guinea pig. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1845-1852. [PMID: 20968357 DOI: 10.1121/1.3474898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Subclinical conductive hearing losses (CHLs) can affect otoacoustic emissions and therefore limit their potential in the assessment of the cochlear function. Theoretical considerations to estimate a minor CHL from DPOAE measurements [Kummer et al. (2006). HNO 54, 457-467] are evaluated experimentally. They are based on the fact, that the level difference of the stimulus tones L(1) and L(2) for optimal excitation of the inner ear is given by L(1)=aL(2)+b. A CHL is presumed to attenuate both L(1) and L(2) to the same extent such that excitation of the inner ear is no longer optimal. From the change of L(1) that is necessary to restore optimal excitation of the inner ear and thus to produce maximal DPOAE levels, the CHL can be estimated. In 10 guinea pig ears an experimental CHL was produced, quantified by determination of compound action potential (CAP) thresholds at 8 kHz (CHL(CAP)) and estimated from DPOAE measurements at 8 kHz (CHL(DPOAE)). CHLs up to 12 dB could be assessed. CHL(DPOAE) correlated well with CHL(CAP) (R=0.741, p=0.0142). Mean difference between CHL(DPOAE) and CHL(CAP) was 4.2±2.6 dB. Estimation of minor CHL from DPOAE measurements might help to increase the diagnostic value of DPOAEs.
Collapse
Affiliation(s)
- Bernhard Olzowy
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig Maximilians University of Munich Medical Center, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Burke SR, Rogers AR, Neely ST, Kopun JG, Tan H, Gorga MP. Influence of calibration method on distortion-product otoacoustic emission measurements: I. test performance. Ear Hear 2010; 31:533-45. [PMID: 20458246 PMCID: PMC2896442 DOI: 10.1097/aud.0b013e3181d86b3d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Calibration errors in distortion-product otoacoustic emission (DPOAE) measurements because of standing waves cause unpredictable changes in stimulus and DPOAE response level. The purpose of this study was to assess the extent to which these errors affect DPOAE test performance. Standard calibration procedures use sound pressure level (SPL) to determine specified levels. Forward pressure level (FPL) is an alternate calibration method that is less susceptible to standing waves. However, FPL derivation requires prior cavity measurements, which have associated variability. In an attempt to address this variability, four FPL methods were compared with SPL: a reference calibration derived from 25 measurements before all data collection and a daily calibration measurement, both of which were made at body and room temperature. DESIGN Data were collected from 52 normal-hearing and 103 hearing-impaired subjects. DPOAEs were measured for f2 frequencies ranging from 2 to 8 kHz in half-octave steps, with L2 ranging from -20 to 70 dB SPL (5-dB steps). At each f2, DPOAEs were measured in five calibration conditions: SPL, daily FPL at body temperature (daily body), daily FPL at room temperature (daily room), reference FPL at body temperature (ref body), and reference FPL at room temperature (ref room). Data were used to construct receiver operating characteristic (ROC) curves for each f2, calibration method, and L2. From these curves, areas under the ROC curve (AROC) were estimated. RESULTS The results of this study are summarized by the following observations: (1) DPOAE test performance was sensitive to stimulus level, regardless of calibration method, with the best test performance observed for moderate stimulus level conditions. (2) An effect of frequency was observed for all calibration methods, with the best test performance at 6 kHz and the worst performance at 8 kHz. (3) At clinically applicable stimulus levels, little difference in test performance among calibration methods was noted across frequencies, except at 8 kHz. At 8 kHz, FPL-based calibration methods provided superior performance compared with the standard SPL calibration. (4) A difference between FPL calibration methods was observed at 8 kHz, with the best test performance occurring for daily calibrations at body temperature. CONCLUSIONS With the exception of 8 kHz, there was little difference in test performance across calibration methods. At 8 kHz, AROCs and specificities for fixed sensitivities indicate that FPL-based calibration methods provide superior performance compared with the standard SPL calibration for clinically relevant levels. Temperature may have an impact on FPL calculations relative to DPOAE test performance. Although the differences in AROC among calibration procedures were not statistically significant, the present results indicate that standing wave errors may impact DPOAE test performance and can be reduced by using FPL, although the largest effects were restricted to 8 kHz.
Collapse
Affiliation(s)
- Sienna R. Burke
- University of Maryland, College Park, MD
- Boys Town National Research Hospital, Omaha, NE
| | - Abigail R. Rogers
- Indiana University, Bloomington, IN
- Boys Town National Research Hospital, Omaha, NE
| | | | | | | | | |
Collapse
|
32
|
Johannesen PT, Lopez-Poveda EA. Correspondence between behavioral and individually "optimized" otoacoustic emission estimates of human cochlear input/output curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3602-3613. [PMID: 20550260 DOI: 10.1121/1.3377087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Previous studies have shown a high within-subject correspondence between distortion product otoacoustic emission (DPOAE) input/output (I/O) curves and behaviorally inferred basilar membrane (BM) I/O curves for frequencies above approximately 2 kHz. For lower frequencies, DPOAE I/O curves contained notches and plateaus that did not have a counterpart in corresponding behavioral curves. It was hypothesized that this might improve by using individualized optimal DPOAE primary levels. Here, data from previous studies are re-analyzed to test this hypothesis by comparing behaviorally inferred BM I/O curves and DPOAE I/O curves measured with well-established group-average primary levels and two individualized primary level rules: one optimized to maximize DPOAE levels and one intended for primaries to evoke comparable BM responses at the f(2) cochlear region. Test frequencies were 0.5, 1, and 4 kHz. Behavioral I/O curves were obtained from temporal (forward) masking curves. Results showed high within-subject correspondence between behavioral and DPOAE I/O curves at 4 kHz only, regardless of the primary level rule. Plateaus and notches were equally common in low-frequency DPOAE I/O curves for individualized and group-average DPOAE primary levels at 0.5 and 1 kHz. Results are discussed in terms of the adequacy of DPOAE I/O curves for inferring individual cochlear nonlinearity characteristics.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
33
|
Liu YW, Neely ST. Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:2420-2432. [PMID: 20370025 PMCID: PMC2865700 DOI: 10.1121/1.3337233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 05/29/2023]
Abstract
A model of cochlear mechanics is described in which force-producing outer hair cells (OHC) are embedded in a passive cochlear partition. The OHC mechanoelectrical transduction current is nonlinearly modulated by reticular-lamina (RL) motion, and the resulting change in OHC membrane voltage produces contraction between the RL and the basilar membrane (BM). Model parameters were chosen to produce a tonotopic map typical of a human cochlea. Time-domain simulations showed compressive BM displacement responses typical of mammalian cochleae. Distortion product (DP) otoacoustic emissions at 2f(1)-f(2) are plotted as isolevel contours against primary levels (L(1),L(2)) for various primary frequencies f(1) and f(2) (f(1)<f(2)). The L(1) at which the DP reaches its maximum level increases as L(2) increases, and the slope of the "optimal" linear path decreases as f(2)/f(1) increases. When primary levels and f(2) are fixed, DP level is band passed against f(1). In the presence of a suppressor, DP level generally decreases as suppressor level increases and as suppressor frequency gets closer to f(2); however, there are exceptions. These results, being similar to data from human ears, suggest that the model could be used for testing hypotheses regarding DP generation and propagation in human cochleae.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
34
|
Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions. Ear Hear 2010; 31:74-83. [PMID: 19701088 DOI: 10.1097/aud.0b013e3181b71924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine whether new stimulus parameters, which have been shown to produce large distortion-product otoacoustic emission (DPOAE) levels in a group of normal-hearing listeners (Neely et al. 2005; Johnson et al. 2006), result in more accurate identification of auditory status and more accurate predictions of behavioral threshold than traditional stimulus conditions. DESIGN DPOAE input/output (I/O) functions for eight f2 frequencies ranging from 0.7 to 8 kHz were recorded from 96 ears with normal hearing and 226 ears with sensorineural hearing losses ranging from mild to profound. The primary-level differences and primary-frequency ratios were set according to the stimulus relations developed by Johnson et al. (2006). The accuracy of the dichotomous decision task (area under the relative operating characteristic curve [AROC]) for these new stimulus conditions was evaluated as a function of L2 and was compared with previous reports in the literature where traditional stimuli were used (Stover et al. 1996). Here, traditional stimuli are defined as L1 = L2 + 10 and f2/f1 = 1.22 for all L2 and f2 values. In addition to I/O functions, DPgrams with L2 = 55-dB sound pressure level (SPL) and f2 ranging from 0.7 to 8 kHz were recorded for each subject using the traditional stimuli. This provided a direct within-subject comparison of AROC for moderate-level stimuli when the new and traditional stimuli were used. Finally, the accuracy with which DPOAE thresholds predicted behavioral thresholds was evaluated in relation to previous reports in the literature for two definitions of DPOAE threshold, one where the entire I/O function was used to make the prediction and a second where the lowest L2 producing a signal to noise ratio > or =3 dB was used. RESULTS There was no evidence that the new stimuli improved the accuracy with which auditory status was identified from DPOAE responses. With both the new and traditional stimuli, moderate stimulus levels (L2 = 40- to 55-dB SPL) resulted in the most accurate identification of auditory status. When L2 = 55-dB SPL, the new stimuli produced AROC values that were equivalent to those observed with traditional stimuli. The new stimuli resulted in more accurate prediction of behavioral threshold for several f2 values when using the entire I/O function, although the effect was small. Furthermore, using the entire I/O function to predict behavioral threshold results in more accurate predictions of behavioral threshold than using the signal to noise ratio definition, although this approach can be applied to a smaller percentage of ears. CONCLUSIONS The new stimuli that had been shown previously to produce large DPOAE levels in normal-hearing listeners (Neely et al. 2005; Johnson et al. 2006) do not result in more accurate identification of auditory status and have only a small positive effect on the prediction of behavioral threshold.
Collapse
|
35
|
Lopez-Poveda EA, Johannesen PT, Merchán MA. Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860802622491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent. J Assoc Res Otolaryngol 2009; 10:511-23. [PMID: 19526267 DOI: 10.1007/s10162-009-0176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022] Open
Abstract
When two pure tones (or primaries) of slightly different frequencies (f (1) and f (2)) are presented to the ear, new frequency components are generated by nonlinear interaction of the primaries within the cochlea. These new components can be recorded in the ear canal as otoacoustic emissions (OAE). The level of the 2f (1)-f (2) OAE component is known as the distortion product otoacoustic emission (DPOAE) and is regarded as an indicator of the physiological state of the cochlea. The current view is that maximal level DPOAEs occur for primaries that produce equal excitation at the f (2) cochlear region, but this notion cannot be directly tested in living humans because it is impossible to record their cochlear responses while monitoring their ear canal DPOAE levels. On the other hand, it has been claimed that the temporal masking curve (TMC) method of inferring human basilar membrane responses allows measurement of the levels of equally effective pure tones at any given cochlear site. The assumptions of this behavioral method, however, lack firm physiological support in humans. Here, the TMC method was applied to test the current notion on the conditions that maximize DPOAE levels in humans. DPOAE and TMC results were mutually consistent for frequencies of 1 and 4 kHz and for levels below around 65 dB sound pressure level. This match supports the current view on the generation of maximal level DPOAEs as well as the assumptions of the behavioral TMC method.
Collapse
|
37
|
Stuart A, Passmore AL, Culbertson DS, Jones SM. Test-retest reliability of low-level evoked distortion product otoacoustic emissions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2009; 52:671-681. [PMID: 18952856 DOI: 10.1044/1092-4388(2008/08-0118)] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PURPOSE The purpose of this study was to examine test-retest reliability of low-level evoked distortion product otoacoustic emissions (DPOAEs) as a function of L(1), L(2) level; f(2) frequency; and test condition. A predictive relationship between these variables and the presence/absence of DPOAE responses was also examined. METHOD Sixteen normal-hearing young adults participated. DPOAEs were evoked to 12 tones with f(2) frequencies ranging from 1500 Hz to 7546 Hz at 4 L(2) levels between 45 dB SPL and 30 dB SPL. Four test conditions were employed: (a) initial test, (b) retest without probe removal, (c) retest with probe reinsertion, and (d) retest with probe reinsertion by a second tester. RESULTS L(1), L(2) level and f(2) frequency were statistically significant (p < .0001) predictors of a DPOAE response (i.e., the presence of a DPOAE response was more likely to be observed at higher L(1), L(2) levels and lower f(2) frequencies regardless of test condition). DPOAE levels were significantly affected by L(1), L(2) level and f(2) frequency (p < .0001) but not by test condition. Intra- and intertester test-retest differences were not significantly different. CONCLUSIONS The prevalence of missing responses coupled with large intersubject variability and intrasubject test-retest variability are a detriment to the clinical utility of DPOAEs evoked with low-level stimuli.
Collapse
Affiliation(s)
- Andrew Stuart
- Department of Communication Sciences and Disorders, College of Allied Health Sciences, Health Sciences Building, East Carolina University, Greenville, NC 27858-4353, USA.
| | | | | | | |
Collapse
|
38
|
Leme VN, Carvallo RMM. Efeito da estimulação acústica contralateral nas medidas temporais das emissões otoacústicas. REVISTA CEFAC 2009. [DOI: 10.1590/s1516-18462009005000008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: comparar o nível de resposta e o tempo de latência das emissões otoacústicas sem e com apresentação de ruído contralateral. MÉTODOS: foram avaliados 30 indivíduos, com idade entre 18 e 30 anos, sem queixas auditivas e com presença de emissões otoacústicas por produto de distorção. Analisou-se o nível de resposta e latência das emissões otoacústicas por meio do programa Latencygram, com e sem apresentação de ruído contralateral tipo "White noise". RESULTADOS: houve diminuição significante nos níveis de resposta das emissões otoacústicas com apresentação de ruído contralateral, confirmando o efeito de supressão relacionado com a ação do sistema eferente; contudo, não houve diferença significante nos valores de latência das emissões otoacústicas. CONCLUSÃO: o sistema eferente atua apenas na modulação dos níveis de resposta das emissões otoacústicas, contudo não interfere nas medidas temporais das mesmas.
Collapse
|
39
|
Bian L, Chen S. Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3739-3750. [PMID: 19206801 PMCID: PMC2676628 DOI: 10.1121/1.3001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 05/27/2023]
Abstract
Odd- and even-order distortion products (DPs), evoked by two primary tones (f(1),f(2),f(1)<f(2)), represent different aspects of cochlear nonlinearity. The cubic and quadratic difference tones (CDT 2f(1)-f(2) and QDT f(2)-f(1)) are prominent representatives of the odd and even DPs. Distortion product otoacoustic emissions (DPOAEs) were measured within a primary level (L(1),L(2)) space over a wide range of f(2)f(1) ratios to compare the optimal signal conditions for these DPs. For CDT, the primary level difference decreased as L(1) increased with a rate proportional to the f(2)f(1) ratio. Moreover, the optimal ratio increased with L(1). A set of two formulas is proposed to describe the optimal signal conditions. However, for a given level of a primary, increasing the other tone level could maximize the QDT amplitude. The frequency ratio at the maximal QDT was about 1.3 and quite constant across different primary levels. A notch was found in the QDT amplitude at the f(2)f(1) ratio of about 1.22-1.25. These opposite behaviors suggest that the optimal recording conditions are different for CDT and QDT due to the different aspects in the cochlear nonlinearity. Optimizing the DPOAE recordings could improve the reliability in clinical or research practices.
Collapse
Affiliation(s)
- Lin Bian
- Department of Speech and Hearing Science, Auditory Physiology Lab, Arizona State University, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
40
|
Johannesen PT, Lopez-Poveda EA. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2149-2163. [PMID: 19062855 DOI: 10.1121/1.2968692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim was to investigate the correlation between compression exponent, compression threshold, and cochlear gain for normal-hearing subjects as inferred from temporal masking curves (TMCs) and distortion-product otoacoustic emission (DPOAEs) input-output (I/O) curves. Care was given to reduce the influence of DPOAE fine structure on the DPOAE I/O curves. A high correlation between compression exponent estimates obtained with the two methods was found at 4 kHz but not at 0.5 and 1 kHz. One reason is that the DPOAE I/O curves show plateaus or notches that result in unexpectedly high compression estimates. Moderately high correlation was found between compression threshold estimates obtained with the two methods, although DPOAE-based values were around 7 dB lower than those based on TMCs. Both methods show that compression exponent and threshold are approximately constant across the frequency range from 0.5 to 4 kHz. Cochlear gain as estimated from TMCs was found to be approximately 16 dB greater at 4 than at 0.5 kHz. In conclusion, DPOAEs and TMCs may be used interchangeably to infer precise individual nonlinear cochlear characteristics at 4 kHz, but it remains unclear that the same applies to lower frequencies.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audicion Computacional y Psicoacustica, Instituto de Neurociencias de Castilla y Leon, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
41
|
Garner CA, Neely ST, Gorga MP. Sources of variability in distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:1054-1067. [PMID: 18681596 PMCID: PMC2561309 DOI: 10.1121/1.2939126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 05/26/2023]
Abstract
The goal of this study was to determine the extent to which the variability seen in distortion product otoacoustic emissions (DPOAEs), among ears with normal hearing, could be accounted for. Several factors were selected for investigation, including behavioral threshold, differences in middle-ear transmission characteristics either in the forward or the reverse direction, and differences in contributions from the distortion and reflection sources. These variables were assessed after optimizing stimulus parameters for individual ears at each frequency. A multiple-linear regression was performed to identify whether the selected variables, either individually or in combination, explained significant portions of variability in DPOAE responses. Behavioral threshold at the f(2) frequency and behavioral threshold squared at that same frequency explained the largest amount of variability in DPOAE level, compared to the other variables. The combined model explained a small, but significant, amount of variance in DPOAE level at five frequencies. A large amount of residual variability remained, even at frequencies where the model accounted for significant amounts of variance.
Collapse
Affiliation(s)
- Cassie A Garner
- The Department of Special Education and Communication Disorders, The University of Nebraska, 301 Barkley, Lincoln, Nebraska 68583, USA.
| | | | | |
Collapse
|
42
|
Gorga MP, Neely ST, Dierking DM, Kopun J, Jolkowski K, Groenenboom K, Tan H, Stiegemann B. Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:2172-90. [PMID: 18397024 PMCID: PMC2562758 DOI: 10.1121/1.2839138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 05/26/2023]
Abstract
Distortion product otoacoustic emission suppression (quantified as decrements) was measured for f(2)=500 and 4000 Hz, for a range of primary levels (L(2)), suppressor frequencies (f(3)), and suppressor levels (L(3)) in 19 normal-hearing subjects. Slopes of decrement-versus-L(3) functions were similar at both f(2) frequencies, and decreased as f(3) increased. Suppression tuning curves, constructed from decrement functions, were used to estimate (1) suppression for on- and low-frequency suppressors, (2) tip-to-tail differences, (3) Q(ERB), and (4) best frequency. Compression, estimated from the slope of functions relating suppression "threshold" to L(2) for off-frequency suppressors, was similar for 500 and 4000 Hz. Tip-to-tail differences, Q(ERB), and best frequency decreased as L(2) increased for both frequencies. However, tip-to-tail difference (an estimate of cochlear-amplifier gain) was 20 dB greater at 4000 Hz, compared to 500 Hz. Q(ERB) decreased to a greater extent with L(2) when f(2)=4000 Hz, but, on an octave scale, best frequency shifted more with level when f(2)=500 Hz. These data indicate that, at both frequencies, cochlear processing is nonlinear. Response growth and compression are similar at the two frequencies, but gain is greater at 4000 Hz and spread of excitation is greater at 500 Hz.
Collapse
Affiliation(s)
- Michael P Gorga
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Johnson TA, Neely ST, Kopun JG, Dierking DM, Tan H, Converse C, Kennedy E, Gorga MP. Distortion product otoacoustic emissions: cochlear-source contributions and clinical test performance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:3539-53. [PMID: 18247762 PMCID: PMC2489206 DOI: 10.1121/1.2799474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has been proposed that the clinical accuracy of distortion product otoacoustic emissions (DPOAEs) is affected by the interaction of distortion and reflection sources contributing to the response. This study evaluated changes in dichotomous-decision test performance and threshold-prediction accuracy when DPOAE source contribution was controlled. Data were obtained from 205 normal and impaired ears with L(2) ranging from 0 to 80 dB SPL and f(2)=2 and 4 kHz. Data were collected for control conditions (no suppressor, f(3)) and with f(3) presented at three levels that previously had been shown to reduce the reflection-source contribution. The results indicated that controlling source contribution with a suppressor did not improve diagnostic accuracy (as reflected by relative operating characteristic curve area) and frequently resulted in poorer test performance compared to control conditions. Likewise, correlations between DPOAE and behavioral thresholds were not strengthened when using the suppressors to control source contribution. While improvements in test accuracy were observed for a subset of subjects (normal ears with the smallest DPOAEs and impaired ears with the largest DPOAEs), the lack of improvement for the larger, unselected subject group suggests that DPOAEs should be recorded in the clinic without attempting to control the source contribution with a suppressor.
Collapse
|
44
|
Rhode WS. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2725-2737. [PMID: 18189565 DOI: 10.1121/1.2785034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.
Collapse
Affiliation(s)
- William S Rhode
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
45
|
Gorga MP, Neely ST, Dierking DM, Kopun J, Jolkowski K, Groenenboom K, Tan H, Stiegemann B. Low-frequency and high-frequency cochlear nonlinearity in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:1671. [PMID: 17927427 PMCID: PMC2440918 DOI: 10.1121/1.2751265] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Low- and high-frequency cochlear nonlinearity was studied by measuring distortion product otoacoustic emission input/output (DPOAE I/O) functions at 0.5 and 4 kHz in 103 normal-hearing subjects. Behavioral thresholds at both f2's were used to set L2 in dB SL for each subject. Primary levels were optimized by determining the L1 resulting in the largest L(dp) for each L2 for each subject and both f2's. DPOAE I/O functions were measured using L2 inputs from -10 dB SL (0.5 kHz) or -20 dB SL (4 kHz) to 65 dB SL (both frequencies). Mean DPOAE I/O functions, averaged across subjects, differed between the two frequencies, even when threshold was taken into account. The slopes of the I/O functions were similar at 0.5 and 4 kHz for high-level inputs, with maximum compression ratios of about 4:1. At both frequencies, the maximum slope near DPOAE threshold was approximately 1, which occurred at lower levels at 4 kHz, compared to 0.5 kHz. These results suggest that there is a wider dynamic range and perhaps greater cochlear-amplifier gain at 4 kHz, compared to 0.5 kHz. Caution is indicated, however, because of uncertainties in the interpretation of slope and because the confounding influence of differences in noise level could not be completely controlled.
Collapse
Affiliation(s)
- Michael P Gorga
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gorga MP, Dierking DM, Johnson TA, Beauchaine KL, Garner CA, Neely ST. A validation and potential clinical application of multivariate analyses of distortion-product otoacoustic emission data. Ear Hear 2006; 26:593-607. [PMID: 16377995 PMCID: PMC2586767 DOI: 10.1097/01.aud.0000188108.08713.6c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the generalizability of multivariate analyses of distortion-product otoacoustic emission (DPOAE) data. Previously published multivariate solutions were applied to a new set of data to determine if test-performance improvements, evident in previous reports, are retained. An additional objective was to provide an alternative approach for making multivariate dichotomous decisions of hearing status in the clinic, based on DPOAE measurements. DESIGN DPOAE level and noise were obtained in 345 ears of 187 subjects. Approximately one third of the subjects had normal hearing, whereas the remainder had hearing loss, ranging from 25 to more than 120 dB HL. DPOAE data were collected at each of nine frequencies. After data collection, clinical decision theory, in combination with univariate (DPOAE level and signal-to-noise ratio [SNR]) and multivariate (logistic regression) analyses, was used to construct relative operating characteristic (ROC) curves and to generate ROC curve areas. In addition, test performance was assessed by fixing the false-alarm rate and comparing different approaches to analyses in terms of their failure rates as a function of magnitude of hearing loss. The DPOAE test results were compared with either single-frequency or multifrequency gold standards. The multivariate solutions were taken from previously published work (Dorn et al., 1999; Gorga, et al., 1999). RESULTS DPOAE level and SNR resulted in roughly equivalent test performance (ROC curve areas and failure rates among ears with hearing loss), although DPOAE level performed better for frequencies above 1 kHz, and SNR performed better for frequencies at 0.75 and 1 kHz. Multivariate analyses resulted in better test performance for nearly all conditions, compared with the univariate approaches that used either DPOAE level or SNR. The improvements in test performance were greatest for the frequencies at which the univariate analyses performed poorest (0.75 kHz, 1 kHz, and 8 kHz). Less difference was observed between univariate and multivariate approaches when multifrequency gold standards were used; however, even for the multifrequency cases, multivariate analyses generally resulted in better performance. An approach that might facilitate the interpretation of multifrequency DPOAE measurements in the clinic is described. CONCLUSIONS Previously described multivariate analyses were robust in that they improved test performance when applied to an entirely new set of DPOAE data. This, in turn, suggests that the previously described multivariate solutions may have clinical utility in that they are expected to improve test performance at no additional cost in terms of data-acquisition or data-analysis time. In addition to demonstrating that these solutions generalized to new data, an alternative approach to interpreting multifrequency DPOAE measurements is provided that includes the advantages of using multivariate analyses. This new metric may be useful when DPOAEs are used for screening purposes.
Collapse
Affiliation(s)
- Michael P Gorga
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Withnell RH, Lodde J. In search of basal distortion product generators. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:2116-23. [PMID: 17069309 DOI: 10.1121/1.2338291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The 2f1-f2 distortion product otoacoustic emission (DPOAE) is thought to arise primarily from the complex interaction of components that come from two different cochlear locations. Such distortion has its origin in the nonlinear interaction on the basilar membrane of the excitation patterns resulting from the two stimulus tones, f1 and f2. Here we examine the spatial extent of initial generation of the 2f1-f2 OAE by acoustically traumatizing the base of the cochlea and so eliminating the contribution of the basal region of the cochlea to the generation of 2f1-f2. Explicitly, amplitude-modulated, or continuously varying in level, stimulus tones with f2/f1= 1.2 and f2 =8000-8940 Hz were used to generate the 2f1-f2 DPOAE in guinea pig before and after acoustically traumatizing the basal region of the cochlea (the origin of any basal-to-f2 distortion product generators). It was found, based on correlation analysis, that there does not appear to be a basal-to-f2 distortion product generation mechanism contributing significantly to the guinea pig 2f1-f2 OAE up to L1 = 80 dB sound pressure level (SPL).
Collapse
Affiliation(s)
- Robert H Withnell
- Department of Speech and Hearing Sciences, Indiana University, 200 South Jordan Avenue, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
48
|
Johnson TA, Neely ST, Kopun JG, Gorga MP. Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:3896-907. [PMID: 16838533 PMCID: PMC2536772 DOI: 10.1121/1.2200048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Distortion product otoacoustic emission (DPOAE) fine structure has been attributed to the interaction of two cochlear-source mechanisms (distortion and reflection sources). A suppressor presented near the 2f1-f2 frequency reduces the reflection-source contribution and, therefore, DPOAE fine structure. Optimal relationships between stimulus and suppressor conditions, however, have not been described. In this study, the relationship between suppressor level (L3) and stimulus level (L2) was evaluated to determine the L3 that was most effective at reducing fine structure. Subjects were initially screened to find individuals who produced DPOAE fine structure. A difference in the prevalence of fine structure in two frequency intervals was observed. At 2 kHz, 11 of 12 subjects exhibited fine structure, as compared to 5 of 22 subjects at 4 kHz. Only subjects demonstrating fine structure participated in subsequent measurements. DPOAE responses were evaluated in 1/3-octave intervals centered at 2 or 4 kHz, with 4 subjects contributing data at each interval. Multiple L3's were evaluated for each L2, which ranged from 20 to 80 dB SPL. The results indicated that one or more L3's at each L2 were roughly equally effective at reducing DPOAE fine structure. However, no single L3 was effective at all L2's in every subject.
Collapse
|
49
|
Johnson TA, Neely ST, Garner CA, Gorga MP. Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:418-28. [PMID: 16454296 PMCID: PMC2440916 DOI: 10.1121/1.2133714] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The combined influence of primary-level differences (L1-L2) and primary-frequency ratio (f2/f1) on distortion product otoacoustic emission (DPOAE) level was investigated in 20 normal-hearing subjects. DPOAEs were recorded with continuously varying stimulus levels [Neely et al. J. Acoust. Soc. Am. 117, 1248-1259 (2005)] for the following stimulus conditions: f2= 1, 2, 4, and 8 kHz and f2/f1=1.05 to 1.4; various L1-L2, including one individually optimized to produce the largest DPOAE. For broadly spaced primary frequencies at low L2 levels, the largest DPOAEs were recorded when L1 was much higher than L2, with L1 remaining relatively constant as L2 increased. As f2/fl decreased, the largest DPOAEs were observed when L1 was closer to L2 and increased as L2 increased. Optimal values for L1-L2 and f2 f1 were derived from these data. In general, average DPOAE levels for the new L1-L2 and f2/f1 were equivalent to or larger than those observed for other stimulus combinations, including the L1-L2 described by Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] and those defined by Neely et al. in which L1-L2 was evaluated, but f2/f1 was fixed at 1.2.
Collapse
|