1
|
Encina-Llamas G, Dau T, Epp B. On the use of envelope following responses to estimate peripheral level compression in the auditory system. Sci Rep 2021; 11:6962. [PMID: 33772043 PMCID: PMC7997911 DOI: 10.1038/s41598-021-85850-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Individual estimates of cochlear compression may provide complementary information to traditional audiometric hearing thresholds in disentangling different types of peripheral cochlear damage. Here we investigated the use of the slope of envelope following response (EFR) magnitude-level functions obtained from four simultaneously presented amplitude modulated tones with modulation frequencies of 80-100 Hz as a proxy of peripheral level compression. Compression estimates in individual normal hearing (NH) listeners were consistent with previously reported group-averaged compression estimates based on psychoacoustical and distortion-product oto-acoustic emission (DPOAE) measures in human listeners. They were also similar to basilar membrane (BM) compression values measured invasively in non-human mammals. EFR-based compression estimates in hearing-impaired listeners were less compressive than those for the NH listeners, consistent with a reduction of BM compression. Cochlear compression was also estimated using DPOAEs in the same NH listeners. DPOAE estimates were larger (less compressive) than EFRs estimates, showing no correlation. Despite the numerical concordance between EFR-based compression estimates and group-averaged estimates from other methods, simulations using an auditory nerve (AN) model revealed that compression estimates based on EFRs might be highly influenced by contributions from off-characteristic frequency (CF) neural populations. This compromises the possibility to estimate on-CF (i.e., frequency-specific or "local") peripheral level compression with EFRs.
Collapse
Affiliation(s)
- Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Bastian Epp
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Kates JM, Prabhu S. The dynamic gammawarp auditory filterbank. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1603. [PMID: 29604718 DOI: 10.1121/1.5027827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Auditory filterbanks are an integral part of many metrics designed to predict speech intelligibility and speech quality. Considerations in these applications include accurate reproduction of auditory filter shapes, the ability to reproduce the impact of hearing loss as well as normal hearing, and computational efficiency. This paper presents an alternative method for implementing a dynamic compressive gammachirp (dcGC) auditory filterbank [Irino and Patterson (2006). IEEE Trans. Audio Speech Lang. Proc. 14, 2222-2232]. Instead of using a cascade of second-order sections, this approach uses digital frequency warping to give the gammawarp filterbank. The set of warped finite impulse response filter coefficients is constrained to be symmetrical, which results in the same phase response for all filters in the filterbank. The identical phase responses allow the dynamic variation in the gammachirp filter magnitude response to be realized as a sum, using time-varying weights, of three filters that provide the responses for high-, mid-, and low-intensity input signals, respectively. The gammawarp filterbank offers a substantial improvement in execution speed compared to previous dcGC implementations; for a dcGC filterbank, the gammawarp implementation is 24 to 38 times faster than the dcGC Matlab code of Irino.
Collapse
Affiliation(s)
- James M Kates
- Department of Speech Language and Hearing Sciences, University of Colorado, Boulder, Colorado 80309, USA
| | - Shashidhar Prabhu
- Department of Electrical Computer and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Fereczkowski M, Jepsen ML, Dau T, MacDonald EN. Investigating time-efficiency of forward masking paradigms for estimating basilar membrane input-output characteristics. PLoS One 2017; 12:e0174776. [PMID: 28355275 PMCID: PMC5371388 DOI: 10.1371/journal.pone.0174776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/15/2017] [Indexed: 11/20/2022] Open
Abstract
It is well known that pure-tone audiometry does not sufficiently describe individual hearing loss (HL) and that additional measures beyond pure-tone sensitivity might improve the diagnostics of hearing deficits. Specifically, forward masking experiments to estimate basilar-membrane (BM) input-output (I/O) function have been proposed. However, such measures are very time consuming. The present study investigated possible modifications of the temporal masking curve (TMC) paradigm to improve time and measurement efficiency. In experiment 1, estimates of knee point (KP) and compression ratio (CR) of individual BM I/Os were derived without considering the corresponding individual “off-frequency” TMC. While accurate estimation of KPs was possible, it is difficult to ensure that the tested dynamic range is sufficient. Therefore, in experiment 2, a TMC-based paradigm, referred to as the “gap method”, was tested. In contrast to the standard TMC paradigm, the maker level was kept fixed and the “gap threshold” was obtained, such that the masker just masks a low-level (12 dB sensation level) signal. It is argued that this modification allows for better control of the tested stimulus level range, which appears to be the main drawback of the conventional TMC method. The results from the present study were consistent with the literature when estimating KP levels, but showed some limitations regarding the estimation of the CR values. Perspectives and limitations of both approaches are discussed.
Collapse
|
4
|
Johannesen PT, Pérez-González P, Kalluri S, Blanco JL, Lopez-Poveda EA. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners. Trends Hear 2016; 20:2331216516641055. [PMID: 27604779 PMCID: PMC5017567 DOI: 10.1177/2331216516641055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN) and a time-reversed two-talker masker (R2TM). Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a) cochlear gain loss was unrelated to intelligibility, (b) residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c) temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d) age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers.
Collapse
Affiliation(s)
- Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Spain
| | - Patricia Pérez-González
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Spain
| | | | - José L Blanco
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Spain Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Spain
| |
Collapse
|
5
|
Paraouty N, Ewert SD, Wallaert N, Lorenzi C. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:121. [PMID: 27475138 DOI: 10.1121/1.4955078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), Institut d'Etude de la Cognition, Ecole normale supérieure, Paris Sciences et Lettres Research University, 29 rue d'Ulm, 75005 Paris, France
| | - Stephan D Ewert
- Medizinische Physik and Cluster of Excellence Hearing4All, Universität Oldenburg, 26111 Oldenburg, Germany
| | - Nicolas Wallaert
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), Institut d'Etude de la Cognition, Ecole normale supérieure, Paris Sciences et Lettres Research University, 29 rue d'Ulm, 75005 Paris, France
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), Institut d'Etude de la Cognition, Ecole normale supérieure, Paris Sciences et Lettres Research University, 29 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
6
|
Pérez-González P, Johannesen PT, Lopez-Poveda EA. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends Hear 2014; 19:19/0/2331216514564253. [PMID: 25534365 PMCID: PMC4299367 DOI: 10.1177/2331216514564253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The temporal masking curve (TMC) method is a behavioral technique for inferring human cochlear compression. The method relies on the assumptions that in the absence of compression, forward-masking recovery is independent of masker level and probe frequency. The present study aimed at testing the validity of these assumptions. Masking recovery was investigated for eight listeners with sensorineural hearing loss carefully selected to have absent or nearly absent distortion product otoacoustic emissions. It is assumed that for these listeners basilar membrane responses are linear, hence that masking recovery is independent of basilar membrane compression. TMCs for probe frequencies of 0.5, 1, 2, 4, and 6 kHz were available for these listeners from a previous study. The dataset included TMCs for masker frequencies equal to the probe frequencies plus reference TMCs measured using a high-frequency probe and a low, off-frequency masker. All of the TMCs were fitted using linear regression, and the resulting slope and intercept values were taken as indicative of masking recovery and masker level, respectively. Results for on-frequency TMCs suggest that forward-masking recovery is generally independent of probe frequency and of masker level and hence that it would be reasonable to use a reference TMC for a high-frequency probe to infer cochlear compression at lower frequencies. Results further show, however, that reference TMCs were sometimes shallower than corresponding on-frequency TMCs for identical probe frequencies, hence that compression could be overestimated in these cases. We discuss possible reasons for this result and the conditions when it might occur.
Collapse
Affiliation(s)
- Patricia Pérez-González
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Jennings SG, Ahlstrom JB, Dubno JR. Computational modeling of individual differences in behavioral estimates of cochlear nonlinearities. J Assoc Res Otolaryngol 2014; 15:945-60. [PMID: 25266264 DOI: 10.1007/s10162-014-0486-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Temporal masking curves (TMCs) are often used to estimate cochlear compression in individuals with normal and impaired hearing. These estimates may yield a wide range of individual differences, even among subjects with similar quiet thresholds. This study used an auditory model to assess potential sources of variance in TMCs from 51 listeners in Poling et al. [J Assoc Res Otolaryngol, 13:91-108 (2012)]. These sources included threshold elevation, the contribution of outer and inner hair cell dysfunction to threshold elevation, compression of the off-frequency linear reference, and detection efficiency. Simulations suggest that detection efficiency is a primary factor contributing to individual differences in TMCs measured in normal-hearing subjects, while threshold elevation and the contribution of outer and inner hair cell dysfunction are primary factors in hearing-impaired subjects. Approximating the most compressive growth rate of the cochlear response from TMCs was achieved only in subjects with the highest detection efficiency. Simulations included off-frequency nonlinearity in basilar membrane and inner hair cell processing; however, this nonlinearity did not improve predictions, suggesting that other sources, such as the decay of masking and the strength of the medial olivocochlear reflex, may mimic off-frequency nonlinearity. Findings from this study suggest that sources of individual differences can play a strong role in behavioral estimates of compression, and these sources should be considered when using forward masking to study cochlear function in individual listeners or across groups of listeners.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA,
| | | | | |
Collapse
|
8
|
Johannesen PT, Pérez-González P, Lopez-Poveda EA. Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. Front Neurosci 2014; 8:214. [PMID: 25100940 PMCID: PMC4108034 DOI: 10.3389/fnins.2014.00214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
Identifying the multiple contributors to the audiometric loss of a hearing impaired (HI) listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC) and outer hair cell (OHC) dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HLTOTAL) at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HLOHC), and inefficient IHC processes (HLIHC), all of them in decibels. HLOHC and HLIHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve (TMC) method. 325 I/O curves were measured and 59% of them showed a compression threshold (CT). The analysis of these I/O curves suggests that (1) HLOHC and HLIHC account on average for 60-70 and 30-40% of HLTOTAL, respectively; (2) these percentages are roughly constant across frequencies; (3) across-listener variability is large; (4) residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing-loss ranges. Twenty-four percent of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤1 kHz) than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base.
Collapse
Affiliation(s)
- Peter T. Johannesen
- Auditory Computation and Psychoacoustics, Instituto de Neurociencias de Castilla y León, University of SalamancaSalamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, University of SalamancaSalamanca, Spain
| | - Patricia Pérez-González
- Auditory Computation and Psychoacoustics, Instituto de Neurociencias de Castilla y León, University of SalamancaSalamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, University of SalamancaSalamanca, Spain
| | - Enrique A. Lopez-Poveda
- Auditory Computation and Psychoacoustics, Instituto de Neurociencias de Castilla y León, University of SalamancaSalamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, University of SalamancaSalamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Facultad de Medicina, Universidad de SalamancaSalamanca, Spain
| |
Collapse
|
9
|
Roverud E, Strickland EA. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:1321-34. [PMID: 24606271 PMCID: PMC3985874 DOI: 10.1121/1.4864783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| |
Collapse
|
10
|
Gregan MJ, Nelson PB, Oxenham AJ. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2895-912. [PMID: 24116426 PMCID: PMC3799689 DOI: 10.1121/1.4818773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 05/24/2023]
Abstract
Hearing-impaired (HI) listeners often show less masking release (MR) than normal-hearing listeners when temporal fluctuations are imposed on a steady-state masker, even when accounting for overall audibility differences. This difference may be related to a loss of cochlear compression in HI listeners. Behavioral estimates of compression, using temporal masking curves (TMCs), were compared with MR for band-limited (500-4000 Hz) speech and pure tones in HI listeners and age-matched, noise-masked normal-hearing (NMNH) listeners. Compression and pure-tone MR estimates were made at 500, 1500, and 4000 Hz. The amount of MR was defined as the difference in performance between steady-state and 10-Hz square-wave-gated speech-shaped noise. In addition, temporal resolution was estimated from the slope of the off-frequency TMC. No significant relationship was found between estimated cochlear compression and MR for either speech or pure tones. NMNH listeners had significantly steeper off-frequency temporal masking recovery slopes than did HI listeners, and a small but significant correlation was observed between poorer temporal resolution and reduced MR for speech. The results suggest either that the effects of hearing impairment on MR are not determined primarily by changes in peripheral compression, or that the TMC does not provide a sufficiently reliable measure of cochlear compression.
Collapse
Affiliation(s)
- Melanie J Gregan
- Department of Speech-Language-Hearing Science, University of Minnesota, 164 Pillsbury Drive SE, Minneapolis, Minnesota 55455
| | | | | |
Collapse
|
11
|
Laback B, Necciari T, Balazs P, Savel S, Ystad S. Simultaneous masking additivity for short Gaussian-shaped tones: spectral effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1160-1171. [PMID: 23927115 DOI: 10.1121/1.4812773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laback et al. [(2011). J. Acoust. Soc. Am. 129, 888-897] investigated the additivity of nonsimultaneous masking using short Gaussian-shaped tones as maskers and target. The present study involved Gaussian stimuli to measure the additivity of simultaneous masking for combinations of up to four spectrally separated maskers. According to most basilar membrane measurements, the maskers should be processed linearly at the characteristic frequency (CF) of the target. Assuming also compression of the target, all masker combinations should produce excess masking (exceeding linear additivity). The results for a pair of maskers flanking the target indeed showed excess masking. The amount of excess masking could be predicted by a model assuming summation of masker-evoked excitations in intensity units at the target CF and compression of the target, using compressive input/output functions derived from the nonsimultaneous masking study. However, the combinations of lower-frequency maskers showed much less excess masking than predicted by the model. This cannot easily be attributed to factors like off-frequency listening, combination tone perception, or between-masker suppression. It was better predicted, however, by assuming weighted intensity summation of masker excitations. The optimum weights for the lower-frequency maskers were smaller than one, consistent with partial masker compression as indicated by recent psychoacoustic data.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|
12
|
Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA. Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 2013; 14:341-57. [PMID: 23423559 PMCID: PMC3642277 DOI: 10.1007/s10162-013-0373-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 11/28/2022] Open
Abstract
Medial olivocochlear efferent neurons can control cochlear frequency selectivity and may be activated in a reflexive manner by contralateral sounds. The present study investigated the significance of the contralateral medial olivocochlear reflex (MOCR) on human psychoacoustical tuning curves (PTCs), a behavioral correlate of cochlear tuning curves. PTCs were measured using forward masking in the presence and in the absence of a contralateral white noise, assumed to elicit the MOCR. To assess MOCR effects on apical and basal cochlear regions over a wide range of sound levels, PTCs were measured for probe frequencies of 500 Hz and 4 kHz and for near- and suprathreshold conditions. Results show that the contralateral noise affected the PTCs predominantly at 500 Hz. At near-threshold levels, its effect was obvious only for frequencies in the tails of the PTCs; at suprathreshold levels, its effects were obvious for all frequencies. It was verified that the effects were not due to the contralateral noise activating the middle-ear muscle reflex or changing the postmechanical rate of recovery from forward masking. A phenomenological computer model of forward masking with efferent control was used to explain the data. The model supports the hypothesis that the behavioral results were due to the contralateral noise reducing apical cochlear gain in a frequency- and level-dependent manner consistent with physiological evidence. Altogether, this shows that the contralateral MOCR may be changing apical cochlear responses in natural, binaural listening situations.
Collapse
Affiliation(s)
- Enzo Aguilar
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Almudena Eustaquio-Martin
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Enrique A. Lopez-Poveda
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- />Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Yasin I, Drga V, Plack CJ. Estimating peripheral gain and compression using fixed-duration masking curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:4145-4155. [PMID: 23742366 DOI: 10.1121/1.4802827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Estimates of human basilar membrane gain and compression obtained using temporal masking curve (TMC) and additivity of forward masking (AFM) methods with long-duration maskers or long masker-signal silent intervals may be affected by olivocochlear efferent activation, which reduces basilar membrane gain. The present study introduces a fixed-duration masking curve (FDMC) method, which involves a comparison of off- and on-frequency forward masker levels at threshold as a function of masker and signal duration, with the total masker-signal duration fixed at 25 ms to minimize efferent effects. Gain and compression estimates from the FDMC technique were compared with those from TMC (104-ms maskers) and AFM (10- and 200-ms maskers) methods. Compression estimates over an input-masker range of 40-60 dB sound pressure level were similar for the four methods. Maximum compression occurred at a lower input level for the FDMC compared to the TMC method. Estimates of gain were similar for TMC and FDMC methods. The FDMC method may provide a more reliable estimate of BM gain and compression in the absence of efferent activation and could be a useful method for estimating effects of efferent activity when used with a precursor sound (to trigger efferent activation), presented prior to the combined masker-signal stimulus.
Collapse
Affiliation(s)
- Ifat Yasin
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, United Kingdom.
| | | | | |
Collapse
|
14
|
Bielefeld EC, Hoglund EM, Feth LL. Noise-induced changes in cochlear compression in the rat as indexed by forward masking of the auditory brainstem response. Hear Res 2012; 294:64-72. [PMID: 23123219 DOI: 10.1016/j.heares.2012.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/04/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The current study was undertaken to investigate changes in forward masking patterns using on-frequency and off-frequency maskers of 7 and 10 kHz probes in the Sprague-Dawley rat. Off-frequency forward masking growth functions have been shown in humans to be non-linear, while on-frequency functions behave linearly. The non-linear nature of the off-frequency functions is attributable to active processing from the outer hair cells, and was therefore expected to be sensitive to noise-induced cochlear damage. For the study, nine Sprague-Dawley rats' auditory brainstem responses (ABRs) were recorded with and without forward maskers. Forward masker-induced changes in latency and amplitude of the initial positive peak of the rats' auditory brainstem responses were assessed with both off-frequency and on-frequency maskers. The rats were then exposed to a noise designed to induce 20-40 dB of permanent threshold shift. Twenty-one days after the noise exposure, the forward masking growth functions were measured to assess noise-induced changes in the off-frequency and on-frequency forward masking patterns. Pre-exposure results showed compressive non-linear masking effects of the off-frequency conditions on both latency and amplitude of the auditory brainstem response. The noise rendered the off-frequency forward masking patterns more linear, consistent with human behavioral findings. On- and off-frequency forward masking growth functions were calculated, and they displayed patterns consistent with human behavioral functions, both prior to noise and after the noise exposure.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, OH 43220, USA.
| | | | | |
Collapse
|
15
|
Jennings SG, Strickland EA. Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2483-96. [PMID: 23039443 PMCID: PMC3477188 DOI: 10.1121/1.4742723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 05/19/2023]
Abstract
Frequency selectivity was evaluated under two conditions designed to assess the influence of a "precursor" stimulus on auditory filter bandwidths. The standard condition consisted of a short masker, immediately followed by a short signal. The precursor condition was identical except a 100-ms sinusoid at the signal frequency (i.e., the precursor) was presented before the masker. The standard and precursor conditions were compared for measurements of psychophysical tuning curves (PTCs), and notched noise tuning characteristics. Estimates of frequency selectivity were significantly broader in the precursor condition. In the second experiment, PTCs in the standard and precursor conditions were simulated to evaluate the influence of the precursor on PTC bandwidth. The model was designed to account for the influence of additivity of masking between the masker and precursor. Model simulations were able to qualitatively account for the perceptual data when outer hair cell gain of the model was reduced in the precursor condition. These findings suggest that the precursor may have reduced cochlear gain, in addition to producing additivity of masking. This reduction in gain may be mediated by the medial olivocochlear reflex.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
16
|
Jennings SG, Strickland EA. Auditory filter tuning inferred with short sinusoidal and notched-noise maskers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2497-513. [PMID: 23039444 PMCID: PMC3477189 DOI: 10.1121/1.4746029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 05/29/2023]
Abstract
The physiology of the medial olivocochlear reflex suggests that a sufficiently long stimulus (>100 ms) may reduce cochlear gain and result in broadened frequency selectivity. The current study attempted to avoid gain reduction by using short maskers (20 ms) to measure psychophysical tuning curves (PTCs) and notched-noise tuning characteristics, with a 4-kHz signal. The influence of off-frequency listening on PTCs was evaluated using two types of background noise. Iso-level curves were derived using an estimate of the cochlear input/output (I/O) function, which was obtained using an off-frequency masker as a linear reference. The influence of masker duration on PTCs was assessed using a model that assumed long maskers (>20 ms) evoked gain reduction. The results suggested that the off-frequency masker was a valid linear reference when deriving I/O functions and that off-frequency listening may have occurred in auditory filters apical to the signal place. The iso-level curves from this growth-of-masking study were consistent with those from a temporal-masking-curve study by Eustaquio-Martin and Lopez-Poveda [J. Assoc. Res. Otolaryngol. 12, 281-299. (2011)], suggesting that either approach may be used to derive iso-level curves. Finally, model simulations suggested that masker duration may not influence estimates of frequency selectivity.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
17
|
Guinan JJ. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 2012; 292:35-50. [PMID: 22959529 DOI: 10.1016/j.heares.2012.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/24/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
Recent studies indicate that the gap over outer hair cells (OHCs) between the reticular lamina (RL) and the tectorial membrane (TM) varies cyclically during low-frequency sounds. Variation in the RL-TM gap produces radial fluid flow in the gap that can drive inner hair cell (IHC) stereocilia. Analysis of RL-TM gap changes reveals three IHC drives in addition to classic SHEAR. For upward basilar-membrane (BM) motion, IHC stereocilia are deflected in the excitatory direction by SHEAR and OHC-MOTILITY, but in the inhibitory direction by TM-PUSH and CILIA-SLANT. Upward BM motion causes OHC somatic contraction which tilts the RL, compresses the RL-TM gap over IHCs and expands the RL-TM gap over OHCs, thereby producing an outward (away from the IHCs) radial fluid flow which is the OHC-MOTILITY drive. For upward BM motion, the force that moves the TM upward also compresses the RL-TM gap over OHCs causing inward radial flow past IHCs which is the TM-PUSH drive. Motions that produce large tilting of OHC stereocilia squeeze the supra-OHC RL-TM gap and caused inward radial flow past IHCs which is the CILIA-SLANT drive. Combinations of these drives explain: (1) the reversal at high sound levels of auditory nerve (AN) initial peak (ANIP) responses to clicks, and medial olivocochlear (MOC) inhibition of ANIP responses below, but not above, the ANIP reversal, (2) dips and phase reversals in AN responses to tones in cats and chinchillas, (3) hypersensitivity and phase reversals in tuning-curve tails after OHC ablation, and (4) MOC inhibition of tail-frequency AN responses. The OHC-MOTILITY drive provides another mechanism, in addition to BM motion amplification, that uses active processes to enhance the output of the cochlea. The ability of these IHC drives to explain previously anomalous data provides strong, although indirect, evidence that these drives are significant and presents a new view of how the cochlea works at frequencies below 3 kHz.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Lopez-Poveda EA, Johannesen PT. Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. J Assoc Res Otolaryngol 2012; 13:485-504. [PMID: 22526735 DOI: 10.1007/s10162-012-0327-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022] Open
Abstract
Differentiating the relative importance of the various contributors to the audiometric loss (HL(TOTAL)) of a given hearing impaired listener and frequency region is becoming critical as more specific treatments are being developed. The aim of the present study was to assess the relative contribution of inner (IHC) and outer hair cell (OHC) dysfunction (HL(IHC) and HL(OHC), respectively) to the audiometric loss of patients with mild to moderate cochlear hearing loss. It was assumed that HL(TOTAL) = HL(OHC) + HL(IHC) (all in decibels) and that HL(OHC) may be estimated as the reduction in maximum cochlear gain. It is argued that the latter may be safely estimated from compression threshold shifts of cochlear input/output (I/O) curves relative to normal hearing references. I/O curves were inferred behaviorally using forward masking for 26 test frequencies in 18 hearing impaired listeners. Data suggested that the audiometric loss for six of these 26 test frequencies was consistent with pure OHC dysfunction, one was probably consistent with pure IHC dysfunction, 13 were indicative of mixed IHC and OHC dysfunction, and five were uncertain (one more was excluded from the analysis). HL(OHC) and HL(IHC) contributed on average 60 and 40 %, respectively, to the audiometric loss, but variability was large across cases. Indeed, in some cases, HL(IHC) was up to 63 % of HL(TOTAL), even for moderate losses. The repeatability of the results is assessed using Monte Carlo simulations and potential sources of bias are discussed.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León IBSAL, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
| | | |
Collapse
|
19
|
Horwitz AR, Ahlstrom JB, Dubno JR. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2928-38. [PMID: 22087921 PMCID: PMC3248059 DOI: 10.1121/1.3643829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Compression in the basilar-membrane input-output response flattens the temporal envelope of a fluctuating signal when more gain is applied to lower level than higher level temporal components. As a result, level-dependent changes in gap detection for signals with different depths of envelope fluctuation and for subjects with normal and impaired hearing may reveal effects of compression. To test these assumptions, gap detection with and without a broadband noise was measured with 1, 000-Hz-wide (flatter) and 50-Hz-wide (fluctuating) noise markers as a function of marker level. As marker level increased, background level also increased, maintaining a fixed acoustic signal-to-noise ratio (SNR) to minimize sensation-level effects on gap detection. Significant level-dependent changes in gap detection were observed, consistent with effects of cochlear compression. For the flatter marker, gap detection that declines with increases in level up to mid levels and improves with further increases in level may be explained by an effective flattening of the temporal envelope at mid levels, where compression effects are expected to be strongest. A flatter effective temporal envelope corresponds to a reduced effective SNR. The effects of a reduction in compression (resulting in larger effective SNRs) may contribute to better-than-normal gap detection observed for some hearing-impaired listeners.
Collapse
Affiliation(s)
- Amy R Horwitz
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | | | | |
Collapse
|
20
|
Individual differences in behavioral estimates of cochlear nonlinearities. J Assoc Res Otolaryngol 2011; 13:91-108. [PMID: 21938546 DOI: 10.1007/s10162-011-0291-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023] Open
Abstract
Psychophysical methods provide a mechanism to infer the characteristics of basilar membrane responses in humans that cannot be directly measured. Because these behavioral measures are indirect, the interpretation of results depends on several underlying assumptions. Ongoing uncertainty about the suitability of these assumptions and the most appropriate measurement and compression estimation procedures, and unanswered questions regarding the effects of cochlear hearing loss and age on basilar membrane nonlinearities, motivated this experiment. Here, estimates of cochlear nonlinearities using temporal masking curves (TMCs) were obtained in a large sample of adults of various ages whose hearing ranged from normal to moderate cochlear hearing loss (Experiment 1). A wide range of compression slopes was observed, even for subjects with similar ages and thresholds, which warranted further investigation (Experiment 2). Potential sources of variance contributing to these individual differences were explored, including procedural-related factors (test-retest reliability, suitability of the linear-reference TMC, probe sensation levels, and parameters of TMC fitting algorithms) and subject-related factors (age and age-related changes in temporal processing, strength of cochlear nonlinearities estimated with distortion-product otoacoustic emissions, estimates of changes in cochlear function from damage to outer hair cells versus inner hair cells). Subject age did not contribute significantly to TMC or compression slopes, and TMC slopes did not vary significantly with threshold. Test-retest reliability of TMCs suggested that TMC masker levels and the general shapes of TMCs did not change in a systematic way when re-measured many weeks later. Although the strength of compression decreased slightly with increasing hearing loss, the magnitude of individual differences in compression estimates makes it difficult to determine the effects of hearing loss and cochlear damage on basilar membrane nonlinearities in humans.
Collapse
|
21
|
Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling. Hear Res 2011; 280:177-91. [PMID: 21669269 DOI: 10.1016/j.heares.2011.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/20/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
A dysfunction or loss of outer hair cells (OHC) and inner hair cells (IHC), assumed to be present in sensorineural hearing-impaired listeners, affects the processing of sound both at and above the listeners' hearing threshold. A loss of OHC may be responsible for a reduction of cochlear gain, apparent in the input/output function of the basilar membrane and steeper-than-normal growth of loudness with level (recruitment). IHC loss is typically assumed to cause a level-independent loss of sensitivity. In the current study, parameters reflecting individual auditory processing were estimated using two psychoacoustic measurement techniques. Hearing loss presumably attributable to IHC damage and low-level (cochlear) gain were estimated using temporal masking curves (TMC). Hearing loss attributable to OHC (HL(OHC)) was estimated using adaptive categorical loudness scaling (ACALOS) and by fitting a loudness model to measured loudness functions. In a group of listeners with thresholds ranging from normal to mild-to-moderately impaired, the loss in low-level gain derived from TMC was found to be equivalent with HL(OHC) estimates inferred from ACALOS. Furthermore, HL(OHC) estimates obtained using both measurement techniques were highly consistent. Overall, the two methods provide consistent measures of auditory nonlinearity in individual listeners, with ACALOS offering better time efficiency.
Collapse
|
22
|
A behavioral measure of the cochlear changes underlying temporary threshold shifts. Hear Res 2011; 277:78-87. [PMID: 21439366 DOI: 10.1016/j.heares.2011.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 11/21/2022]
Abstract
It is well documented that exposure to recreational noise may result in a temporary threshold shift (TTS) due to cochlear dysfunction. A forward-masking paradigm was used to estimate the relative contribution of inner hair cell (IHC) and outer hair cell (OHC) dysfunction to TTS. Eighteen normal-hearing adults completed a test battery before, immediately after, and one week after attending a loud music venue. Personal dosimeters recorded mean equivalent exposure levels of 99.0 dB A. Shortly after exposure, there was an average TTS of 10.8 dB at 4 kHz, and an average reduction in the estimated gain provided by the OHCs of 11.5 dB. Gain reduction correlated significantly with TTS. The results suggest that OHC dysfunction can account almost entirely for the raised thresholds. For the test battery conducted a week after exposure, all measures showed recovery to pre-exposure values.
Collapse
|
23
|
Rodríguez J, Neely ST, Jesteadt W, Tan H, Gorga MP. Comparison of distortion-product otoacoustic emission growth rates and slopes of forward-masked psychometric functions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:864-875. [PMID: 21361444 PMCID: PMC3070994 DOI: 10.1121/1.3523340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Slopes of forward-masked psychometric functions (FM PFs) were compared with distortion-product otoacoustic emission (DPOAE) input/output (I/O) parameters at 1 and 6 kHz to test the hypothesis that these measures provide similar estimates of cochlear compression. Implicit in this hypothesis is the assumption that both DPOAE I/O and FM PF slopes are functionally related to basilar-membrane (BM) response growth. FM PF-slope decreased with signal level, but this effect was reduced or reversed with increasing hearing loss; there was a trend of decreasing psychometric function (PF) slope with increasing frequency, consistent with greater compression at higher frequencies. DPOAE I/O functions at 6 kHz exhibited an increase in the breakpoint of a two-segment slope as a function of hearing loss with a concomitant decrease in the level of the distortion product (L(d)). Results of the comparison between FM PF and DPOAE I/O parameters revealed only a weak correlation, suggesting that one or both of these measures may provide unreliable information about BM compression.
Collapse
Affiliation(s)
- Joyce Rodríguez
- Starkey Hearing Research Center, 2150 Shattuck Avenue, Suite 408, Berkeley, California 94704-1345, USA.
| | | | | | | | | |
Collapse
|
24
|
Eustaquio-Martín A, Lopez-Poveda EA. Isoresponse versus isoinput estimates of cochlear filter tuning. J Assoc Res Otolaryngol 2010; 12:281-99. [PMID: 21104288 DOI: 10.1007/s10162-010-0252-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022] Open
Abstract
The tuning of a linear filter may be inferred from the filter's isoresponse (e.g., tuning curves) or isoinput (e.g., isolevel curves) characteristics. This paper provides a theoretical demonstration that for nonlinear filters with compressive response characteristics like those of the basilar membrane, isoresponse measures can suggest strikingly sharper tuning than isoinput measures. The practical significance of this phenomenon is demonstrated by inferring the 3-dB-down bandwidths (BW(3dB)) of human auditory filters at 500 and 4,000 Hz from behavioral isoresponse and isoinput measures obtained with sinusoidal and notched noise forward maskers. Inferred cochlear responses were compressive for the two types of maskers. Consistent with expectations, low-level BW(3dB) estimates obtained from isoresponse conditions were considerably narrower than those obtained from isolevel conditions: 69 vs. 174 Hz, respectively, at 500 Hz, and 280 vs. 464 Hz, respectively, at 4,000 Hz. Furthermore, isoresponse BW(3dB) decreased with increasing level while corresponding isolevel estimates remained approximately constant at 500 Hz or increased slightly at 4 kHz. It is suggested that comparisons between isoresponse supra-threshold human tuning and threshold animal neural tuning should be made with caution.
Collapse
Affiliation(s)
- Almudena Eustaquio-Martín
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca, Spain
| | | |
Collapse
|
25
|
Epp B, Verhey JL, Mauermann M. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1870-1883. [PMID: 20968359 DOI: 10.1121/1.3479755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A model of the cochlea was used to bridge the gap between model approaches commonly used to investigate phenomena related to otoacoustic emissions and more filter-based model approaches often used in psychoacoustics. In the present study, a nonlinear and active one-dimensional transmission line model was developed that accounts for several aspects of physiological data with a single fixed parameter set. The model shows plausible excitation patterns and an input-output function similar to the linear-compressive-linear function as hypothesized in psychoacoustics. The model shows realistic results in a two-tone suppression paradigm and a plausible growth function of the 2f(1)-f(2) component of distortion product otoacoustic emissions. Finestructure was found in simulated stimulus-frequency otoacoustic emissions (SFOAE) with realistic levels and rapid phase rotation. A plausible "threshold in quiet" including finestructure and spontaneous otoacoustic emissions (SOAE) could be simulated. It is further shown that psychoacoustical data of modulation detection near threshold can be explained by the mechanical dynamics of the modeled healthy cochlea. It is discussed that such a model can be used to investigate the representation of acoustic signals in healthy and impaired cochleae at this early stage of the auditory pathway for both, physiological as well as psychoacoustical paradigms.
Collapse
Affiliation(s)
- Bastian Epp
- Neuroacoustics, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26111, Germany.
| | | | | |
Collapse
|
26
|
Plack CJ, Arifianto D. On- and off-frequency compression estimated using a new version of the additivity of forward masking technique. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:771-786. [PMID: 20707447 DOI: 10.1121/1.3455844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
On- and off-frequency compression at the 4000- and 8000-Hz cochlear places were estimated using a new version of the additivity of forward masking (AFM) technique, that measures the effects of combining two non-overlapping forward maskers. Instead of measuring signal thresholds to estimate compression of the signal as in the original AFM technique, the decrease in masker threshold in the combined-masker condition compared to the individual-masker conditions is used to estimate compression of the masker at the signal place. By varying masker frequency it is possible to estimate off-frequency compression. The maskers were 500-Hz-wide bands of noise, and the signal was a brief pure tone. Compression at different levels was estimated using different overall signal levels, or different masker-signal intervals. It was shown that the new AFM technique and the original AFM technique produce consistent results. Considerable compression was observed for maskers well below the signal frequency, suggesting that the assumption of off-frequency linearity used in other techniques may not be valid. Reducing the duration of the first masker from 200 to 20 ms reduced the compression exponent in some cases, suggesting a possible influence of olivocochlear efferent activity.
Collapse
Affiliation(s)
- Christopher J Plack
- Human Communication and Deafness Division, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | |
Collapse
|
27
|
Wojtczak M, Oxenham AJ. Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:247-256. [PMID: 20649220 PMCID: PMC2921427 DOI: 10.1121/1.3436566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to investigate the possible mechanisms underlying an effect reported earlier [Wojtczak, M., and Oxenham, A. J. (2009). J. Acoust. Soc. Am. 125, 270-281] in normal-hearing listeners, whereby recovery from forward masking can be slower for off-frequency tonal maskers than for on-frequency tonal maskers that produce the same amount of masking at a 0-ms masker-signal delay. To rule out potential effects of confusion between the tonal signal and tonal masker, one condition used a noise-band forward masker. To test whether the effect involved temporal build-up, another condition used a short-duration (30-ms) forward masker. To test whether the effect is dependent on normal cochlear function, conditions were tested in five listeners with sensorineural hearing loss. For the 150-ms noise maskers, the data from normal-hearing listeners replicated the findings from the previous study that used tonal maskers. In contrast, no significant difference in recovery from on- and off-frequency masking was observed for the 30-ms tonal maskers in normal-hearing listeners, or for the 150-ms tonal maskers in hearing-impaired listeners. Overall, the results are consistent with a mechanism based on efferent feedback that affects the recovery from forward masking in the normal auditory system.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
28
|
Johannesen PT, Lopez-Poveda EA. Correspondence between behavioral and individually "optimized" otoacoustic emission estimates of human cochlear input/output curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3602-3613. [PMID: 20550260 DOI: 10.1121/1.3377087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Previous studies have shown a high within-subject correspondence between distortion product otoacoustic emission (DPOAE) input/output (I/O) curves and behaviorally inferred basilar membrane (BM) I/O curves for frequencies above approximately 2 kHz. For lower frequencies, DPOAE I/O curves contained notches and plateaus that did not have a counterpart in corresponding behavioral curves. It was hypothesized that this might improve by using individualized optimal DPOAE primary levels. Here, data from previous studies are re-analyzed to test this hypothesis by comparing behaviorally inferred BM I/O curves and DPOAE I/O curves measured with well-established group-average primary levels and two individualized primary level rules: one optimized to maximize DPOAE levels and one intended for primaries to evoke comparable BM responses at the f(2) cochlear region. Test frequencies were 0.5, 1, and 4 kHz. Behavioral I/O curves were obtained from temporal (forward) masking curves. Results showed high within-subject correspondence between behavioral and DPOAE I/O curves at 4 kHz only, regardless of the primary level rule. Plateaus and notches were equally common in low-frequency DPOAE I/O curves for individualized and group-average DPOAE primary levels at 0.5 and 1 kHz. Results are discussed in terms of the adequacy of DPOAE I/O curves for inferring individual cochlear nonlinearity characteristics.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
29
|
Rodríguez J, Neely ST, Patra H, Kopun J, Jesteadt W, Tan H, Gorga MP. The role of suppression in psychophysical tone-on-tone masking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:361-9. [PMID: 20058983 PMCID: PMC2821167 DOI: 10.1121/1.3257224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 05/28/2023]
Abstract
This study tested the hypothesis that suppression contributes to the difference between simultaneous masking (SM) and forward masking (FM). To obtain an alternative estimate of suppression, distortion-product otoacoustic emissions (DPOAEs) were measured in the presence of a suppressor tone. Psychophysical-masking and DPOAE-suppression measurements were made in 22 normal-hearing subjects for a 4000-Hz signal/f(2) and two masker/suppressor frequencies: 2141 and 4281 Hz. Differences between SM and FM at the same masker level were used to provide a psychophysical estimate of suppression. The increase in L(2) to maintain a constant output (L(d)) provided a DPOAE estimate of suppression for a range of suppressor levels. The similarity of the psychophysical and DPOAE estimates for the two masker/suppressor frequencies suggests that the difference in amount of masking between SM and FM is at least partially due to suppression.
Collapse
Affiliation(s)
- Joyce Rodríguez
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lopez-Poveda EA, Johannesen PT, Merchán MA. Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860802622491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent. J Assoc Res Otolaryngol 2009; 10:511-23. [PMID: 19526267 DOI: 10.1007/s10162-009-0176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022] Open
Abstract
When two pure tones (or primaries) of slightly different frequencies (f (1) and f (2)) are presented to the ear, new frequency components are generated by nonlinear interaction of the primaries within the cochlea. These new components can be recorded in the ear canal as otoacoustic emissions (OAE). The level of the 2f (1)-f (2) OAE component is known as the distortion product otoacoustic emission (DPOAE) and is regarded as an indicator of the physiological state of the cochlea. The current view is that maximal level DPOAEs occur for primaries that produce equal excitation at the f (2) cochlear region, but this notion cannot be directly tested in living humans because it is impossible to record their cochlear responses while monitoring their ear canal DPOAE levels. On the other hand, it has been claimed that the temporal masking curve (TMC) method of inferring human basilar membrane responses allows measurement of the levels of equally effective pure tones at any given cochlear site. The assumptions of this behavioral method, however, lack firm physiological support in humans. Here, the TMC method was applied to test the current notion on the conditions that maximize DPOAE levels in humans. DPOAE and TMC results were mutually consistent for frequencies of 1 and 4 kHz and for levels below around 65 dB sound pressure level. This match supports the current view on the generation of maximal level DPOAEs as well as the assumptions of the behavioral TMC method.
Collapse
|
32
|
Johannesen PT, Lopez-Poveda EA. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2149-2163. [PMID: 19062855 DOI: 10.1121/1.2968692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim was to investigate the correlation between compression exponent, compression threshold, and cochlear gain for normal-hearing subjects as inferred from temporal masking curves (TMCs) and distortion-product otoacoustic emission (DPOAEs) input-output (I/O) curves. Care was given to reduce the influence of DPOAE fine structure on the DPOAE I/O curves. A high correlation between compression exponent estimates obtained with the two methods was found at 4 kHz but not at 0.5 and 1 kHz. One reason is that the DPOAE I/O curves show plateaus or notches that result in unexpectedly high compression estimates. Moderately high correlation was found between compression threshold estimates obtained with the two methods, although DPOAE-based values were around 7 dB lower than those based on TMCs. Both methods show that compression exponent and threshold are approximately constant across the frequency range from 0.5 to 4 kHz. Cochlear gain as estimated from TMCs was found to be approximately 16 dB greater at 4 than at 0.5 kHz. In conclusion, DPOAEs and TMCs may be used interchangeably to infer precise individual nonlinear cochlear characteristics at 4 kHz, but it remains unclear that the same applies to lower frequencies.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audicion Computacional y Psicoacustica, Instituto de Neurociencias de Castilla y Leon, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
33
|
Schairer KS, Messersmith J, Jesteadt W. Use of psychometric-function slopes for forward-masked tones to investigate cochlear nonlinearity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2196-215. [PMID: 19062859 PMCID: PMC2600619 DOI: 10.1121/1.2968686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 05/24/2023]
Abstract
Schairer et al. [(2003). "Effects of peripheral nonlinearity on psychometric functions for forward-masked tones," J. Acoust. Soc. Am. 133, 1560-1573] demonstrated that cochlear nonlinearity is reflected in psychometric-function (PF) slopes for 4 kHz forward-masked tones. The goals of the current study were to use PF slopes to compare the degree of compression between signal frequencies of 0.25 and 4 kHz in listeners with normal hearing (LNH), and between LNH and listeners with cochlear hearing loss (LHL). Forward-masked thresholds were estimated in LNH and LHL using on- and off-frequency maskers and 0.25 and 4 kHz signals in three experiments. PFs were reconstructed from adaptive-procedure data for each subject in each condition. Trends in PF slopes across conditions suggest comparable compression at 0.25 and 4 kHz, and potentially a wider bandwidth of compression in relative frequency at 0.25 kHz. This is consistent with other recent behavioral studies that revise earlier estimates of less compression at lower frequencies. The preliminary results in LHL demonstrate that PF slopes are abnormally steep at frequencies with HL, but are similar to those for LNH at frequencies with NH. Overall, the results are consistent with the notion that PF slopes reflect degree of cochlear nonlinearity and can be used as an additional measure of compression across frequency.
Collapse
Affiliation(s)
- Kim S Schairer
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | |
Collapse
|
34
|
Alves-Pinto A, Lopez-Poveda EA. Psychophysical assessment of the level-dependent representation of high-frequency spectral notches in the peripheral auditory system. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:409-421. [PMID: 18646986 DOI: 10.1121/1.2920957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To discriminate between broadband noises with and without a high-frequency spectral notch is more difficult at 70-80 dB sound pressure level than at lower or higher levels [Alves-Pinto, A. and Lopez-Poveda, E. A. (2005). "Detection of high-frequency spectral notches as a function of level," J. Acoust. Soc. Am. 118, 2458-2469]. One possible explanation is that the notch is less clearly represented internally at 70-80 dB SPL than at any other level. To test this hypothesis, forward-masking patterns were measured for flat-spectrum and notched noise maskers for masker levels of 50, 70, 80, and 90 dB SPL. Masking patterns were measured in two conditions: (1) fixing the masker-probe time interval at 2 ms and (2) varying the interval to achieve similar masked thresholds for different masker levels. The depth of the spectral notch remained approximately constant in the fixed-interval masking patterns and gradually decreased with increasing masker level in the variable-interval masking patterns. This difference probably reflects the effects of peripheral compression. These results are inconsistent with the nonmonotonic level-dependent performance in spectral discrimination. Assuming that a forward-masking pattern is a reasonable psychoacoustical correlate of the auditory-nerve rate-profile representation of the stimulus spectrum, these results undermine the common view that high-frequency spectral notches must be encoded in the rate-profile of auditory-nerve fibers.
Collapse
Affiliation(s)
- Ana Alves-Pinto
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Avenida Alfonso X "El Sabio" s/n, 37007 Salamanca, Spain.
| | | |
Collapse
|