1
|
Altoè A, Charaziak KK. Intracochlear overdrive: Characterizing nonlinear wave amplification in the mouse apex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3414-3428. [PMID: 38015028 PMCID: PMC10686682 DOI: 10.1121/10.0022446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
In this study, we explore nonlinear cochlear amplification by analyzing basilar membrane (BM) motion in the mouse apex. Through in vivo, postmortem, and mechanical suppression recordings, we estimate how the cochlear amplifier nonlinearly shapes the wavenumber of the BM traveling wave, specifically within a frequency range where the short-wave approximation holds. Our findings demonstrate that a straightforward mathematical model, depicting the cochlear amplifier as a wavenumber modifier with strength diminishing monotonically as BM displacement increases, effectively accounts for the various experimental observations. This empirically derived model is subsequently incorporated into a physics-based "overturned" framework of cochlear amplification [see Altoè, Dewey, Charaziak, Oghalai, and Shera (2022), J. Acoust. Soc. Am. 152, 2227-2239] and tested against additional experimental data. Our results demonstrate that the relationships established within the short-wave region remain valid over a much broader frequency range. Furthermore, the model, now exclusively calibrated to BM data, predicts the behavior of the opposing side of the cochlear partition, aligning well with recent experimental observations. The success in reproducing key features of the experimental data and the mathematical simplicity of the resulting model provide strong support for the "overturned" theory of cochlear amplification.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90007, USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90007, USA
| |
Collapse
|
2
|
Hakizimana P, Fridberger A. Inner hair cell stereocilia are embedded in the tectorial membrane. Nat Commun 2021; 12:2604. [PMID: 33972539 PMCID: PMC8110531 DOI: 10.1038/s41467-021-22870-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Mammalian hearing depends on sound-evoked displacements of the stereocilia of inner hair cells (IHCs), which cause the endogenous mechanoelectrical transducer channels to conduct inward currents of cations including Ca2+. Due to their presumed lack of contacts with the overlaying tectorial membrane (TM), the putative stimulation mechanism for these stereocilia is by means of the viscous drag of the surrounding endolymph. However, despite numerous efforts to characterize the TM by electron microscopy and other techniques, the exact IHC stereocilia-TM relationship remains elusive. Here we show that Ca2+-rich filamentous structures, that we call Ca2+ ducts, connect the TM to the IHC stereocilia to enable mechanical stimulation by the TM while also ensuring the stereocilia access to TM Ca2+. Our results call for a reassessment of the stimulation mechanism for the IHC stereocilia and the TM role in hearing.
Collapse
Affiliation(s)
- Pierre Hakizimana
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Anders Fridberger
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Charaziak KK, Dong W, Altoè A, Shera CA. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion. J Assoc Res Otolaryngol 2020; 21:151-170. [PMID: 32166602 DOI: 10.1007/s10162-020-00747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022] Open
Abstract
The cochlea's wave-based signal processing allows it to efficiently decompose a complex acoustic waveform into frequency components. Because cochlear responses are nonlinear, the waves arising from one frequency component of a complex sound can be altered by the presence of others that overlap with it in time and space (e.g., two-tone suppression). Here, we investigate the suppression of basilar-membrane (BM) velocity responses to a transient signal (a test click) by another click or tone. We show that the BM response to the click can be reduced when the stimulus is shortly preceded or followed by another (suppressor) click. More surprisingly, the data reveal two curious dependencies on the interclick interval, Δt. First, the temporal suppression curve (amount of suppression vs. Δt) manifests a pronounced and nearly periodic microstructure. Second, temporal suppression is generally strongest not when the two clicks are presented simultaneously (Δt = 0), but when the suppressor click precedes the test click by a time interval corresponding to one to two periods of the best frequency (BF) at the measurement location. By systematically varying the phase of the suppressor click, we demonstrate that the suppression microstructure arises from alternating constructive and destructive interference between the BM responses to the two clicks. And by comparing temporal and tonal suppression in the same animals, we test the hypothesis that the asymmetry of the temporal-suppression curve around Δt = 0 stems from cochlear dispersion and the well-known asymmetry of tonal suppression around the BF. Just as for two-tone suppression, BM responses to clicks are most suppressed by tones at frequencies just above the BF of the measurement location. On average, the frequency place of maximal suppressibility of the click response predicted from temporal-suppression data agrees with the frequency at which tonal suppression peaks, consistent with our hypothesis.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Wei Dong
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, USA.,Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Health, Loma Linda, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Probing hair cell's mechano-transduction using two-tone suppression measurements. Sci Rep 2019; 9:4626. [PMID: 30874606 PMCID: PMC6420497 DOI: 10.1038/s41598-019-41112-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 11/27/2022] Open
Abstract
When two sound tones are delivered to the cochlea simultaneously, they interact with each other in a suppressive way, a phenomenon referred to as two-tone suppression (2TS). This nonlinear response is ascribed to the saturation of the outer hair cell’s mechano-transduction. Thus, 2TS can be used as a non-invasive probe to investigate the fundamental properties of cochlear mechano-transduction. We developed a nonlinear cochlear model in the time domain to interpret 2TS data. The multi-scale model incorporates cochlear fluid dynamics, organ of Corti (OoC) mechanics and outer hair cell electrophysiology. The model simulations of 2TS show that the threshold amplitudes and rates of low-side suppression are dependent on mechano-transduction properties. By comparing model responses to existing 2TS measurement data, we estimate intrinsic characteristics of mechano-transduction such as sensitivity and adaptation. For mechano-transduction sensitivity at the basal location (characteristic frequency of 17 kHz) at 0.06 nm−1, the simulation results agree with 2TS measurements of basilar membrane responses. This estimate is an order of magnitude higher than the values observed in experiments on isolated outer hair cells. The model also demonstrates how the outer hair cell’s adaptation alters the temporal pattern of 2TS by modulating mechano-electrical gain and phase.
Collapse
|
5
|
Bell A, Wit HP. Cochlear impulse responses resolved into sets of gammatones: the case for beating of closely spaced local resonances. PeerJ 2018; 6:e6016. [PMID: 30515362 PMCID: PMC6266938 DOI: 10.7717/peerj.6016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/27/2018] [Indexed: 02/05/2023] Open
Abstract
Gammatones have had a long history in auditory studies, and recent theoretical work suggests they may play an important role in cochlear mechanics as well. Following this lead, the present paper takes five examples of basilar membrane impulse responses and uses a curve-fitting algorithm to decompose them into a number of discrete gammatones. The limits of this ‘sum of gammatones’ (SOG) method to accurately represent the impulse response waveforms were tested and it was found that at least two and up to six gammatones could be isolated from each example. Their frequencies were stable and largely independent of stimulus parameters. The gammatones typically formed a regular series in which the frequency ratio between successive members was about 1.1. Adding together the first few gammatones in a set produced beating-like waveforms which mimicked waxing and waning, and the instantaneous frequencies of the waveforms were also well reproduced, providing an explanation for frequency glides. Consideration was also given to the impulse response of a pair of elastically coupled masses—the basis of two-degree-of-freedom models comprised of coupled basilar and tectorial membranes—and the resulting waveform was similar to a pair of beating gammatones, perhaps explaining why the SOG method seems to work well in describing cochlear impulse responses. A major limitation of the SOG method is that it cannot distinguish a waveform resulting from an actual physical resonance from one derived from overfitting, but taken together the method points to the presence of a series of closely spaced local resonances in the cochlea.
Collapse
Affiliation(s)
- Andrew Bell
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Hero P Wit
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Kamnev AA, Perfiliev YD, Kulikov LA, Tugarova AV, Kovács K, Homonnay Z, Kuzmann E. Cobalt(II) complexation with small biomolecules as studied by 57Co emission Mössbauer spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 172:77-82. [PMID: 27130827 DOI: 10.1016/j.saa.2016.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
In the emission (57Co) variant of Mössbauer spectroscopy (EMS), the 57Co radionuclide (with a half-life of 9months) is used that undergoes a nuclear decay 57Co→57Fe via electron capture followed by the emission of a γ-quantum, the energy of which is modified by the chemical state and the close coordination environment of the parent 57Co atom. While EMS has been used largely in materials science and nuclear chemistry, its high sensitivity can also be of great advantage in revealing fine structural features and for speciation analysis of biological complexes, whenever the 57Co2+ cation can be used directly as the coordinating metal or as a substitute for native cobalt or other metal ions. As such EMS applications are yet rare, in order to reliably interpret emission spectra of sophisticated 57Co2+-doped biosystems, model EMS studies of simple cobalt biocomplexes are necessary. In this work, EMS spectroscopic data are analysed and discussed for 57Co2+ complexes with a range of small biomolecules of different structures, including 4-n-hexylresorcinol, homoserine lactone and a few amino acids (spectra measured in rapidly frozen dilute aqueous solutions or in the dried state at T=80K). The EMS data obtained are discussed with regard to the available literature data related to the coordination modes of the biocomplexes under study.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | - Yurii D Perfiliev
- Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Leonid A Kulikov
- Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Department of Analytical Chemistry, Institute of Chemistry, Loránd Eötvös University, H-1117 Budapest, Hungary
| | - Zoltán Homonnay
- Laboratory of Nuclear Chemistry, Department of Analytical Chemistry, Institute of Chemistry, Loránd Eötvös University, H-1117 Budapest, Hungary
| | - Ernő Kuzmann
- Laboratory of Nuclear Chemistry, Department of Analytical Chemistry, Institute of Chemistry, Loránd Eötvös University, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Raufer S, Verhulst S. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Hear Res 2016; 342:150-160. [DOI: 10.1016/j.heares.2016.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
8
|
Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1949. [PMID: 27914441 PMCID: PMC5392097 DOI: 10.1121/1.4962532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - M Patrick Feeney
- National Center for Rehabilitative Auditory Research, Department of Veterans Affairs, Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Lisa L Hunter
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Denis F Fitzpatrick
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
9
|
Abstract
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Collapse
Affiliation(s)
- George Zweig
- Research Laboratory of Electronics, 26-169, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Cooper NP, van der Heijden M. Dynamics of Cochlear Nonlinearity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 894:267-273. [PMID: 27080667 DOI: 10.1007/978-3-319-25474-6_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic aspects of cochlear mechanical compression were studied by recording basilar membrane (BM) vibrations evoked by tone pairs ("beat stimuli") in the 11-19 kHz region of the gerbil cochlea. The frequencies of the stimulus components were varied to produce a range of "beat rates" at or near the characteristic frequency (CF) of the BM site under study, and the amplitudes of the components were balanced to produce near perfect periodic cancellations, visible as sharp notches in the envelope of the BM response. We found a compressive relation between instantaneous stimulus intensity and BM response magnitude that was strongest at low beat rates (e.g., 10-100 Hz). At higher beat rates, the amount of compression reduced progressively (i.e. the responses became linearized), and the rising and falling flanks of the response envelope showed increasing amounts of hysteresis; the rising flank becoming steeper than the falling flank. This hysteresis indicates that cochlear mechanical compression is not instantaneous, and is suggestive of a gain control mechanism having finite attack and release times. In gain control terms, the linearization that occurs at higher beat rates occurs because the instantaneous gain becomes smoothened, or low-pass filtered, with respect to the magnitude fluctuations in the stimulus. In terms of peripheral processing, the linearization corresponds to an enhanced coding, or decompression, of rapid amplitude modulations. These findings are relevant both to those who wish to understand the underlying mechanisms and those who need a realistic model of nonlinear processing by the auditory periphery.
Collapse
|
11
|
Abstract
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy's results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy's theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves.
Collapse
Affiliation(s)
- Alberto Recio-Spinoso
- Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail:
| | - William S. Rhode
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Recio-Spinoso A, Cooper NP. Masking of sounds by a background noise--cochlear mechanical correlates. J Physiol 2013; 591:2705-21. [PMID: 23478137 DOI: 10.1113/jphysiol.2012.248260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the 'suppressing' stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations.
Collapse
Affiliation(s)
- Alberto Recio-Spinoso
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Almansa 14, 02006 Albacete, Spain.
| | | |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
AbstractSensory analysis is that initial, preconscious stage of perception at which primitive features (edges, temporal discontinuities, and periodicities) are picked out from the random fluctuations that characterize the physical stimulation of sensory receptors. Sensory analysis may be studied by means of signal-detection, psychometric-function, and threshold experiments, and Sensory Analysis presents a succinct, quasi-quantitative account of the phenomena revealed thereby. This account covers all five sensory modalities, emphasising the similarities between them.A succinct account depends on identifying simple principles of wide generality, of which the most fundamental are that (a) sensory discriminations are differentially coupled to the physical stimuli and that (b) small stimuli are subject to a square-law transform which makes them less detectable than they would otherwise be. These two principles are established by comparisons between different configurations of two stimulus levels to be discriminated; they are realized within a simple physical-analogue model which affords certain low-level comparisons with neurophysiological observation. That physical-analogue model consists of a sequence of elementary operations on the stimulus constituting a stage of sensory processing. The concatenation of two or three stages in cascade accommodates an increased range of experimental phenomena, especially the detection of sinusoidal gratings.This précis is organized in three parts: Part I surveys Sensory Analysis as economically as may be, beginning from the simplest, most fundamental ideas and working toward phenomena of increasing complexity. A rather shorter Part II reviews the most important alternative models addressed to some part or other of the phenomena surveyed. Finally, a very short Part III contributes some metatheoretic remarks on the function of a theory of sensory discrimination.
Collapse
|
16
|
|
17
|
Guinan JJ, Cooper NP. Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:1080-92. [PMID: 18681598 PMCID: PMC2606092 DOI: 10.1121/1.2949435] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 05/24/2023]
Abstract
Conceptualizations of mammalian cochlear mechanics are based on basilar-membrane (BM) traveling waves that scale with frequency along the length of the cochlea, are amplified by outer hair cells (OHCs), and excite inner hair cells and auditory-nerve (AN) fibers in a simple way. However, recent experimental work has shown medial-olivocochlear (MOC) inhibition of AN responses to clicks that do not fit with this picture. To test whether this AN-initial-peak (ANIP) inhibition might result from hitherto unrecognized aspects of the traveling-wave or MOC-evoked inhibition, MOC effects on BM responses to clicks in the basal turns of guinea pig and chinchilla cochleae were measured. MOC stimulation inhibited BM click responses in a time and level dependent manner. Inhibition was not seen during the first half-cycle of the responses, but built up gradually, and ultimately increased the responses' decay rates. MOC stimulation also produced small phase leads in the response wave forms, but had little effect on the instantaneous frequency or the waxing and waning of the responses. These data, plus recent AN data, support the hypothesis that the MOC-evoked inhibitions of the traveling wave and of the ANIP response are separate phenomena, and indicate that the OHCs can affect at least two separate modes of excitation in the mammalian cochlea.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
18
|
Ruggero MA, Temchin AN. Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol 2007; 8:153-66. [PMID: 17401604 PMCID: PMC1868567 DOI: 10.1007/s10162-007-0081-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 03/16/2007] [Indexed: 11/28/2022] Open
Abstract
Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether.
Collapse
Affiliation(s)
- Mario A Ruggero
- Department of Communication Sciences and Disorders, The Hugh Knowles Center & Institute for Neuroscience, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
19
|
Zilany MSA, Bruce IC. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:1446-66. [PMID: 17004468 DOI: 10.1121/1.2225512] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. The two modes are generated by two parallel filters, component 1 (C1) and component 2 (C2), and the outputs are subsequently transduced by two separate functions. The responses are then added and passed through the IHC low-pass filter followed by the IHC-AN synapse model and discharge generator. The C1 filter is a narrow-band, chirp filter with the gain and bandwidth controlled by a nonlinear feed-forward control path. This filter is responsible for low and moderate level responses. A linear, static, and broadly tuned C2 filter followed by a nonlinear, inverted and nonrectifying C2 transduction function is critical for producing transition region and high-level effects. Consistent with Kiang's two-factor cancellation hypothesis, the interaction between the two paths produces effects such as the C1/C2 transition and peak splitting in the period histogram. The model responses are consistent with a wide range of physiological data from both normal and impaired ears for stimuli presented at levels spanning the dynamic range of hearing.
Collapse
Affiliation(s)
- Muhammad S A Zilany
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
20
|
Guinan JJ, Lin T, Cheng H. Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:2421-33. [PMID: 16266164 PMCID: PMC1810352 DOI: 10.1121/1.2017899] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite the insights obtained from click responses, the effects of medial-olivocochlear (MOC) efferents on click responses from single-auditory-nerve (AN) fibers have not been reported. We recorded responses of cat single AN fibers to randomized click level series with and without electrical stimulation of MOC efferents. MOC stimulation inhibited (1) the whole response at low sound levels, (2) the decaying part of the response at all sound levels, and (3) the first peak of the response at moderate to high sound levels. The first two effects were expected from previous reports using tones and are consistent with a MOC-induced reduction of cochlear amplification. The inhibition of the AN first peak, which was strongest in the apex and middle of the cochlea, was unexpected because the first peak of the classic basilar-membrane (BM) traveling wave receives little or no amplification. In the cochlear base, the click data were ambiguous, but tone data showed particularly short group delays in the tail-frequency region that is strongly inhibited by MOC efferents. Overall, the data support the hypothesis that there is a motion that bends inner-hair-cell stereocilia and can be inhibited by MOC efferents, a motion that is present through most, or all, of the cochlea and for which there is no counterpart in the classic BM traveling wave.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114-3002, USA.
| | | | | |
Collapse
|
21
|
Lin T, Guinan JJ. Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:405-416. [PMID: 15296001 DOI: 10.1121/1.1753294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although many properties of click responses can be accounted for by a single, frequency-dispersive traveling wave exciting a single, characteristic-frequency (CF) resonance, some properties, such as waxing and waning cannot. Joint time-frequency distributions (TFDs) were used to help understand click responses of cat single auditory-nerve (AN) fibers (CFs<4 kHz) and published measurements of chinchilla basilar-membrane (BM) motion. For CFs> 800 Hz, the peak energy of the response decreased in latency and frequency as the level increased, as expected. However, at high levels the trend reversed for AN, but not BM, responses. Normalized TFDs, which show the frequency with the peak energy at each response time, revealed glides, as previously reported. Classical theory predicts smooth, upward glides. Instead, at low CFs there were downward glides, and at other CFs glides had substantial irregularities. Finally, click skirts, defined as the longest-latency part of click responses, sometimes showed deviations from CF for above-threshold sound levels. Most of these phenomena are not explained by a single, frequency-dispersive traveling wave exciting a single CF resonance, but they can be accounted for by the interaction of two (or more) excitation drives with different latencies and frequency contents.
Collapse
Affiliation(s)
- Tai Lin
- Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, Massachusetts 02114, USA
| | | |
Collapse
|
22
|
Tan Q, Carney LH. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:2007-2020. [PMID: 14587601 DOI: 10.1121/1.1608963] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A computational model was developed to simulate the responses of auditory-nerve (AN) fibers in cat. The model's signal path consisted of a time-varying bandpass filter; the bandwidth and gain of the signal path were controlled by a nonlinear feed-forward control path. This model produced realistic response features to several stimuli, including pure tones, two-tone combinations, wideband noise, and clicks. Instantaneous frequency glides in the reverse-correlation (revcor) function of the model's response to broadband noise were achieved by carefully restricting the locations of the poles and zeros of the bandpass filter. The pole locations were continuously varied as a function of time by the control signal to change the gain and bandwidth of the signal path, but the instantaneous frequency profile in the revcor function was independent of sound pressure level, consistent with physiological data. In addition, this model has other important properties, such as nonlinear compression, two-tone suppression, and reasonable Q10 values for tuning curves. The incorporation of both the level-independent frequency glide and the level-dependent compressive nonlinearity into a phenomenological model for the AN was the primary focus of this work. The ability of this model to process arbitrary sound inputs makes it a useful tool for studying peripheral auditory processing.
Collapse
Affiliation(s)
- Qing Tan
- Boston University Hearing Research Center, Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
23
|
Summers V, de Boer E, Nuttall AL. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:294-306. [PMID: 12880042 DOI: 10.1121/1.1580813] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Harmonic complexes comprised of the same spectral components in either positive-Schroeder (+Schr) or negative-Schroeder (-Schr) phase [see Schroeder, IEEE Trans. Inf. Theory 16, 85-89 (1970)] have identical long-term spectra and similar waveform envelopes. However, localized patterns of basilar-membrane (BM) excitation can be quite different in response to these two stimuli. Measurements in chinchillas showed more modulated (peakier) BM excitation for +Schr than -Schr complexes [Recio and Rhode, J. Acoust. Soc. Am. 108, 2281-2298 (2000)]. In the current study, laser velocimetry was used to examine BM responses at a location tuned to approximately 17 kHz in the basal turn of the guinea-pig cochlea, for +Schr and -Schr complexes with a 203-Hz fundamental frequency and including 101 equal-amplitude components from 2031 to 22,344 Hz. At 35-dB SPL, +Schr response waveforms showed greater amplitude modulation than -Schr responses. With increasing stimulation level, internal modulation decreased for both complexes. To understand the observed phenomena quantitatively, responses were predicted on the basis of a linearized model of the cochlea. Prediction was based on an "indirect impulse response" measured in the same animal. Response waveforms for Schroeder-phase signals were accurately predicted, provided that the level of the indirect impulse used in prediction closely matched the level of the Schroeder-phase stimulus. This result confirms that the underlying model, which originally was developed for noise stimuli, is valid for stimuli that produce completely different response waveforms. Moreover, it justifies explanation of cochlear filtering (i.e., differential treatment of different frequencies) in terms of a linear system.
Collapse
Affiliation(s)
- Van Summers
- Army Audiology & Speech Center, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA
| | | | | |
Collapse
|
24
|
Ospeck M, Dong XX, Iwasa KH. Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells. Biophys J 2003; 84:739-49. [PMID: 12547758 PMCID: PMC1302654 DOI: 10.1016/s0006-3495(03)74893-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Outer hair cells are the critical element for the sensitivity and sharpness of frequency selectivity of the ear. It is believed that fast motility (electromotility) of these cells is essential for this function. Indeed, force produced by outer hair cells follows their membrane potential very closely at least up to 60 kHz. However, it has been pointed out that the cell's receptor potential is attenuated by a low-pass RC circuit inherent to these cells, with the RC roll-off frequencies significantly lower than their operating frequencies. This would render electromotility ineffective in producing force. To address this issue, we assume that multiple degrees of freedom and vibrational modes due to the complex structure of the organ of Corti provide optimal phases for outer hair cells' force to cancel viscous drag. Our derived frequency limit depends on the drag-capacitance product, not directly on the RC time constant. With a reasonable assumption for the viscous drag, the estimated limit is 10-13 kHz, exceeding the RC corner frequency. Our analysis shows that a fast-activating potassium current can substantially extend the frequency limit by counteracting the capacitive current.
Collapse
Affiliation(s)
- Mark Ospeck
- Biophysics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892-8027, USA
| | | | | |
Collapse
|
25
|
Bruce IC, Sachs MB, Young ED. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 113:369-388. [PMID: 12558276 DOI: 10.1121/1.1519544] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acoustic trauma degrades the auditory nerve's tonotopic representation of acoustic stimuli. Recent physiological studies have quantified the degradation in responses to the vowel /E/ and have investigated amplification schemes designed to restore a more correct tonotopic representation than is achieved with conventional hearing aids. However, it is difficult from the data to quantify how much different aspects of the cochlear pathology contribute to the impaired responses. Furthermore, extensive experimental testing of potential hearing aids is infeasible. Here, both of these concerns are addressed by developing models of the normal and impaired auditory peripheries that are tested against a wide range of physiological data. The effects of both outer and inner hair cell status on model predictions of the vowel data were investigated. The modeling results indicate that impairment of both outer and inner hair cells contribute to degradation in the tonotopic representation of the formant frequencies in the auditory nerve. Additionally, the model is able to predict the effects of frequency-shaping amplification on auditory nerve responses, indicating the model's potential suitability for more rapid development and testing of hearing aid schemes.
Collapse
Affiliation(s)
- Ian C Bruce
- Center for Hearing Sciences and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
26
|
Rhode WS, Recio A. Basilar-membrane response to multicomponent stimuli in chinchilla. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 110:981-994. [PMID: 11519623 DOI: 10.1121/1.1377050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The response of chinchilla basilar membrane in the basal region of the cochlea to multicomponent (1, 3, 5, 6, or 7) stimuli was studied using a laser interferometer. Three-component stimuli were amplitude-modulated signals with modulation depths that varied from 25% to 200% and the modulation frequency varied from 100 to 2000 Hz while the carrier frequency was set to the characteristic frequency of the region under study (approximately 6.3 to 9 kHz). Results indicate that, for certain modulation frequencies and depths, there is enhancement of the response. Responses to five equal-amplitude sine wave stimuli indicated the occurrence of nonlinear phenomena such as spectral edge enhancement, present when the frequency spacing was less than 200 Hz, and mutual suppression. For five-component stimuli, the first, third, or fifth component was placed at the characteristic frequency and the component frequency separation was varied over a 2-kHz range. Responses to seven component stimuli were similar to those of five-component stimuli. Six-component stimuli were generated by leaving out the center component of the seven-component stimuli. In the latter case, the center component was restored in the basilar-membrane response as a result of distortion-product generation in the nonlinear cochlea.
Collapse
Affiliation(s)
- W S Rhode
- Department of Physiology, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
27
|
Shera CA. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 110:332-348. [PMID: 11508959 DOI: 10.1121/1.1378349] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Basilar-membrane and auditory-nerve responses to impulsive acoustic stimuli, whether measured directly in response to clicks or obtained indirectly using cross- or reverse-correlation and/or Fourier analysis, manifest a striking symmetry: near-invariance with stimulus intensity of the fine time structure of the response over almost the entire dynamic range of hearing. This paper explores the origin and implications of this symmetry for cochlear mechanics. Intensity-invariance is investigated by applying the EQ-NL theorem [de Boer, Aud. Neurosci. 3, 377-388 (1997)] to define a family of linear cochlear models in which the strength of the active force generators is controlled by a real-valued, intensity-dependent parameter, gamma (with 0 < or = gamma < or = 1). The invariance of fine time structure is conjectured to imply that as gamma is varied the poles of the admittance of the cochlear partition remain within relatively narrow bands of the complex plane oriented perpendicular to the real frequency axis. Physically, the conjecture implies that the local resonant frequencies of the cochlear partition are nearly independent of intensity. Cochlear-model responses, computed by extending the model obtained by solution of the inverse problem in squirrel monkey at low sound levels [Zweig, J. Acoust. Soc. Am. 89, 1229-1254 (1991)] with three different forms of the intensity dependence of the partition admittance, support the conjecture. Intensity-invariance of cochlear resonant frequencies is shown to be consistent with the well-known "half-octave shift," describing the shift with intensity in the peak (or best) frequency of the basilar-membrane frequency response. Shifts in best frequency do not arise locally, via changes in the underlying resonant frequencies of the partition, but globally through the intensity dependence of the driving pressure. Near-invariance of fine time structure places strong constraints on the mechanical effects of force generation by outer hair cells. In particular, the symmetry requires that the feedback forces generated by outer hair cells (OHCs) not significantly affect the natural resonant frequencies of the cochlear partition. These results contradict many, if not most, cochlear models, in which OHC forces produce significant changes in the reactance and resonant frequencies of the partition.
Collapse
Affiliation(s)
- C A Shera
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.
| |
Collapse
|
28
|
Abstract
In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the "base" of the cochlea (near the stapes) and low-frequency waves approaching the "apex" of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier." This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.
Collapse
Affiliation(s)
- L Robles
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Programa Disciplinario de Fisiología y Biofísica, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
29
|
Shera CA. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 109:2023-2034. [PMID: 11386555 DOI: 10.1121/1.1366372] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Frequency modulations (or glides), reported in impulse responses of both the auditory nerve and the basilar membrane, represent a change over time in the instantaneous frequency of oscillation of the response waveform. Although the near invariance of glides with stimulus intensity indicates that they are not the consequence of nonlinear or active processes in the inner ear, their origin has remained otherwise obscure. This paper combines theory with experimental data to explore the basic phenomenology of glides. When expressed in natural dimensionless form, glides are shown to have a universal form nearly independent of cochlear location for characteristic frequencies (CFs) above approximately 1.5 kHz (the "scaling region"). In the apex of the cochlea, by contrast, glides appear to depend strongly on CF. In the scaling region, instantaneous-frequency trajectories are shown to be approximately equal to the "inverse group delays" of basilar-membrane transfer functions measured at the same locations. The inverse group delay, obtained by functionally inverting the transfer-function group-delay-versus-frequency curve, specifies the frequency component of a broadband stimulus expected to be driving the cochlear partition at the measurement point as a function of time. The approximate empirical equality of the two functions indicates that glides are closely related to cochlear traveling-wave dispersion and suggests that they originate primarily through the time dependence of the effective driving pressure force at the measurement location. Calculations in a one-dimensional cochlear model based on solution to the inverse problem in squirrel monkey [Zweig, J. Acoust. Soc. Am. 89, 1229-1254 (1991)] support this conclusion. In contrast to previous models for glides, which locate their origin in the differential build-up and decay of multiple micromechanical resonances local to each radial cross section of the organ of Corti, the model presented here identifies glides as the global consequence of the dispersive character of wave propagation in the cochlea.
Collapse
Affiliation(s)
- C A Shera
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.
| |
Collapse
|
30
|
Recio A, Rhode WS. Basilar membrane responses to broadband stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2000; 108:2281-2298. [PMID: 11108369 DOI: 10.1121/1.1318898] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Basilar membrane (BM) responses to two types of broadband stimuli-clicks and Schroeder-phase complexes--were recorded at several sites at the base of the chinchilla cochlea. Recording sites (characteristic frequency, CF, in the range of 5.5-18 kHz) span the 1-4-mm basal region of the basilar membrane. BM responses to clicks consisted of undamped oscillations with instantaneous frequency that increased over time until it reached a value around CF. The time constant of this glide is CF dependent. Throughout the entire region under study, BM vibration exceeded umbo motion by up to 60 dB. Nonlinear properties of BM responses to clicks resemble those found in the more studied 8-10-kHz region. Amplitude spectra of Schroeder-phase complex stimuli, which consist of a series of sinusoidal components summed in negative (-SCHR) and positive Schroeder phase (+SCHR), are flat. The envelope of BM responses to +SCHR stimuli contains valleys, or dips, that are wider than those found in responses to the -SCHR stimuli. Hence, BM responses to the former stimuli are "peakier" than responses to the latter. Differences in response waveforms are less obvious in linear cochleae. Suppression of a near-CF tone by -SCHR stimuli was larger than that evoked by +SCHR stimuli.
Collapse
Affiliation(s)
- A Recio
- Department of Physiology, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
31
|
Abstract
The vibration of the organ of Corti, a three-dimensional micromechanical structure that incorporates the sensory cells of the hearing organ, was measured in three mutually orthogonal directions. This was achieved by coupling the light of a laser Doppler vibrometer into the side arm of an epifluorescence microscope to measure velocity along the optical axis of the microscope, called the transversal direction. Displacements were measured in the plane orthogonal to the transverse direction with a differential photodiode mounted on the microscope in the focal plane. Vibration responses were measured in the fourth turn of a temporal-bone preparation of the guinea-pig cochlea. Responses were corrected for a "fast" wave component caused by the presence of the hole in the cochlear wall, made to view the structures. The frequency responses of the basilar membrane and the reticular lamina were similar, with little phase differences between the vibration components. Their motion was rectilinear and vertical to the surface of their membranes. The organ of Corti rotated about a point near the edge of the inner limbus. A second vibration mode was detected in the motion of the tectorial membrane. This vibration mode was directed parallel to the reticular lamina and became apparent for frequencies above approximately 0.5 oct below the characteristic frequency. This radial vibration mode presumably controls the shearing action of the hair bundles of the outer hair cells.
Collapse
Affiliation(s)
- W Hemmert
- University of Tübingen, Department of Otolaryngology, Section for Physiological Acoustics and Communication, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
32
|
Zinn C, Maier H, Zenner H, Gummer AW. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea. Hear Res 2000; 142:159-83. [PMID: 10748337 DOI: 10.1016/s0378-5955(00)00012-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transverse vibration response of the organ of Corti near the apical end of the guinea-pig cochlea was measured in vivo. For cochleae in good physiological condition, as ascertained with threshold compound action potentials and the endocochlear potential, increasing amounts of attenuation and phase lag were found as the intensity was decreased below 80 dB SPL. These nonlinear phenomena disappeared post mortem. The data suggest that an active, nonlinear damping mechanism exists at low intensities at the apex of the cochlea. The phase nonlinearity, evident at all frequencies except at the best frequency (BF), was limited to a total phase change of 0.25 cycles, implying negative feedback of electromechanical force from the outer hair cells into a compliant organ of Corti. The amplitude nonlinearity was largest above BF, possibly due to interaction with a second vibration mode. The high-frequency flank of the amplitude response curve was shifted to lower frequencies by as much as 0.6 octave (oct) for a 50-dB reduction of sound intensity; the reduction of BF was 0.3 oct, but there was no change of relative bandwidth (Q(10 dB)). Detailed frequency responses measured at 60 dB SPL were consistent with non-dispersive, travelling-wave motion: travel time to the place of BF (400 Hz at 60 dB SPL) was 2.9 ms, Q(10 dB) was 1.0; standing-wave motion occurred above 600 Hz. Based on comparison with neural and mechanical data from the base of the cochlea, amplitudes at the apex appear to be sufficient to yield behavioural thresholds. It is concluded that active negative feedback may be a hallmark of the entire cochlea at low stimulus frequencies and that, in contrast to the base, the apex does not require active amplification.
Collapse
Affiliation(s)
- C Zinn
- Section Physiological Acoustics and Communication, Department of Otolaryngology, University of Tübingen, Silcherstr. 5, D-72076, Tübingen, Germany
| | | | | | | |
Collapse
|
33
|
de Boer E, Nuttall AL. The mechanical waveform of the basilar membrane. III. Intensity effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2000; 107:1497-1507. [PMID: 10738804 DOI: 10.1121/1.428436] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mechanical responses in the basal turn of the guinea-pig cochlea were measured with broad-band noise stimuli and expressed as input-output cross-correlation functions. The experiments were performed over the full range of stimulus intensities in order to try to understand the influence of cochlear nonlinearity on frequency selectivity, tuning, signal compression and the impulse response. The results are interpreted within the framework of a nonlinear, locally active, three-dimensional model of the cochlea. The data have been subjected to inverse analysis in order to recover the basilar-membrane (BM) impedance, a parameter function that, when inserted into the (linearized version of that) model, produces a model response that is similar to the measured response. This paper reports details about intensity effects for noise stimulation, in particular, the way the BM impedance varies with stimulus intensity. In terms of the underlying cochlear model, the decrease of the "activity component" in the BM impedance with increasing stimulus level is attributed to saturation of transduction in the outer hair cells. In the present paper this property is brought into a quantitative form. According to the theory [the EQ-NL theorem, de Boer, Audit. Neurosci. 3, 377-388 (1997)], the BM impedance is composed of two components, both intrinsically independent of stimulus level. One is the passive impedance Zpass and the other one is the "extra" impedance Zextra. The latter impedance is to be multiplied by a real factor gamma (0 < or = gamma < or = 1) that depends on stimulus level. This concept about the composition of the BM impedance is termed the "two-component theory of the BM impedance." In this work both impedances are entirely derived from experimental data. The dependence of the factor gamma on stimulus level can be derived by using a unified form of the outer-hair-cell transducer function. From an individual experiment, the two functions Zpass and Zextra are determined, and an approximation (Zpass + gamma Zextra) to the BM impedance constructed. Next, the model response (the "resynthesized" response) corresponding to this "artificial" impedance is computed. The same procedure is executed for several stimulus-level values. For all levels, the results show a close correspondence with the original experimental data; this includes correct prediction of the compression of response amplitudes, the reduction of frequency selectivity, the shift in peak frequency and, most importantly, the preservation of timing in the impulse response. All these findings illustrate the predictive power of the underlying model.
Collapse
Affiliation(s)
- E de Boer
- Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
34
|
Carney LH, McDuffy MJ, Shekhter I. Frequency glides in the impulse responses of auditory-nerve fibers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1999; 105:2384-91. [PMID: 10212419 DOI: 10.1121/1.426843] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Previous reports of frequency modulations, or glides, in the impulse responses of the auditory periphery have been limited to analyses of basilar-membrane measurements and responses of auditory-nerve (AN) fibers with best frequencies (BFs) greater than 1.7 kHz. These glides increased in frequency as a function of time. In this study, the instantaneous frequency as a function of time was measured for impulse responses of AN fibers in the cat with a range of BFs (250-4500 Hz). Impulse responses were estimated from responses to wideband noise using the reverse-correlation technique. The impulse responses had increasing frequency glides for fibers with BFs greater than 1500 Hz, nearly constant frequency as a function of time of BFs between 750 and 1500 Hz, and decreasing frequency glides for BFs below 750 Hz. Over the levels tested, the glides for fibers at all BFs were nearly independent of stimulus level, consistent with previous reports of impulse responses of the basilar membrane and AN fibers. Implications of the different glide directions observed for different BFs are discussed, specifically in relation to models for the auditory periphery as well as for the derivation of impulse responses for the human auditory periphery based on psychophysical measurements.
Collapse
Affiliation(s)
- L H Carney
- Boston University Hearing Research Center, Boston University, Massachusetts 02215, USA.
| | | | | |
Collapse
|
35
|
Recio A, Rich NC, Narayan SS, Ruggero MA. Basilar-membrane responses to clicks at the base of the chinchilla cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1998; 103:1972-89. [PMID: 9566320 PMCID: PMC3582372 DOI: 10.1121/1.421377] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Basilar-membrane responses to clicks were measured, using laser velocimetry, at a site of the chinchilla cochlea located about 3.5 mm from the oval window (characteristic frequency or CF: typically 8-10 kHz). They consisted of relatively undamped oscillations with instantaneous frequency that increased rapidly (time constant: 200 microseconds) from a few kHz to CF. Such frequency modulation was evident regardless of stimulus level and was also present post-mortem. Responses grew linearly at low stimulus levels, but exhibited a compressive nonlinearity at higher levels. Velocity-intensity functions were almost linear near response onset but became nonlinear within 100 microseconds. Slopes could be as low as 0.1-0.2 dB/dB at later times. Hence, the response envelopes became increasingly skewed at higher stimulus levels, with their center of gravity shifting to earlier times. The phases of near-CF response components changed by nearly 180 degrees as a function of time. At high stimulus levels, this generated cancellation notches and phase jumps in the frequency spectra. With increases in click level, sharpness of tuning deteriorated and the spectral maximum shifted to lower frequencies. Response phases also changed as a function of increasing stimulus intensity, exhibiting relative lags and leads at frequencies somewhat lower and higher than CF, respectively. In most respects, the magnitude and phase frequency spectra of responses to clicks closely resembled those of responses to tones. Post-mortem responses were similar to in vivo responses to very intense clicks.
Collapse
Affiliation(s)
| | | | - S. Shyamla Narayan
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, and Institute for Neuroscience, Northwestern University, 2299 North Campus Drive, Evanston, Illinois 60208-3550
| | - Mario A. Ruggero
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, and Institute for Neuroscience, Northwestern University, 2299 North Campus Drive, Evanston, Illinois 60208-3550
| |
Collapse
|
36
|
de Boer E, Nuttall AL. The mechanical waveform of the basilar membrane. I. Frequency modulations ("glides") in impulse responses and cross-correlation functions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1997; 101:3583-3592. [PMID: 9193046 DOI: 10.1121/1.418319] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The purpose of this investigation is to present evidence from experimental as well as model results on temporal variations of the frequency of oscillation in the basilar membrane's impulse response. Stimuli were either clicks leading to a direct estimate of the impulse response, or bands of pseudo-random noise (one or two octaves wide) which lead to an indirect estimate of the impulse response via a cross-correlation procedure. The noise bands were centered at the best frequency of the BM location under observation. Responses were obtained from the basal turn of the guinea-pig cochlea, from a location with a best frequency (for the weakest stimuli) between 17.0 and 18.5 kHz. Data acquisition was done with a sample frequency of 208 kHz. Input-output cross-correlation functions were found to share with impulse responses the property that the initial oscillations have a noticeably lower frequency than the later ones. During the impulse response the frequency of oscillation increases gradually. This increase occurs and continues to beyond the time that the oscillations reach the largest amplitude. This frequency variation is called a "glide." Using the "analytic signal" method the frequency of oscillation is found to increase continually throughout the duration of the main lobe of oscillation, even at the lowest tested stimulus intensities (about 20 dB SPL). At high stimulus intensity both the direct and indirect impulse response change their appearance drastically but the glide retains its basic form. In the case of the direct impulse response estimate the glide can be attributed to temporal variation of the degree of nonlinearity. For the indirect impulse response this is not true, because with a constant level noise stimulus there is no regular temporal variation of nonlinearity. In this case the glide should be interpreted as an intrinsic property of the cochlear system. From our and others' data the glide was found to exist over a topographic frequency range of best frequencies of at least from 1.76 to 18 kHz. Two examples of present-day models of the cochlea are discussed of which one is found to demonstrate the glide phenomenon in its response, and the other one does not.
Collapse
Affiliation(s)
- E de Boer
- Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
Abstract
Sound onsets are salient and behaviorally relevant, and most auditory neurons discharge spikes locked to such transients. The acoustic parameters of sound onsets that shape such onset responses are unknown. In this paper is analyzed the timing of spikes of single neurons in the primary auditory cortex of barbiturate-anesthetized cats to the onsets of tone bursts. By parametric variation of sound pressure level, rise time, and rise function (linear or cosine-squared), the time courses of peak pressure, rate of change of peak pressure, and acceleration of peak pressure during the tones' onsets were systematically varied. For cosine-squared rise function tones of a given frequency and laterality, any neuron's mean first-spike latency was an invariant and inverse function of the maximum acceleration of peak pressure occurring at tone onset. For linear rise function tones, latency was an invariant and inverse function of the rate of change of peak pressure. Thus latency is independent of rise time or sound pressure level per se. Latency-acceleration functions, obtained with cosine-squared rise function tones under different stimulus conditions (frequency, laterality) from any given neuron and across the neuronal pool, were of strikingly similar shape. The same was true for latency-rate of change of peak pressure functions obtained with linear rise function tones. Latency-acceleration/rate of change of peak pressure functions could differ in their extent and in their position within the coordinate system. The positional differences reflect neuronal differences in minimum latency Lmin and in a sensitivity S to acceleration and rate of change of peak pressure (transient sensitivity), a hitherto unrecognized neuronal property that is distinctly different from firing threshold. Estimates of Lmin and S, which were derived by fitting a simple function to the neuronal latency-acceleration/rate of change of peak pressure functions, were independent of rise function. On average, Lmin decreased with increasing characteristic frequency (CF), but varied widely for neurons with the same CF. S varied with CF in a fashion similar to the cat's audiogram and, for a given neuron, varied with frequency. SD of first-spike latency was roughly proportional to the slope of the functions relating latency to acceleration/rate of change of peak pressure. Thus SD increased exponentially, rather than linearly, with mean latency, and did so at about twice the rate for linear than for cosine-squared rise function tones. The proportionality coefficients were quite similar across the neuronal pool and similar for both rise functions. Minimum SD increased nonlinearly with increasing Lmin. These findings suggest a peripheral origin of S and a peripheral establishment of latency-acceleration/rate of change of peak pressure functions. Because of the striking similarity in the shapes of such functions across the neuronal pool, sound onsets will produce orderly and predictable spatiotemporal patterns of first-spike timing, which could be used to instantaneously track rapid transients and to represent transient features by partly scale-invariant temporal codes.
Collapse
Affiliation(s)
- P Heil
- Department of Psychology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
|
39
|
Abstract
In a recent publication [Audiology 1992;31:301-312], A. Dancer argued that direct and indirect measures of basilar membrane motion are more consistent with theories of cochlear resonance than with the traveling-wave theory. The present communication reviews empirical evidence that contradicts Dancer's argument. Such evidence--recordings of mechanical responses of the basilar and Reissner's membranes to sound--strongly supports the existence of displacement waves that propagate on the basilar membrane from the base of the cochlea toward its apex.
Collapse
Affiliation(s)
- M A Ruggero
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Ill
| |
Collapse
|
40
|
|
41
|
Cooper NP, Rhode WS. Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 1992; 63:163-90. [PMID: 1464568 DOI: 10.1016/0378-5955(92)90083-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A heterodyne laser interferometer was used to observe the movements of small (approximately 20 microns) stainless-steel beads placed on the basilar membrane in the hook region of cat and guinea-pig cochleae. In several preparations, the displacement patterns observed exhibited sharp nonlinear tuning; in one cat this tuning was comparable to that commonly observed in single auditory-nerve fibers. The most sensitive frequencies of the preparations ranged from 31-40 kHz in the cat, and 28-32 kHz in the guinea-pig. The sharp tuning and nonlinearity of the basilar membrane responses was not apparent in surgically or acoustically traumatized preparations. The response nonlinearities were susceptible to temporary threshold shifts and disappeared within a few minutes post-mortem. Stimulus-related shifts in the baseline position of the basilar membrane were not apparent at low stimulus levels. Such shifts were occasionally observed at higher stimulus levels (e.g., > 90 dB SPL), but never approached the fundamental (oscillatory) component of basilar membrane vibration in magnitude. These findings are discussed in relation to previous observations by other workers.
Collapse
Affiliation(s)
- N P Cooper
- Department of Neurophysiology, University of Wisconsin, Madison
| | | |
Collapse
|
42
|
Ruggero MA, Robles L, Rich NC, Recio A. Basilar membrane responses to two-tone and broadband stimuli. Philos Trans R Soc Lond B Biol Sci 1992; 336:307-14; discussion 314-5. [PMID: 1354369 PMCID: PMC3578387 DOI: 10.1098/rstb.1992.0063] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The responses to sound of mammalian cochlear neurons exhibit many nonlinearities, some of which (such as two-tone rate suppression and intermodulation distortion) are highly frequency specific, being strongly tuned to the characteristic frequency (CF) of the neuron. With the goal of establishing the cochlear origin of these auditory-nerve nonlinearities, mechanical responses to clicks and to pairs of tones were studied in relatively healthy chinchilla cochleae at a basal site of the basilar membrane with CF of 8-10 kHz. Responses were also obtained in cochleae in which hair cell receptor potentials were reduced by systemic furosemide injection. Vibrations were recorded using either the Mössbauer technique or laser Doppler-shift velocimetry. Responses to tone pairs contained intermodulation distortion products whose magnitudes as a function of stimulus frequency and intensity were comparable to those of distortion products in cochlear afferent responses. Responses to CF tones could be selectively suppressed by tones with frequency either higher or lower than CF; in most respects, mechanical two-tone suppression resembled rate suppression in cochlear afferents. Responses to clicks displayed a CF-specific compressive nonlinearity, similar to that present in responses to single tones, which could be profoundly and selectively reduced by furosemide. The present findings firmly support the hypothesis that all CF-specific nonlinearities present in the auditory nerve originate in analogous phenomena of basilar membrane vibration. However, because of their lability, it is almost certain that the mechanical nonlinearities themselves originate in outer hair cells.
Collapse
Affiliation(s)
- M A Ruggero
- Department of Otolaryngology, University of Minnesota, Minneapolis 54414
| | | | | | | |
Collapse
|
43
|
Abstract
Recent evidence shows that the frequency-specific non-linear properties of auditory nerve and inner hair cell responses to sound, including their sharp frequency tuning, are fully established in the vibration of the basilar membrane. In turn, the sensitivity, frequency selectivity and non-linear properties of basilar membrane responses probably result from an influence of the outer hair cells.
Collapse
|
44
|
Versnel H, Schoonhoven R, Prijs VF. Single-fibre and whole-nerve responses to clicks as a function of sound intensity in the guinea pig. Hear Res 1992; 59:138-56. [PMID: 1618706 DOI: 10.1016/0378-5955(92)90111-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper describes a study of the intensity dependence of click-evoked responses of auditory-nerve fibres in relation to the simultaneously recorded compound action potential (CAP). Condensation and rarefaction clicks were presented to normal hearing guinea pigs over an intensity range of 60 dB. The recorded poststimulus time histograms (PSTHs) were characterized by the latency (tp), amplitude (Ap) and synchronization (Sp) of their dominant peak, parameters that are particularly important for the understanding of the CAP. For all fibres tp decreased monotonically with increasing intensity, in a continuous way for fibres with high characteristic frequency (CF greater than 3 kHz), and in discrete steps of one CF-cycle for low-CF (CF less than or equal to 3 kHz) fibres. An additional analysis of PSTH envelopes revealed that average latency shifts with intensity are similar for all CFs above 2 kHz. For all fibres Ap increased monotonically with intensity; the increase was stronger and maximum values were larger for low-CF than for high-CF fibres. A schematic model PSTH was then formulated on the basis of the experimental data. A sum of these model PSTHs from a hypothesized fibre population was convolved with an elemental unit response (Versnel et al., 1992) in order to simulate the compound action potential. Synthesized CAPs agreed with experimental CAPs in their main aspects.
Collapse
Affiliation(s)
- H Versnel
- ENT Department, University Hospital, Leiden, The Netherlands
| | | | | |
Collapse
|
45
|
Wang J, Li Q, Dong W, Chen J. Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses. Hear Res 1992; 59:31-8. [PMID: 1629044 DOI: 10.1016/0378-5955(92)90099-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes in endocochlear potentials (EP), cochlear microphonics (CM), and compound action potentials (CAP) with noise exposure were investigated in guinea pigs. The animals were anesthetized and immobilized and exposed to white noise at intensities ranging from 105 to 125 dB. The negative EP (N-EP) was induced by anoxia and was investigated during and after noise exposure. It was found that the general EP (G-EP, the sum of both positive EP (P-EP) and N-EP) increased remarkably during exposure to 115 dB noise but decreased during exposure to 125 dB noise. A smaller absolute value of N-EP was encountered only during exposure to 125 dB noise. The results shed light on the relationship between EP and CM, CAP changes, and the potential mechanism of EP change and its significance in noise-induced hearing loss.
Collapse
Affiliation(s)
- J Wang
- Fundamental Medical Department, Nanjing Railway Medical College, China
| | | | | | | |
Collapse
|
46
|
|
47
|
Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 1991. [PMID: 2010805 DOI: 10.1523/jneurosci.11-04-01057.1991] [Citation(s) in RCA: 327] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A widely held hypothesis of mammalian cochlear function is that the mechanical responses to sound of the basilar membrane depend on transduction by the outer hair cells. We have tested this hypothesis by studying the effect upon basilar membrane vibrations (measured by means of either the Mössbauer technique or Doppler-shift laser velocimetry) of systemic injection of furosemide, a loop diuretic that decreases transduction currents in hair cells. Furosemide reversibly altered the responses to tones and clicks of the chinchilla basilar membrane, causing response-magnitude reductions that were largest (up to 61 dB, averaging 25-30 dB) at low stimulus intensities at the characteristic frequency (CF) and small or nonexistent at high intensities and at frequencies far removed from CF. Furosemide also induced response-phase lags that were largest at low stimulus intensities (averaging 77 degrees) and were confined to frequencies close to CF. These results constitute the most definitive demonstration to date that mechanical responses of the basilar membrane are dependent on the normal function of the organ of Corti and strongly implicate the outer hair cells as being responsible for the high sensitivity and frequency selectivity of basilar membrane responses. A corollary of these findings is that sensorineural hearing deficits in humans due to outer hair cell loss reflect pathologically diminished vibrations of the basilar membrane.
Collapse
|
48
|
Ruggero MA, Rich NC. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration. Hear Res 1991; 51:215-30. [PMID: 1827787 PMCID: PMC3579526 DOI: 10.1016/0378-5955(91)90038-b] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A commercially-available laser Doppler-shift velocimeter has been coupled to a compound microscope equipped with ultra-long-working-distance objectives for the purpose of measuring basilar membrane vibrations in the chinchilla. The animal preparation is nearly identical to that used in our laboratory for similar measurements using the Mössbauer technique. The vibrometer head is mounted on the third tube of the microscope's trinocular head and its laser beam is focused on high-refractive-index glass microbeads (10-30 microns) previously dropped, through the perilymph of scala tympani, on the basilar membrane. For equal sampling times, overall sensitivity of the laser velocimetry system is at least one order of magnitude greater than usually attained using the Mössbauer technique. However, the most important advantage of laser-velocimetry vis-à-vis the Mössbauer technique is its linearity, which permits undistorted recording of signals over a wide velocity range. Thus, for example, we have measured basilar-membrane responses to clicks whose waveforms have dynamic ranges exceeding 60 dB.
Collapse
Affiliation(s)
- M A Ruggero
- Department of Otolaryngology, University of Minnesota, Minneapolis 55414
| | | |
Collapse
|
49
|
Heil P, Scheich H. Functional organization of the avian auditory cortex analogue. II. Topographic distribution of latency. Brain Res 1991; 539:121-5. [PMID: 2015497 DOI: 10.1016/0006-8993(91)90693-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Onset latencies of units were measured at 70 dB SPL in the auditory forebrain area (field L/Hv-complex) of awake domestic chicks. Latencies ranged from 8.8 to 75 ms. Latencies of units averaged for octave bands of best frequencies (BF) declined with increasing BF. Latencies were topographically distributed in the radial but not in the longitudinal dimension of frequency band laminae (FB laminae). Latencies were shortest in the input-layer L2 and increased systematically towards the postsynaptic layers L3 and L1/Hv, respectively. This topography visualizes the spatiotemporal spread of onset excitation and reflects the hierarchical processing within the structure. It also indicates a topographical representation of temporal resolution.
Collapse
Affiliation(s)
- P Heil
- Institute of Zoology, Technical University Darmstadt, F.R.G
| | | |
Collapse
|
50
|
Abstract
The neural correlates of gap detection were examined in a population of single auditory nerve fibers in the chinchilla. Acoustic stimuli consisted of 120 ms noise bursts (30-80 dB SPL) which contained silent intervals (gaps: 1, 2, 3, 4,5, 6 and 10 ms) at the midpoint. The neural response to the gap was quantified by the modulation index, (MAX-MIN)/AVE, which accounts for the steady state discharge rate before the gap (AVE), the minimum firing rate during the gap (MIN), and the maximum firing rate after the gap (MAX). In general, the modulation index increased as a function of gap width and stimulus level. Furthermore, there was a positive correlation between the modulation index and the characteristic frequency of the fiber. To estimate how detection could be based on the neuronal response, a criterion-free measure, analogous to d'. was calculated using z-scores obtained from the distributions of modulation index values collected before and during the gap and used to predict percent correct values for chinchilla psychophysical studies. The values increased with gap duration in a sigmoidal manner much like the psychometric functions in the chinchilla. In general, the neural gap thresholds obtained approximated those obtained psychophysically, although they were less affected by stimulus level.
Collapse
|