1
|
Henry KS, Guo AA, Abrams KS. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy. Hear Res 2024; 441:108927. [PMID: 38096707 PMCID: PMC10775186 DOI: 10.1016/j.heares.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| | - Anna A Guo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Wang Y, Abrams KS, Youngman M, Henry KS. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2023; 24:473-485. [PMID: 37798548 PMCID: PMC10695905 DOI: 10.1007/s10162-023-00910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking. METHODS We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status. RESULTS Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I. CONCLUSION Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.
Collapse
Affiliation(s)
- Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Margaret Youngman
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA
| | - Kenneth S Henry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Henry KS. Animal models of hidden hearing loss: Does auditory-nerve-fiber loss cause real-world listening difficulties? Mol Cell Neurosci 2022; 118:103692. [PMID: 34883241 PMCID: PMC8928575 DOI: 10.1016/j.mcn.2021.103692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Afferent innervation of the cochlea by the auditory nerve declines during aging and potentially after sound overexposure, producing the common pathology known as cochlear synaptopathy. Auditory-nerve-fiber loss is difficult to detect with the clinical audiogram and has been proposed to cause 'hidden hearing loss' including impaired speech-in-noise perception. While evidence that auditory-nerve-fiber loss causes hidden hearing loss in humans is controversial, behavioral animal models hold promise to rigorously test this hypothesis because neural lesions can be induced and histologically validated. Here, we review recent animal behavioral studies on the impact of auditory-nerve-fiber loss on perception in a range of species. We first consider studies of tinnitus and hyperacusis inferred from acoustic startle reflexes, followed by a review of operant-conditioning studies of the audiogram, temporal integration for tones of varying duration, temporal resolution of gaps in noise, and tone-in-noise detection. Studies quantifying the audiogram show that tone-in-quiet sensitivity is unaffected by auditory-nerve-fiber loss unless neural lesions exceed 80%, at which point large deficits are possible. Changes in other aspects of perception, which were typically investigated for moderate-to-severe auditory-nerve-fiber loss of 50-70%, appear heterogeneous across studies and might be small compared to impairment caused by hair-cell pathologies. Future studies should pursue recent findings that behavioral sensitivity to brief tones and silent gaps in noise may be particularly vulnerable to auditory-nerve-fiber loss. Furthermore, aspects of auditory perception linked to central inhibition and fine neural response timing, such as modulation masking release and spatial hearing, may be productive directions for further animal behavioral research.
Collapse
Affiliation(s)
- Kenneth S Henry
- Departments of Otolaryngology, Biomedical Engineering, and Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Henry KS, Abrams KS. Normal Tone-In-Noise Sensitivity in Trained Budgerigars despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss. J Neurosci 2021; 41:118-129. [PMID: 33177067 PMCID: PMC7786208 DOI: 10.1523/jneurosci.2104-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/02/2020] [Accepted: 10/24/2021] [Indexed: 02/01/2023] Open
Abstract
Loss of auditory-nerve (AN) afferent cochlear innervation is a prevalent human condition that does not affect audiometric thresholds and therefore remains largely undetectable with standard clinical tests. AN loss is widely expected to cause hearing difficulties in noise, known as "hidden hearing loss," but support for this hypothesis is controversial. Here, we used operant conditioning procedures to examine the perceptual impact of AN loss on behavioral tone-in-noise (TIN) sensitivity in the budgerigar (Melopsittacus undulatus; of either sex), an avian animal model with complex hearing abilities similar to humans. Bilateral kainic acid (KA) infusions depressed compound AN responses by 40-70% without impacting otoacoustic emissions or behavioral tone sensitivity in quiet. Surprisingly, animals with AN damage showed normal thresholds for tone detection in noise (0.1 ± 1.0 dB compared to control animals; mean difference ± SE), even under a challenging roving-level condition with random stimulus variation across trials. Furthermore, decision-variable correlations (DVCs) showed no difference for AN-damaged animals in their use of energy and envelope cues to perform the task. These results show that AN damage has less impact on TIN detection than generally expected, even under a difficult roving-level condition known to impact TIN detection in individuals with sensorineural hearing loss (SNHL). Perceptual deficits could emerge for different perceptual tasks or with greater AN loss but are potentially minor compared with those caused by SNHL.SIGNIFICANCE STATEMENT Loss of auditory-nerve (AN) cochlear innervation is a common problem in humans that does not affect audiometric thresholds on a clinical hearing test. AN loss is widely expected to cause hearing problems in noise, known as "hidden hearing loss," but existing studies are controversial. Here, using an avian animal model with complex hearing abilities similar to humans, we examined for the first time the impact of an experimentally induced AN lesion on behavioral tone sensitivity in noise. Surprisingly, AN-lesioned animals showed no difference in hearing performance in noise or detection strategy compared with controls. These results show that perceptual deficits from AN damage are smaller than generally expected, and potentially minor compared with those caused by sensorineural hearing loss (SNHL).
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| |
Collapse
|
5
|
Cai H, Dent ML. Attention capture in birds performing an auditory streaming task. PLoS One 2020; 15:e0235420. [PMID: 32589692 PMCID: PMC7319309 DOI: 10.1371/journal.pone.0235420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022] Open
Abstract
Numerous animal models have been used to investigate the neural mechanisms of auditory processing in complex acoustic environments, but it is unclear whether an animal’s auditory attention is functionally similar to a human’s in processing competing auditory scenes. Here we investigated the effects of attention capture in birds performing an objective auditory streaming paradigm. The classical ABAB… patterned pure tone sequences were modified and used for the task. We trained the birds to selectively attend to a target stream and only respond to the deviant appearing in the target stream, even though their attention may be captured by a deviant in the background stream. When no deviant appeared in the background stream, the birds experience the buildup of streaming process in a qualitatively similar way as they did in a subjective paradigm. Although the birds were trained to selectively attend to the target stream, they failed to avoid the involuntary attention switch caused by the background deviant, especially when the background deviant was sequentially unpredictable. Their global performance deteriorated more with increasingly salient background deviants, where the buildup process was reset by the background distractor. Moreover, sequential predictability of the background deviant facilitated the recovery of the buildup process after attention capture. This is the first study that addresses the perceptual consequences of the joint effects of top-down and bottom-up attention in behaving animals.
Collapse
Affiliation(s)
- Huaizhen Cai
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wagner B, Bowling DL, Hoeschele M. Is consonance attractive to budgerigars? No evidence from a place preference study. Anim Cogn 2020; 23:973-987. [PMID: 32572655 PMCID: PMC7415764 DOI: 10.1007/s10071-020-01404-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022]
Abstract
Consonant tone combinations occur naturally in the overtone series of harmonic sounds. These include sounds that many non-human animals produce to communicate. As such, non-human animals may be attracted to consonant intervals, interpreting them, e.g., as a feature of important social stimuli. There is preliminary evidence of attraction to consonance in various bird species in the wild, but few experimental studies with birds. We tested budgerigars (Melopsittacus undulatus) for attraction to consonant over dissonant intervals in two experiments. In Experiment 1, we tested humans and budgerigars using a place preference paradigm in which individuals could explore an environment with multiple sound sources. Both species were tested with consonant and dissonant versions of a previously studied piano melody, and we recorded time spent with each stimulus as a measure of attraction. Human females spent more time with consonant than dissonant stimuli in this experiment, but human males spent equal time with both consonant and dissonant stimuli. Neither male nor female budgerigars spent more time with either stimulus type. In Experiment 2, we tested budgerigars with more ecologically relevant stimuli comprised of sampled budgerigar vocalizations arranged into consonant or dissonant chords. These stimuli, however, also failed to produce any evidence of preference in budgerigar responses. We discuss these results in the context of ongoing research on the study of consonance as a potential general feature of auditory perception in animals with harmonic vocalizations, with respect to similarities and differences between human and budgerigar vocal behaviour, and future methodological directions.
Collapse
Affiliation(s)
- Bernhard Wagner
- Acoustics Research Institute, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Daniel L Bowling
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Rd. MSLS P-126, Stanford, CA, 94305-5485, USA
- Department of Cognitive Biology, Althanstrasse 14 (UZA1), 1090, Vienna, Austria
| | - Marisa Hoeschele
- Acoustics Research Institute, Wohllebengasse 12-14, 1040, Vienna, Austria.
- Department of Cognitive Biology, Althanstrasse 14 (UZA1), 1090, Vienna, Austria.
| |
Collapse
|
7
|
Henry KS, Amburgey KN, Abrams KS, Carney LH. Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:984. [PMID: 32113293 PMCID: PMC7010520 DOI: 10.1121/10.0000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 06/05/2023]
Abstract
Previous studies evaluated cues for masked tone detection using reproducible noise waveforms. Human results founded on this approach suggest that tone detection is based on combined energy and envelope (ENV) cues, but detection cues in nonhuman species are less clear. Decision variable correlation (DVC) was used to evaluate tone-in-noise detection cues in the budgerigar, an avian species with human-like behavioral sensitivity to many complex sounds. DVC quantifies a model's ability to predict trial-by-trial variance in behavioral responses. Budgerigars were behaviorally conditioned to detect 500-Hz tones in wideband (WB; 100-3000 Hz) and narrowband (NB; 452-552 Hz) noise. Behavioral responses were obtained using a single-interval, two-alternative discrimination task and two-down, one-up adaptive tracking procedures. Tone-detection thresholds in WB noise were higher than human thresholds, putatively due to broader peripheral frequency tuning, whereas NB thresholds were within ∼1 dB of human results. Budgerigar average hit and false-alarm rates across noise waveforms were consistent, highly correlated across subjects, and correlated to human results. Trial-by-trial behavioral results in NB noise were best explained by a model combining energy and ENV cues. In contrast, WB results were better predicted by ENV-based or multiple-channel energy detector models. These results suggest that budgerigars and humans use similar cues for tone-in-noise detection.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642, USA
| | - Kassidy N Amburgey
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
8
|
Wong SJ, Abrams KS, Amburgey KN, Wang Y, Henry KS. Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar. Hear Res 2019; 374:24-34. [PMID: 30703625 PMCID: PMC6382589 DOI: 10.1016/j.heares.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Auditory-nerve fibers are lost steadily with age and as a possible consequence of noise-induced glutamate excitotoxicity. Auditory-nerve loss in the absence of other cochlear pathologies is thought to be undetectable with a pure-tone audiogram while degrading real-world speech perception (hidden hearing loss). Perceptual deficits remain unclear, however, due in part to the limited behavioral capacity of existing rodent models to discriminate complex sounds. The budgerigar is an avian vocal learner with human-like behavioral sensitivity to many simple and complex sounds and the capacity to mimic speech. Previous studies in this species show that intracochlear kainic-acid infusion reduces wave 1 of the auditory brainstem response by 40-70%, consistent with substantial excitotoxic auditory-nerve damage. The present study used operant-conditioning procedures in trained budgerigars to quantify kainic-acid effects on tone detection across frequency (0.25-8 kHz; the audiogram) and as a function of duration (20-160 ms; temporal integration). Tone thresholds in control animals were lowest from 1 to 4 kHz and decreased with increasing duration as in previous studies of the budgerigar. Behavioral results in kainic-acid-exposed animals were as sensitive as in controls, suggesting preservation of the audiogram and temporal integration despite auditory-nerve loss associated with up to 70% wave 1 reduction. Distortion-product otoacoustic emissions were also preserved in kainic-acid exposed animals, consistent with normal hair-cell function. These results highlight considerable perceptual resistance of tone-detection performance with selective auditory-nerve loss. Future behavioral studies in budgerigars with auditory-nerve damage can use complex speech-like stimuli to help clarify aspects of auditory perception impacted by this common cochlear pathology.
Collapse
Affiliation(s)
- Stephanie J Wong
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
| | - Kassidy N Amburgey
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Cai H, Screven LA, Dent ML. Behavioral measurements of auditory streaming and build-up by budgerigars ( Melopsittacus undulatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:1508. [PMID: 30424658 DOI: 10.1121/1.5054297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The perception of the build-up of auditory streaming has been widely investigated in humans, while it is unknown whether animals experience a similar perception when hearing high (H) and low (L) tonal pattern sequences. The paradigm previously used in European starlings (Sturnus vulgaris) was adopted in two experiments to address the build-up of auditory streaming in budgerigars (Melopsittacus undulatus). In experiment 1, different numbers of repetitions of low-high-low triplets were used in five conditions to study the build-up process. In experiment 2, 5 and 15 repetitions of high-low-high triplets were used to investigate the effects of repetition rate, frequency separation, and frequency range of the two tones on the birds' streaming perception. Similar to humans, budgerigars subjectively experienced the build-up process in auditory streaming; faster repetition rates and larger frequency separations enhanced the streaming perception, and these results were consistent across the two frequency ranges. Response latency analysis indicated that the budgerigars needed a longer amount of time to respond to stimuli that elicited a salient streaming perception. These results indicate, for the first time using a behavioral paradigm, that budgerigars experience a build-up of auditory streaming in a manner similar to humans.
Collapse
Affiliation(s)
- Huaizhen Cai
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Laurel A Screven
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
10
|
Abstract
Peter Marler's fascination with richness of birdsong included the notion that birds attended to some acoustic features of birdsong, likely in the time domain, which were inaccessible to human listeners. While a considerable amount is known about hearing and vocal communication in birds, how exactly birds perceive their auditory world still remains somewhat of a mystery. For sure, field and laboratory studies suggest that birds hear the spectral, gross temporal features (i.e. envelope) and perhaps syntax of birdsong much like we do. However, there is also ample anecdotal evidence that birds are consistently more sensitive than humans to at least some aspects of their song. Here we review several psychophysical studies supporting Marler's intuitions that birds have both an exquisite sensitivity to temporal fine structure and may be able to focus their auditory attention on critical acoustic details of their vocalizations. Zebra finches, Taeniopygia guttata, particularly, seem to be extremely sensitive to temporal fine structure in both synthetic stimuli and natural vocalizations. This finding, together with recent research highlighting the complexity of zebra finch vocalizations across contexts, raises interesting questions about what information zebra finches may be communicating in temporal fine structure. Together these findings show there is an acoustic richness in bird vocalizations that is available to birds but likely out of reach for human listeners. Depending on the universality of these findings, it raises questions about how we approach the study of birdsong and whether potentially significant information is routinely being encoded in the temporal fine structure of avian vocal signals.
Collapse
Affiliation(s)
- Robert J. Dooling
- Department of Psychology, University of Maryland, College Park, MD, U.S.A
| | - Nora H. Prior
- Department of Psychology, University of Maryland, College Park, MD, U.S.A
| |
Collapse
|
11
|
Moravec ML, Striedter GF, Burley NT. ‘Virtual Parrots’ Confirm Mating Preferences of Female Budgerigars. Ethology 2010. [DOI: 10.1111/j.1439-0310.2010.01809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Klinge A, Klump GM. Frequency difference limens of pure tones and harmonics within complex stimuli in Mongolian gerbils and humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:304-314. [PMID: 19173417 DOI: 10.1121/1.3021315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Frequency difference limens (FDLs) for pure tones between 200 and 6400 Hz and for the first, the second, or the eighth harmonic of an 800 Hz complex in four Mongolian gerbils (Meriones unguiculatus) were determined using a Go/NoGo-procedure. The 12 harmonics of the complex started either in sine phase or at a random phase. Gerbils showed very high pure tone FDLs ranging from 17.1% Weber fraction (200 Hz) to 6.7% (6400 Hz). They performed much better in detecting mistuning of a harmonic in the complex in the sine phase condition with FDLs decreasing from 0.07% for the first harmonic to 0.02% for the eighth harmonic. FDLs were about one order of magnitude higher when temporal cues were degraded by randomizing the starting phase of every component in the harmonic complex for every stimulus. These results are strikingly different from those obtained in four human subjects who needed about four times higher frequency shifts than gerbils for detecting a mistuned component in a sine phase complex and showed similar detection of mistuning in the random phase condition. The results are discussed in relation to possible processing mechanisms for pure tone frequency discrimination and for detecting mistuning in harmonic complex stimuli.
Collapse
Affiliation(s)
- Astrid Klinge
- Department of Biology and Environmental Sciences, Carl-von-Ossietzky University Oldenburg, Postfach, Oldenburg, Germany.
| | | |
Collapse
|
13
|
Cardoso GC, Mamede AT, Atwell JW, Mota PG, Ketterson ED, Price TD. Song Frequency Does Not Reflect Differences in Body Size among Males in Two Oscine Species. Ethology 2008. [DOI: 10.1111/j.1439-0310.2008.01552.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong. Nature 2007; 450:1240-4. [PMID: 18097411 DOI: 10.1038/nature06390] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/16/2007] [Indexed: 11/08/2022]
|
15
|
Phillmore LS. Discrimination: from behaviour to brain. Behav Processes 2007; 77:285-97. [PMID: 18096329 DOI: 10.1016/j.beproc.2007.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 12/12/2022]
Abstract
Discrimination is a skill needed by many organisms for survival: decisions about food, shelter, and mate selection all require the ability to distinguish among stimuli. This article reviews the how and why of discrimination and how researchers may exploit this natural skill in the laboratory to learn more about what features of stimuli animals use to discriminate. The paper then discusses the possible neurophysiological basis of discrimination and proposes a model, based on one of stimulus-association put forth by Beninger and Gerdjikov (2004) [Beninger, R.J., Gerdjikov, T.V., 2004. The role of signaling molecules in reward-related incentive learning. Neurotox. Res., 6, 91-104], to account for the role of dopamine in how an animal learns to discriminate rewarded from non-rewarded stimuli.
Collapse
|
16
|
Lohr B, Dooling RJ, Bartone S. The discrimination of temporal fine structure in call-like harmonic sounds by birds. ACTA ACUST UNITED AC 2006; 120:239-51. [PMID: 16893261 DOI: 10.1037/0735-7036.120.3.239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thresholds for discriminating changes in the temporal fine structure of call-like, harmonic sounds were measured in zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). Birds could detect changes in periods as short as 1.225 ms at near 100% accuracy even when spectral and envelope cues were identical, as in time-reversed stimuli. Humans performed poorly on such stimuli, paralleling results from previous studies. Bird thresholds were in the range of those reported in neurophysiological studies of the songbird high vocal center (HVC) to temporally modified conspecific songs. Taken together, these results show that birds can hear differences in temporal fine structure in their natural vocalizations that go beyond human capabilities, but whether these abilities have communicative relevance remains to be seen.
Collapse
Affiliation(s)
- Bernard Lohr
- Department of Psychology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
17
|
Gardner TJ, Magnasco MO. Instantaneous frequency decomposition: an application to spectrally sparse sounds with fast frequency modulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:2896-903. [PMID: 15957760 DOI: 10.1121/1.1863072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Classical time-frequency analysis is based on the amplitude responses of bandpass filters, discarding phase information. Instantaneous frequency analysis, in contrast, is based on the derivatives of these phases. This method of frequency calculation is of interest for its high precision and for reasons of similarity to cochlear encoding of sound. This article describes a methodology for high resolution analysis of sparse sounds, based on instantaneous frequencies. In this method, a comparison between tonotopic and instantaneous frequency information is introduced to select filter positions that are well matched to the signal. Second, a cross-check that compares frequency estimates from neighboring channels is used to optimize filter bandwidth, and to signal the quality of the analysis. These cross-checks lead to an optimal time-frequency representation without requiring any prior information about the signal. When applied to a signal that is sufficiently sparse, the method decomposes the signal into separate time-frequency contours that are tracked with high precision. Alternatively, if the signal is spectrally too dense, neighboring channels generate inconsistent estimates-a feature that allows the method to assess its own validity in particular contexts. Similar optimization principles may be present in cochlear encoding.
Collapse
Affiliation(s)
- T J Gardner
- Laboratory of Mathematical Physics, The Rockefeller University, 1230 York Ave, New York, New York 10021, USA.
| | | |
Collapse
|
18
|
LOGUE DAVIDM, GAMMON DAVIDE, BAKER MYRONC. MINIDISC RECORDERS VERSUS AUDIOCASSETTE RECORDERS: A PERFORMANCE COMPARISON. BIOACOUSTICS 2005. [DOI: 10.1080/09524622.2005.9753536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Affiliation(s)
- Anthony A Pilny
- Bobst Hospital of The Animal Medical Center, New York, NY 10021, USA.
| |
Collapse
|
20
|
|
21
|
Dent ML, Dooling RJ. The Precedence Effect in Three Species of Birds (Melopsittacus undulatus, Serinus canaria, and Taeniopygia guttata). J Comp Psychol 2004; 118:325-31. [PMID: 15482060 DOI: 10.1037/0735-7036.118.3.325] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The perceived locations of paired auditory images, simulating direct sounds and their echoes, have been recently studied in budgerigars (Melopsittacus undulatus; M. L. Dent & R. J. Dooling, 2003a, 2003b). In this article, the authors extend those experiments to include measurements of the precedence effect using a discrimination paradigm in two additional bird species: canaries (Serinus canaria) and zebra finches (Taeniopygia guttata). Although time courses of summing localization, localization dominance, and echo thresholds were similar across all species, budgerigars had slightly higher overall levels of discrimination. The results from these experiments add further support that the precedence effect in birds is similar to that found in other animals and that the ability to suppress echoes that might degrade localization and auditory object perception may be a general property of the vertebrate auditory system.
Collapse
Affiliation(s)
- Micheal L Dent
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|