1
|
Grogan DP, Abduhalikov T, Kassell NF, Moosa S. Future Directions of MR-guided Focused Ultrasound. Magn Reson Imaging Clin N Am 2024; 32:705-715. [PMID: 39322359 DOI: 10.1016/j.mric.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) allows for the incisionless treatment of intracranial lesions in an outpatient setting. While this is currently approved for the surgical treatment of essential tremor and Parkinson's disease, advancements in imaging and ultrasound technology are allowing for the expansion of treatment indications to other intracranial diseases. In addition, these advancements are also making MRgFUS treatments easier, safer, and more efficacious.
Collapse
Affiliation(s)
- Dayton P Grogan
- Department of Neurosurgery, University of Virginia Hospital, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Timour Abduhalikov
- University of Virginia, School of Medicine, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA 22903, USA
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia Hospital, PO Box 800212, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Lei W, Chang S, Tian F, Zou X, Hu J, Qian S. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 109:107005. [PMID: 39098097 PMCID: PMC11345312 DOI: 10.1016/j.ultsonch.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Experimental studies have shown that ultrasonic cavitation can reversibly open the blood-brain barrier (BBB) to assist drug delivery. Nevertheless, the majority of the present study focused on experimental aspects of BBB opening. In this study, we developed a three-bubble-liquid-solid model to investigate the dynamic behavior of multiple bubbles within the blood vessels, and elucidate the physical mechanism of drug molecules through endothelial cells under ultrasonic cavitation excitation. The results showed that the large bubbles have a significant inhibitory effect on the movement of small bubbles, and the vibration morphology of intravascular microbubbles was affected by the acoustic parameters, microbubble size, and the distance between the microbubbles. The ultrasonic cavitation can significantly enhance the unidirectional flux of drug molecules, and the unidirectional flux growth rate of the wall can reach more than 5 %. Microjets and shock waves emitted from microbubbles generate different stress distribution patterns on the vascular wall, which in turn affects the pore size of the vessel wall and the permeability of drug molecules. The vibration morphology of microbubbles is related to the concentration, arrangement and scale of microbubbles, and the drug permeation impact can be enhanced by optimizing bubble size and acoustic parameters. The results offer an extensive depiction of the factors influencing the blood-brain barrier opening through ultrasonic cavitation, and the model may provide a potential technique to actively regulate the penetration capacity of drugs through endothelial layer of the neurovascular system by regulating BBB opening.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Zhang Q, Zhang G, Luo L, Liu Z, Zhu Y, Fan Z, Guo X, Wu X, Zhang D, Tu J. Improved assessment sensitivity of time-varying cavitation events based on wavelet analysis. ULTRASONICS 2023; 138:107227. [PMID: 38118237 DOI: 10.1016/j.ultras.2023.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Ultrasonic cavitation, characterized by the oscillation or abrupt collapse of cavitation nuclei in response to ultrasound stimulation, plays a significant role in various applications within both industrial and biomedical sectors. In particular, inertial cavitation (IC) has garnered considerable attention due to the resulting mechanical, chemical, and thermal effects. Passive cavitation detection (PCD) has emerged as a valuable technique for monitoring this procedure. While the fast Fourier transform (FFT) is a widely used algorithm to analyze IC-induced broadband noise detected by PCD system, it may not adequately capture the time-varying instability of cavitation due to potential nuclei collapse during ultrasound irradiation. In contrast, the continuous wavelet transform offers a more flexible approach, enabling more sensitive analysis of signals with varying frequencies over time. In this study, nanodiamond (ND) and its derivative, nitro-doped nanodiamond (N-AND), known to possess cavitation potential from previous research, were chosen as the source of cavitation nuclei. The cavitation signals detected by PCD were subjected to both FFT and wavelet analyses, with their results comprehensively compared. This research showcased the feasibility of employing wavelet analysis for effective inertial cavitation evaluation. It provided the advantage of monitoring the temporal evolution of cavitation events in real-time, enhancing sensitivity to weak and unstable cavitation signals, especially those in higher order components (3rd and 4th order). Additionally, it yielded a higher level of precision in determining IC thresholds and doses. Furthermore, the inclusion of time information through wavelet analysis offered insights into the limitations of low-cycle ultrasound in inducing IC. This study introduces a novel perspective for more sensitive and precise cavitation assessment, leveraging time and frequency data from wavelet analysis, and holds promise for effective utilization of cavitation effects while minimizing losses and damages resulting from unintended cavitation events.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Lan Luo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Zijun Liu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Zheng Fan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xiaoge Wu
- Environment Science and Engineering College, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 100080, China.
| |
Collapse
|
4
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|
5
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
6
|
Pickard D, Martynowych D, Lem J, Koshakji A, Lin S, Zhao X, Nelson K, Giovanardi B, Radovitzky R. Converging-diverging shock-driven instabilities along soft hydrogel surfaces. Phys Rev E 2023; 107:L022601. [PMID: 36932538 DOI: 10.1103/physreve.107.l022601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class of impulsively excited surface instability that is driven by cycles of internal shock reflections.
Collapse
Affiliation(s)
- Daniel Pickard
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dmitro Martynowych
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jet Lem
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anwar Koshakji
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Keith Nelson
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bianca Giovanardi
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Faculty of Aerospace Engineering, Delft University of Technology, 2628 CD Delft, Netherlands
| | - Raul Radovitzky
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Haskell SC, Lu N, Stocker GE, Xu Z, Sukovich JR. Monitoring cavitation dynamics evolution in tissue mimicking hydrogels for repeated exposures via acoustic cavitation emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:237. [PMID: 36732269 PMCID: PMC10162839 DOI: 10.1121/10.0016849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 05/07/2023]
Abstract
A 700 kHz histotripsy array is used to generate repeated cavitation events in agarose, gelatin, and polyacrylamide hydrogels. High-speed optical imaging, a broadband hydrophone, and the narrow-band receive elements of the histotripsy array are used to capture bubble dynamics and acoustic cavitation emissions. Bubble radii, lifespan, shockwave amplitudes are noted to be measured in close agreement between the different observation methods. These features also decrease with increasing hydrogel stiffness for all of the tested materials. However, the evolutions of these properties during the repeated irradiations vary significantly across the different material subjects. Bubble maximum radius initially increases, then plateaus, and finally decreases in agarose, but remains constant across exposures in gelatin and polyacrylamide. The bubble lifespan increases monotonically in agarose and gelatin but decreases in polyacrylamide. Collapse shockwave amplitudes were measured to have different-shaped evolutions between all three of the tested materials. Bubble maximum radii, lifespans, and collapse shockwave amplitudes were observed to express evolutions that are dependent on the structure and stiffness of the nucleation medium.
Collapse
Affiliation(s)
- Scott C Haskell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Greyson E Stocker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
8
|
Kim C, Choi WJ, Kang W. Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact. Acta Biomater 2022; 142:160-173. [PMID: 35189381 DOI: 10.1016/j.actbio.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Cavitation bubbles in the human body, when subjected to impact, are being increasingly considered as a possible brain injury mechanism. However, the onset of cavitation and its complex dynamics in biological materials remain unclear. Our experimental results using soft gels as a tissue simulant show that the critical acceleration (acr) at cavitation nucleation monotonically increases with increasing stiffness of gelatin A/B, while acr for agarose and agar initially increases but is followed by a plateau or even decrease after stiffness reach to ∼100 kPa. Our image analyses of cavitation bubbles and theoretical work reveal that the observed trends in acr are directly linked to how bubbles grow in each gel. Gelatin A/B, regardless of their stiffness, form a localized damaged zone (tens of nanometers) at the gel-bubble interface during bubble growth. In contrary, the damaged zone in agar/agarose becomes significantly larger (> 100 times) with increasing shear modulus, which triggers the transition from formation of a small, damaged zone to activation of crack propagation. STATEMENT OF SIGNIFICANCE: We have studied cavitation nucleation and bubble growth in four different types of soft gels (i.e., tissue simulants) under translational impact. The critical linear acceleration for cavitation nucleation has been measured in the simulants by utilizing a recently developed method that mimics acceleration profiles of typical head blunt events. Each gel type exhibits significantly different trends in the critical acceleration and bubble shape (e.g., A gel-specific sphere-to-saucer transition) with increasing gel stiffness. Our theoretical framework, based on the concepts of a damaged zone and crack propagation in each gel, explains underlying mechanisms of the experimental observations. Our in-depth studies shed light on potential links between traumatic brain injuries and cavitation bubbles induced by translational acceleration, the overlooked mechanism in the literature.
Collapse
Affiliation(s)
- Chunghwan Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Won June Choi
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Wonmo Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
9
|
Yang J, Tzoumaka A, Murakami K, Johnsen E, Henann DL, Franck C. Predicting complex nonspherical instability shapes of inertial cavitation bubbles in viscoelastic soft matter. Phys Rev E 2021; 104:045108. [PMID: 34781461 DOI: 10.1103/physreve.104.045108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
Inertial cavitation in soft matter is an important phenomenon featured in a wide array of biological and engineering processes. Recent advances in experimental, theoretical, and numerical techniques have provided access to a world full of nonlinear physics, yet most of our quantitative understanding to date has been centered on a spherically symmetric description of the cavitation process in water. However, cavitation bubble growth and collapse rarely occur in a perfectly symmetrical fashion, particularly in soft materials. Predicting the onset of dynamically arising, nonspherical instabilities in soft matter has remained a significant, unresolved challenge, in part due to the additional constitutive complexities introduced by the surrounding nonlinear viscoelastic solid. Here, we provide a new theoretical framework capable of accurately predicting the onset of nonspherical instability shapes of a bubble in a soft material by explicitly accounting for all pertinent nonlinear interactions between the cavitation bubble and the solid surroundings. Comparison with high-resolution experimental images from laser-induced cavitation events in a polyacrylamide hydrogel show excellent agreement. Interestingly, and consistent with experimental findings, our model predicts the emergence of various dynamic instability shapes for circumferential bubble stretch ratios greater than 1, in contrast to most quasistatic investigations. Our new theoretical framework not only provides unprecedented insight into the cavitation dynamics in a soft, nonlinear solid, but also provides a quantitative means of interpreting bubble dynamics relevant to a wide array of engineering and medical applications as well as natural phenomena.
Collapse
Affiliation(s)
- Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anastasia Tzoumaka
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kazuya Murakami
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David L Henann
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Hasan F, Al Mahmud KAH, Khan MI, Kang W, Adnan A. Effect of random fiber networks on bubble growth in gelatin hydrogels. SOFT MATTER 2021; 17:9293-9314. [PMID: 34647568 DOI: 10.1039/d1sm00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In hydrodynamics, the event of dynamic bubble growth in a pure liquid under tensile pressure is known as cavitation. The same event can also be observed in soft materials (e.g., elastomers and hydrogels). However, for soft materials, bubble/cavity growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by material failure and irreversible. In any way, bubble growth can cause damage to soft materials (e.g., tissue) by inducing high strain and strain-rate deformation. Additionally, a high-strength pressure wave is generated upon the collapse of the bubble. Therefore, it is crucial to identify the critical condition of spontaneous bubble growth in soft materials. Experimental and theoretical observations have agreed that the onset of bubble growth in soft materials requires higher tensile pressure than pure water. The extra tensile pressure is required since the cavitating bubble needs to overcome the elastic and surface energy in soft materials. In this manuscript, we developed two models to study and quantify the extra tensile pressure for different gelatin concentrations. Both the models are then compared with the existing cavitation onset criteria of rubber-like materials. Validation is done with the experimental results of threshold tensile pressure for different gelatin concentrations. Both models can moderately predict the extra tensile pressure within the intermediate range of gelatin concentrations (3-7% [w/v]). For low concentration (∼1%), the network's non-affinity plays a significant role and must be incorporated. On the other hand, for higher concentrations (∼10%), the entropic deformation dominates, and the strain energy formulation is not adequate.
Collapse
Affiliation(s)
- Fuad Hasan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - K A H Al Mahmud
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Wonmo Kang
- School for Engineering of Matter, Transport and Energy, Arizona State University, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| |
Collapse
|
11
|
Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T. Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 152:104455. [PMID: 34092810 PMCID: PMC8177475 DOI: 10.1016/j.jmps.2021.104455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model, providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin-Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.
Collapse
Affiliation(s)
- Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mauro Rodriguez
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin Schmidmayer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer H. Bryngelson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Kim C, Choi WJ, Ng Y, Kang W. Mechanically Induced Cavitation in Biological Systems. Life (Basel) 2021; 11:life11060546. [PMID: 34200753 PMCID: PMC8230379 DOI: 10.3390/life11060546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cavitation bubbles form in soft biological systems when subjected to a negative pressure above a critical threshold, and dynamically change their size and shape in a violent manner. The critical threshold and dynamic response of these bubbles are known to be sensitive to the mechanical characteristics of highly compliant biological systems. Several recent studies have demonstrated different biological implications of cavitation events in biological systems, from therapeutic drug delivery and microsurgery to blunt injury mechanisms. Due to the rapidly increasing relevance of cavitation in biological and biomedical communities, it is necessary to review the current state-of-the-art theoretical framework, experimental techniques, and research trends with an emphasis on cavitation behavior in biologically relevant systems (e.g., tissue simulant and organs). In this review, we first introduce several theoretical models that predict bubble response in different types of biological systems and discuss the use of each model with physical interpretations. Then, we review the experimental techniques that allow the characterization of cavitation in biologically relevant systems with in-depth discussions of their unique advantages and disadvantages. Finally, we highlight key biological studies and findings, through the direct use of live cells or organs, for each experimental approach.
Collapse
|
13
|
D’Andrea A, Severini L, Domenici F, Dabagov S, Guglielmotti V, Hampai D, Micheli L, Placidi E, Titubante M, Mazzuca C, Paradossi G, Palleschi A. Ultrasound-Stimulated PVA Microbubbles for Adhesive Removal from Cellulose-Based Materials: A Groundbreaking Low-Impact Methodology. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24207-24217. [PMID: 33988378 PMCID: PMC8289177 DOI: 10.1021/acsami.1c01892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, we shed new light on ultrasound contrast agents applied to the field of cultural heritage as an invaluable fine-tune cleaning tool for paper artworks. In this context, one of the primary and challenging issues is the removal of modern adhesives from paper artifacts. Modern adhesives are synthetic polymers whose presence enhances paper degradation and worsens its optical features. A thorough analytical and high-spatial-resolution combined study was successfully performed to test the capability of poly(vinyl alcohol)-based microbubbles stimulated by a proper noninvasive 1 MHz ultrasound field exposure in removing these adhesives from paper surfaces, in the absence of volatile invasive and toxic chemicals and without damaging paper and/or leaving residues. We demonstrate that poly(vinyl alcohol)-shelled microbubbles are suitable for interacting with paper surfaces, targeting and boosting in a few minutes the nondamaging removal of adhesive particles from paper samples thanks to their peculiar shell composition together with their ultrasound dynamics.
Collapse
Affiliation(s)
- Alessia D’Andrea
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Leonardo Severini
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Domenici
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sultan Dabagov
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
- RAS
P.N. Lebedev Physical Institute, Leninsky pr 53, 119991 Moscow, Russia
- National
Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia
| | - Valeria Guglielmotti
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
- University
Guglielmo Marconi, Via
Plinio 44, 00193 Rome, Italy
| | - Dariush Hampai
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
| | - Laura Micheli
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ernesto Placidi
- Department
of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Mattia Titubante
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gaio Paradossi
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonio Palleschi
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Mancia L, Yang J, Spratt JS, Sukovich JR, Xu Z, Colonius T, Franck C, Johnsen E. Acoustic cavitation rheometry. SOFT MATTER 2021; 17:2931-2941. [PMID: 33587083 DOI: 10.1039/d0sm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Hasan F, Al Mahmud KAH, Khan MI, Patil S, Dennis BH, Adnan A. Cavitation Induced Damage in Soft Biomaterials. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s42493-021-00060-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
17
|
Luo JC, Ching H, Wilson BG, Mohraz A, Botvinick EL, Venugopalan V. Laser cavitation rheology for measurement of elastic moduli and failure strain within hydrogels. Sci Rep 2020; 10:13144. [PMID: 32753667 PMCID: PMC7403306 DOI: 10.1038/s41598-020-68621-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/12/2020] [Indexed: 01/26/2023] Open
Abstract
We introduce laser cavitation rheology (LCR) as a minimally-invasive optical method to characterize mechanical properties within the interior of biological and synthetic aqueous soft materials at high strain-rates. We utilized time-resolved photography to measure cavitation bubble dynamics generated by the delivery of focused 500 ps duration laser radiation at λ = 532 nm within fibrin hydrogels at pulse energies of Ep = 12, 18 µJ and within polyethylene glycol (600) diacrylate (PEG (600) DA) hydrogels at Ep = 2, 5, 12 µJ. Elastic moduli and failure strains of fibrin and PEG (600) DA hydrogels were calculated from these measurements by determining parameter values which provide the best fit of the measured data to a theoretical model of cavitation bubble dynamics in a Neo-Hookean viscoelastic medium subject to material failure. We demonstrate the use of this method to retrieve the local, interior elastic modulus of these hydrogels and both the radial and circumferential failure strains.
Collapse
Affiliation(s)
- Justin C Luo
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2715, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, 92697-2575, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Herman Ching
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, 916 Engineering Tower, Irvine, CA, 92697-2580, USA
| | - Bryce G Wilson
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, 92697-2575, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, 916 Engineering Tower, Irvine, CA, 92697-2580, USA
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, 916 Engineering Tower, Irvine, CA, 92697-2580, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2715, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, 92697-2575, USA
| | - Vasan Venugopalan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, 92697-2575, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, 916 Engineering Tower, Irvine, CA, 92697-2580, USA.
| |
Collapse
|
18
|
Ultrasound-triggered release from metal shell microcapsules. J Colloid Interface Sci 2019; 554:444-452. [DOI: 10.1016/j.jcis.2019.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
|
19
|
Barney CW, Zheng Y, Wu S, Cai S, Crosby AJ. Residual strain effects in needle-induced cavitation. SOFT MATTER 2019; 15:7390-7397. [PMID: 31469148 DOI: 10.1039/c9sm01173k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Needle-induced cavitation (NIC) locally probes the elastic and fracture properties of soft materials, such as gels and biological tissues. Current NIC protocols tend to overestimate properties when compared to traditional techniques. New NIC methods are needed in order to address this issue. NIC measurements consist of two distinct processes, namely (1) the needle insertion process and (2) the cavitation process. The cavitation process is hypothesized to be highly dependent on the initial needle insertion process due to the influence of residual strain below the needle. Retracting the needle before pressurization to a state in which a cylindrical, tube-like fracture is left below the needle tip is experimentally demonstrated to reduce the impact of residual strain on NIC. Verification of the critical cavitation pressure equation in this new geometry is necessary before implementing this retraction NIC protocol. Complementary modeling shows that the change in initial geometry has little effect on the critical cavitation pressure. Together, these measurements demonstrate that needle retraction is a viable experimental protocol for reducing the influence of residual strain, thus enabling the confident measurement of local elastic and fracture properties in soft gels and tissues.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
20
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
21
|
Wilson CT, Hall TL, Johnsen E, Mancia L, Rodriguez M, Lundt JE, Colonius T, Henann DL, Franck C, Xu Z, Sukovich JR. Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media. Phys Rev E 2019; 99:043103. [PMID: 31108707 DOI: 10.1103/physreve.99.043103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 04/30/2023]
Abstract
Experimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels. The growth and collapse phases occurred symmetrically (in time) about the maximum radius in water but not in gels, where the duration of the growth phase decreased more than the collapse phase as gel stiffness increased. Numerical simulations of the bubble dynamics in viscoelastic media showed varying degrees of success in accurately predicting the observations.
Collapse
Affiliation(s)
- Chad T Wilson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Mauro Rodriguez
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan E Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Tim Colonius
- Department of Mechanical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - David L Henann
- Department of Mechanical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
22
|
Kang W, Raphael M. Acceleration-induced pressure gradients and cavitation in soft biomaterials. Sci Rep 2018; 8:15840. [PMID: 30367099 PMCID: PMC6203720 DOI: 10.1038/s41598-018-34085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
The transient, dynamic response of soft materials to mechanical impact has become increasingly relevant due to the emergence of numerous biomedical applications, e.g., accurate assessment of blunt injuries to the human body. Despite these important implications, acceleration-induced pressure gradients in soft materials during impact and the corresponding material response, from small deformations to sudden bubble bursts, are not fully understood. Both through experiments and theoretical analyses, we empirically show, using collagen and agarose model systems, that the local pressure in a soft sample is proportional to the square of the sample depth in the impact direction. The critical acceleration that corresponds to bubble bursts increases with increasing gel stiffness. Bubble bursts are also highly sensitive to the initial bubble size, e.g., bubble bursts can occur only when the initial bubble diameter is smaller than a critical size (≈10 μm). Our study gives fundamental insight into the physics of injury mechanisms, from blunt trauma to cavitation-induced brain injury.
Collapse
Affiliation(s)
| | - Marc Raphael
- Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
23
|
Bader KB. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability. Phys Med Biol 2018; 63:095010. [PMID: 29553049 PMCID: PMC5959013 DOI: 10.1088/1361-6560/aab79b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and the Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
24
|
Macoskey JJ, Choi SW, Hall TL, Vlaisavljevich E, Lundt JE, Lee FT, Johnsen E, Cain CA, Xu Z. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation. Phys Med Biol 2018; 63:055013. [PMID: 29424711 DOI: 10.1088/1361-6560/aaae3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2 = 0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.
Collapse
Affiliation(s)
- J J Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zilonova E, Solovchuk M, Sheu TWH. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy. ULTRASONICS SONOCHEMISTRY 2018; 40:900-911. [PMID: 28946501 DOI: 10.1016/j.ultsonch.2017.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms.
Collapse
Affiliation(s)
- E Zilonova
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.
| | - M Solovchuk
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan 35053, Taiwan, ROC.
| | - T W H Sheu
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC; Center of Advanced Study in Theoretical Science (CASTS), National Taiwan University, Taiwan, ROC; Department of Mathematics, National Taiwan University, Taiwan, ROC.
| |
Collapse
|
26
|
Movahed P, Kreider W, Maxwell AD, Dunmire B, Freund JB. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2318-2328. [PMID: 28739379 PMCID: PMC5562535 DOI: 10.1016/j.ultrasmedbio.2017.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Therapeutic ultrasound can drive bubble activity that damages soft tissues. To study the potential mechanisms of such injury, transparent agar tissue-mimicking phantoms were subjected to multiple pressure wave bursts of the kind being considered specifically for burst wave lithotripsy. A high-speed camera recorded bubble activity during each pulse. Various agar concentrations were used to alter the phantom's mechanical properties, especially its stiffness, which was varied by a factor of 3.5. However, the maximum observed bubble radius was insensitive to stiffness. During 1000 wave bursts of a candidate burst wave lithotripsy treatment, bubbles appeared continuously in a region that expanded slowly, primarily toward the transducer. Denser bubble clouds are formed at higher pulse repetition frequency. The specific observations are used to inform the incorporation of damage mechanisms into cavitation models for soft materials.
Collapse
Affiliation(s)
- Pooya Movahed
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA; Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Barbrina Dunmire
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Jonathan B Freund
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|