1
|
Abdala C, Benjamin T, Stiepan S, Luo P, Shera CA. Detection of mild sensory hearing loss using a joint reflection-distortion otoacoustic emission profile. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2220-2236. [PMID: 39377529 PMCID: PMC11464069 DOI: 10.1121/10.0030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Measuring and analyzing both nonlinear-distortion and linear-reflection otoacoustic emissions (OAEs) combined creates what we have termed a "joint-OAE profile." Here, we test whether these two classes of emissions have different sensitivities to hearing loss and whether our joint-OAE profile can detect mild-moderate hearing loss better than conventional OAE protocols have. 2f1-f2 distortion-product OAEs and stimulus-frequency OAEs were evoked with rapidly sweeping tones in 300 normal and impaired ears. Metrics included OAE amplitude for fixed-level stimuli as well as slope and compression features derived from OAE input/output functions. Results show that mild-moderate hearing loss impacts distortion and reflection emissions differently. Clinical decision theory was applied using OAE metrics to classify all ears as either normal-hearing or hearing-impaired. Our best OAE classifiers achieved 90% or better hit rates (with false positive rates of 5%-10%) for mild hearing loss, across a nearly five-octave range. In summary, results suggest that distortion and reflection emissions have distinct sensitivities to hearing loss, which supports the use of a joint-OAE approach for diagnosis. Results also indicate that analyzing both reflection and distortion OAEs together to detect mild hearing loss produces outstanding accuracy across the frequency range, exceeding that achieved by conventional OAE protocols.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Tricia Benjamin
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Samantha Stiepan
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Ping Luo
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| |
Collapse
|
2
|
Shera CA. Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli. J Assoc Res Otolaryngol 2024; 25:91-102. [PMID: 38409555 PMCID: PMC11018600 DOI: 10.1007/s10162-024-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
At the 2004 Midwinter Meeting of the Association for Research in Otolaryngology, Glenis Long and her colleagues introduced a method for measuring distortion-product otoacoustic emissions (DPOAEs) using primary-tone stimuli whose instantaneous frequencies vary continuously with time. In contrast to standard OAE measurement methods, in which emissions are measured in the sinusoidal steady state using discrete tones of well-defined frequency, the swept-tone method sweeps across frequency, often at rates exceeding 1 oct/s. The resulting response waveforms are then analyzed using an appropriate filter (e.g., by least-squares fitting). Although introduced as a convenient way of studying DPOAE fine structure by separating the total OAE into distortion and reflection components, the swept-tone method has since been extended to stimulus-frequency emissions and has proved an efficient and valuable tool for probing cochlear mechanics. One day-a long time coming-swept tones may even find their way into the audiology clinic.
Collapse
Affiliation(s)
- Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Stiepan S, Shera CA, Abdala C. Does Endolymphatic Hydrops Shift the Cochlear Tonotopic Map? AIP CONFERENCE PROCEEDINGS 2024; 3062:060003. [PMID: 38576895 PMCID: PMC10994190 DOI: 10.1063/5.0189381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cochlear tonotopic map determines where along the basilar membrane traveling waves of different frequencies peak. Endolymphatic hydrops has been hypothesized to shift the tonotopic map by altering the stiffness of the cochlear partition, especially in the apex. In this exploratory study performed in a handful of normal and hydropic ears, we report preliminary measurements of interaural differences assayed using behavioral pitch-matching supplemented by measurements of reflection otoacoustic-emission phase-gradient delays.
Collapse
Affiliation(s)
- Samantha Stiepan
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, 1640 Marengo St, Los Angeles, CA, United States
| | - Christopher A. Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, 1640 Marengo St, Los Angeles, CA, United States
| | - Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, 1640 Marengo St, Los Angeles, CA, United States
| |
Collapse
|
4
|
Stiepan S, Shera CA, Abdala C. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops. Ear Hear 2023; 44:1437-1450. [PMID: 37450653 PMCID: PMC10593104 DOI: 10.1097/aud.0000000000001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Endolymphatic hydrops (EH), a hallmark of Meniere disease, is an inner-ear disorder where the membranes bounding the scala media are distended outward due to an abnormally increased volume of endolymph. In this study, we characterize the joint-otoacoustic emission (OAE) profile, a results profile including both distortion- and reflection-class emissions from the same ear, in individuals with EH and speculate on its potential utility in clinical assessment and monitoring. DESIGN Subjects were 16 adults with diagnosed EH and 18 adults with normal hearing (N) matched for age. Both the cubic distortion product (DP) OAE, a distortion-type emission, and the stimulus-frequency (SF) OAE, a reflection-type emission, were measured and analyzed as a joint OAE profile. OAE level, level growth (input/output functions), and phase-gradient delays were measured at frequencies corresponding to the apical half of the human cochlea and compared between groups. RESULTS Normal hearers and individuals with EH shared some common OAE patterns, such as the reflection emissions being generally higher in level than distortion emissions and showing more linear growth than the more strongly compressed distortion emissions. However, significant differences were noted between the EH and N groups as well. OAE source strength (a metric based on OAE amplitude re: stimulus level) was significantly reduced, as was OAE level, at low frequencies in the EH group. These reductions were more marked for distortion than reflection emissions. Furthermore, two significant changes in the configuration of OAE input/output functions were observed in ears with EH: a steepened growth slope for reflection emissions and an elevated compression knee for distortion emissions. SFOAE phase-gradient delays at 40 dB forward-pressure level were slightly shorter in the group with EH compared with the normal group. CONCLUSIONS The underlying pathology associated with EH impacts the generation of both emission types, reflection and distortion, as shown by significant group differences in OAE level, growth, and delay. However, hydrops impacts reflection and distortion emissions differently. Most notably, DPOAEs were more reduced by EH than were SFOAEs, suggesting that pathologies associated with the hydropic state do not act identically on the generation of nonlinear distortion at the hair bundle and intracochlear reflection emissions near the peak of the traveling wave. This differential effect underscores the value of applying a joint OAE approach to access both intracochlear generation processes concurrently.
Collapse
Affiliation(s)
- Samantha Stiepan
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Mishra SK, Moore DR. Auditory Deprivation during Development Alters Efferent Neural Feedback and Perception. J Neurosci 2023; 43:4642-4649. [PMID: 37221095 PMCID: PMC10286938 DOI: 10.1523/jneurosci.2182-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Auditory experience plays a critical role in hearing development. Developmental auditory deprivation because of otitis media, a common childhood disease, produces long-standing changes in the central auditory system, even after the middle ear pathology is resolved. The effects of sound deprivation because of otitis media have been mostly studied in the ascending auditory system but remain to be examined in the descending pathway that runs from the auditory cortex to the cochlea via the brainstem. Alterations in the efferent neural system could be important because the descending olivocochlear pathway influences the neural representation of transient sounds in noise in the afferent auditory system and is thought to be involved in auditory learning. Here, we show that the inhibitory strength of the medial olivocochlear efferents is weaker in children with a documented history of otitis media relative to controls; both boys and girls were included in the study. In addition, children with otitis media history required a higher signal-to-noise ratio on a sentence-in-noise recognition task than controls to achieve the same criterion performance level. Poorer speech-in-noise recognition, a hallmark of impaired central auditory processing, was related to efferent inhibition, and could not be attributed to the middle ear or cochlear mechanics.SIGNIFICANCE STATEMENT Otitis media is the second most common reason children go to the doctor. Previously, degraded auditory experience because of otitis media has been associated with reorganized ascending neural pathways, even after middle ear pathology resolved. Here, we show that altered afferent auditory input because of otitis media during childhood is also associated with long-lasting reduced descending neural pathway function and poorer speech-in-noise recognition. These novel, efferent findings may be important for the detection and treatment of childhood otitis media.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, Austin, Texas 78712
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, Cincinnati, Ohio 45229
- Department of Otolaryngology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
6
|
Abdala C, Luo P, Shera CA. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. J Assoc Res Otolaryngol 2022; 23:647-664. [PMID: 35804277 PMCID: PMC9613820 DOI: 10.1007/s10162-022-00857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Otoacoustic emissions (OAEs) arise from one (or a combination) of two basic generation mechanisms in the cochlea: nonlinear distortion and linear reflection. As a result of having distinct generation processes, these two classes of emissions may provide non-redundant information about hair-cell integrity and show distinct sensitivities to cochlear pathology. Here, we characterize the relationship between reflection and distortion emissions in normal hearers across a broad frequency and stimulus-level space using novel analysis techniques. Furthermore, we illustrate the promise of this approach in a small group of individuals with mild-moderate hearing loss. A "joint-OAE profile" was created by measuring interleaved swept-tone stimulus-frequency OAEs (SFOAEs) and 2f1-f2 distortion-product OAEs (DPOAEs) in the same ears using well-considered parameters. OAE spectra and input/output functions were calculated across five octaves. Using our specific recording protocol and analysis scheme, SFOAEs in normal hearers had higher levels than did DPOAEs, with the most pronounced differences occurring at the highest stimulus levels. Also, SFOAE compression occurred at higher stimulus levels (than did DPOAE compression) and its growth in the compressed region was steeper. The diagnostic implications of these findings and the influence of the measurement protocol on both OAEs (and on their relationship) are discussed.
Collapse
Affiliation(s)
- Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Luo
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Pacheco D, Rajagopal N, Prieve BA, Nangia S. Joint Profile Characteristics of Long-Latency Transient Evoked and Distortion Otoacoustic Emissions. Am J Audiol 2022; 31:684-697. [PMID: 35862753 DOI: 10.1044/2022_aja-21-00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In clinical practice, otoacoustic emissions (OAEs) are interpreted as either "present" or "absent." However, OAEs have the potential to inform about etiology and severity of hearing loss if analyzed in other dimensions. A proposed method uses the nonlinear component of the distortion product OAEs together with stimulus frequency OAEs to construct a joint reflection-distortion profile. The objective of the current study is to determine if joint reflection-distortion profiles can be created using long-latency (LL) components of transient evoked OAEs (TEOAEs) as the reflection-type emission. METHOD LL TEOAEs and the nonlinear distortion OAEs were measured from adult ears. Individual input-output (I/O) functions were created, and OAE level was normalized by dividing by the stimulus level yielding individual gain functions. Peak strength, compression threshold, and OAE level at compression threshold were derived from individual gain functions to create joint reflection-distortion profiles. RESULTS TEOAEs with a poststimulus window starting at 6 ms had I/O functions with compression characteristics similar to LL TEOAE components. The model fit the LL gain functions, which had R 2 > .93, significantly better than the nonlinear distortion OAE gain functions, which had R 2 = .596-.99. Interquartile ranges for joint reflection-distortion profiles were larger for compression threshold and OAE level at compression threshold but smaller for peak strength than those previously published. CONCLUSIONS The gain function fits LL TEOAEs well. Joint reflection-distortion profiles are a promising method that could enhance diagnosis of hearing loss, and use of the LL TEOAE in the profile for peak strength may be important because of narrow interquartile ranges. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.20323593.
Collapse
Affiliation(s)
- Devon Pacheco
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, NY
| | - Beth A Prieve
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, NY
| |
Collapse
|
8
|
Charaziak KK, Shera CA. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. J Assoc Res Otolaryngol 2021; 22:641-658. [PMID: 34606020 DOI: 10.1007/s10162-021-00813-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
According to coherent reflection theory, otoacoustic emissions (OAE) evoked with clicks (clicked-evoked, CE) or tones (stimulus frequency, SF) originate via the same mechanism. We test this hypothesis in gerbils by investigating the similarity of CE- and SFOAEs across a wide range of stimulus levels. The results show that OAE transfer functions measured in response to clicks and sweeps have nearly equivalent time-frequency characteristics, particularly at low stimulus levels. At high stimulus levels, the two OAE types are more dissimilar, reflecting the different dynamic properties of the evoking stimulus. At mid to high stimulus levels, time-frequency analysis reveals contributions from at least two OAE source components of varying latencies. Interference between these components explains the emergence of strong spectral microstructure. Time-frequency filtering based on mean basilar-membrane (BM) group delays (τBM) shows that late-latency OAE components (latency ~ 1.6τBM) dominate at low stimulus intensities and exhibit highly compressive growth with increasing stimulus intensity. In contrast, early-latency OAE components (~ 0.7τBM) are small at low stimulus levels but can come to dominate the overall response at higher intensities. Although the properties of long-latency OAEs are consistent with an origin via coherent reflection near the peak of the traveling wave, the generation place and/or mechanisms responsible for the early-latency OAE components warrant further investigation. Because their delay remains in constant proportion to τBM across sound intensity, long-latency OAEs, whether evoked with tones or clicks, can be used to predict characteristics of cochlear processing, such as the sharpness of frequency tuning, even at high stimulus levels.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Sexual Dimorphism in the Functional Development of the Cochlear Amplifier in Humans. Ear Hear 2021; 42:860-869. [PMID: 33974790 PMCID: PMC8222053 DOI: 10.1097/aud.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Otoacoustic emissions, a byproduct of active cochlear mechanisms, exhibit a higher magnitude in females than in males. The relatively higher levels of androgen exposure in the male fetus are thought to cause this difference. Postnatally, the onset of puberty is also associated with the androgen surge in males. In this study, we investigated sexual dimorphism in age-related changes in stimulus-frequency otoacoustic emissions for children. DESIGN In a retrospective design, stimulus-frequency otoacoustic emissions were analyzed from a cross-sectional sample of 170 normal-hearing children (4 to 12 years) and 67 young adults. Wideband acoustic immittance and efferent inhibition measures were analyzed to determine the extent to which middle ear transmission and efferent inhibition can account for potential sex differences in stimulus-frequency otoacoustic emissions. RESULTS Male children showed a significant reduction in otoacoustic emission magnitudes with age, whereas female children did not show any such changes. Females showed higher stimulus-frequency otoacoustic emission magnitudes compared with males. However, the effect size of sex differences in young adults was larger compared with children. Unlike the otoacoustic emission magnitude, the noise floor did not show sexual dimorphism; however, it decreased with age. Neither the wideband absorbance nor efferent inhibition could account for the sex differences in stimulus-frequency otoacoustic emissions. CONCLUSIONS The cochlear-amplifier function remains robust in female children but diminishes in male children between 4 and 12 years of age. We carefully eliminated lifestyle, middle ear, and efferent factors to conclude that the androgen surge associated with puberty likely caused the observed masculinization of stimulus-frequency otoacoustic emissions in male children. These findings have significant theoretical consequences. The cochlea is considered mature at birth; however, the present findings highlight that functional cochlear maturation, as revealed by otoacoustic emissions, can be postnatally influenced by endogenous hormonal factors, at least in male children. Overall, work reported here demonstrates sexual dimorphism in the functional cochlear maturational processes during childhood.
Collapse
|
10
|
Christensen AT, Abdala C, Shera CA. A cochlea with three parts? Evidence from otoacoustic emission phase in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1585. [PMID: 33003861 PMCID: PMC7789857 DOI: 10.1121/10.0001920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The apical and basal regions of the cochlea appear functionally distinct. In humans, compelling evidence for an apical-basal transition derives from the phase of otoacoustic emissions (OAEs), whose frequency dependence differs at low and high frequencies. Although OAEs arising from the two major source mechanisms (distortion and reflection) both support the existence of an apical-basal transition-as identified via a prominent bend (or "break") in OAE phase slope-the two OAE types disagree about its precise location along the cochlea. Whereas distortion OAEs at frequency 2f1-f2 suggest that the apical-basal transition occurs near the 2.5 kHz place, reflection OAEs locate the transition closer to 1 kHz. To address this discrepancy, distortion and reflection OAEs were measured and analyzed in 20 young human adults from 0.25-8 kHz and at eight primary-frequency ratios f2/f1 in the range 1-1.5. Break frequencies and OAE phase-gradient delays were estimated by fitting segmented linear models to the unwrapped phase. When distortion- and reflection-OAE phase are considered as functions of ln f2-that is, as linear functions of the location of their putative site of generation within the cochlea-the analysis identifies not just two but three main cochlear segments, meeting at transition frequencies of approximately 0.9 and 2.6 kHz, whose locations are largely independent both of primary-frequency ratio and emission type. A simple model incorporating an abrupt transition from wave- to place-fixed behavior near the middle of the cochlea accounts for key features of distortion-OAE phase.
Collapse
Affiliation(s)
- Anders T Christensen
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
11
|
Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits. Ear Hear 2020; 40:1345-1358. [PMID: 30882535 DOI: 10.1097/aud.0000000000000714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The stimuli used to evoke otoacoustic emissions (OAEs) are typically calibrated based on the total SPL measured at the probe microphone. However, due to the acoustics of the ear-canal space (i.e., standing-wave interference), this method can underestimate the stimulus pressure reaching the tympanic membrane at certain frequencies. To mitigate this effect, stimulus calibrations based on forward pressure level (FPL) can be applied. Furthermore, the influence of ear-canal acoustics on measured OAE levels can be compensated by expressing them in emitted pressure level (EPL). To date, studies have used artificial shallow versus deep probe fits to assess the effects of calibration method on changes in probe insertion. In an attempt to better simulate a clinical setting, the combined effects of FPL calibration of stimulus level and EPL compensation of OAE level on response variability during routine (noncontrived) probe fittings were examined. DESIGN The distortion component of the distortion-product OAE (DPOAE) and the stimulus-frequency OAE (SFOAE) were recorded at low and moderate stimulus levels in 20 normal-hearing young-adult subjects across a five-octave range. In each subject, three different calibration approaches were compared: (1) the conventional SPL-based stimulus calibration with OAE levels expressed in SPL; (2) FPL stimulus calibration with OAEs expressed in SPL; and (3) FPL stimulus calibration with OAEs expressed in EPL. Test and retest measurements were obtained during the same session and, in a subset of subjects, several months after the initial test. The effects of these different procedures on the inter- and intra-subject variability of OAE levels were assessed across frequency and level. RESULTS There were no significant differences in the inter-subject variability of OAE levels across the three calibration approaches. However, there was a significant effect on OAE intra-subject variability. The FPL/EPL approach resulted in the overall lowest test-rest differences in DPOAE level for frequencies above 4 kHz, where standing-wave interference is strongest. The benefit was modest, ranging on average from 0.5 to 2 dB and was strongest at the lower stimulus level. SFOAE level variability did not show significant differences among the three procedures, perhaps due to insufficient signal-to-noise ratio and nonoptimized stimulus levels. Correlations were found between the short-term replicability of DPOAEs and the benefit derived from the FPL/EPL procedure: the more variable the DPOAE, the stronger the benefit conferred by the advanced calibration methods. CONCLUSIONS Stimulus and response calibration procedures designed to mitigate the effects of standing-wave interference on both the stimulus and the OAE enhance the repeatability of OAE measurements and reduce their dependence on probe position, even when probe shifts are small. Modest but significant improvements in short-term test-retest repeatability were observed in the mid- to high-frequency region when using combined FPL/EPL procedures. The authors posit that the benefit will be greater in a more heterogeneous group of subjects and when different testers participate in the fitting and refitting of subjects, which is a common practice in the audiology clinic. The impact of calibration approach on OAE inter-subject variability was not significant, possibly due to a homogeneous subject population and because factors other than probe position are at play.
Collapse
|
12
|
Christensen AT, Abdala C, Shera CA. Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3457. [PMID: 31795700 PMCID: PMC6872461 DOI: 10.1121/1.5134058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Swept tones allow the efficient measurement of otoacoustic emissions (OAEs) with fine frequency resolution. Although previous studies have explored the influence of different sweep parameters on the measured OAE, none have directly considered their effects on the measurement noise floor. The present study demonstrates that parameters such as sweep type (e.g., linear or logarithmic), sweep rate, and analysis bandwidth affect the measurement noise and can be manipulated to control the noise floor in individual subjects. Although responses to discrete-tone stimuli can be averaged until the uncertainty of the measurement meets a specified criterion at each frequency, linear or logarithmic sweeps offer no such flexibility. However, measurements of the power spectral density of the ambient noise can be used to construct variable-rate sweeps that yield a prescribed (e.g., constant) noise floor across frequency; in effect, they implement a form of frequency-dependent averaging. The use of noise-compensating frequency sweeps is illustrated by the measurement of distortion-product OAEs at low frequencies, where the ear-canal noise is known to vary significantly.
Collapse
Affiliation(s)
- Anders T Christensen
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
13
|
Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends Hear 2019; 23:2331216519889226. [PMID: 31789131 PMCID: PMC6887807 DOI: 10.1177/2331216519889226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
Several types of otoacoustic emissions have been characterized in newborns to study the maturational status of the cochlea at birth and to develop effective tests of hearing. The stimulus-frequency otoacoustic emission (SFOAE), a reflection-type emission elicited with a single low-level pure tone, is the least studied of these emissions and has not been comprehensively characterized in human newborns. The SFOAE has been linked to cochlear tuning and is sensitive to disruptions in cochlear gain (i.e., hearing loss) in adult subjects. In this study, we characterize SFOAEs evoked with rapidly sweeping tones in human neonates and consider the implications of our findings for human cochlear maturation. SFOAEs were measured in 29 term newborns within 72 hr of birth using swept tones presented at 2 oct/s across a four-octave frequency range (0.5–8 kHz); 20 normal-hearing young adults served as a control group. The prevalence of SFOAEs in newborns was as high as 90% (depending on how response “presence” was defined). Evidence of probe-tip leakage and abnormal ear-canal energy reflectance was observed in those ears with absent or unmeasurable SFOAEs. Results in the group of newborns with present stimulus-frequency emissions indicate that neonatal swept-tone SFOAEs are adult-like in morphology but have slightly higher amplitude compared with adults and longer SFOAE group delays. The origin of these nonadult-like features is probably mixed, including contributions from both conductive (ear canal and middle ear) and cochlear immaturities.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ping Luo
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeini Guardia
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. J Assoc Res Otolaryngol 2018; 19:493-510. [PMID: 29968098 DOI: 10.1007/s10162-018-0680-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Previous research on distortion product otoacoustic emission (DPOAE) components has hinted at possible differences in the effect of aging on the two basic types of OAEs: those generated by a reflection mechanism in the cochlea and those created by nonlinear distortion (Abdala and Dhar in J Assoc Res Otolaryngol 13:403-421, 2012). This initial work led to the hypothesis that micromechanical irregularity ("roughness") increases in the aging cochlea, perhaps as the result of natural tissue degradation. Increased roughness would boost the backscattering of traveling waves (i.e., reflection emissions) while minimally impacting DPOAEs. To study the relational effect of aging on both types of emissions and address our hypothesis of its origin, we measured reflection- and distortion-type OAEs in 77 human subjects aged 18-76 years. The stimulus-frequency OAE (SFOAE), a reflection emission, and the distortion component of the DPOAE, a nonlinear distortion emission, were recorded at multiple stimulus levels across a four-octave range in all ears. Although the levels of both OAE types decreased with age, the rate of decline in OAE level was consistently greater for DPOAEs than for SFOAEs; that is, SFOAEs are relatively preserved with advancing age. Multiple regression analyses and other controls indicate that aging per se, and not hearing loss, drives this effect. Furthermore, SFOAE generation was simulated using computational modeling to explore the origin of this result. Increasing the amount of mechanical irregularity with age produced an enhancement of SFOAE levels, providing support for the hypothesis that increased intra-cochlear roughness during aging may preserve SFOAE levels. The characteristic aging effect-relatively preserved reflection-emission levels combined with more markedly reduced distortion-emission levels-indicates that SFOAE magnitudes in elderly individuals depend on more than simply the gain of the cochlear amplifier. This relative pattern of OAE decline with age may provide a diagnostic marker for aging-related changes in the cochlea.
Collapse
|